CBSE Class 11 Mathematics
 Sample Papers 06 (2019-20)

Maximum Marks: 80

Time Allowed: 3 hours

General Instructions:

i. All the questions are compulsory.
ii. The question paper consists of 36 questions divided into 4 sections A, B, C, and D.
iii. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
iv. There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
v. Use of calculators is not permitted.

Section A

1. The domain of the function $\mathrm{f}(\mathrm{x})=\sqrt{\sin x-1}$ is
a. $-\phi$
b. $\left\{x \in R: x=2 n \pi \pm \frac{\pi}{2}, n \in I\right\}$
c. $\left\{\frac{\pi}{2}\right\}$
d. $\left\{x \in R: x=2 n \pi+\frac{\pi}{2}, n \in I\right\}$.
2. The number of all odd divisors of 3600 is
a. 9
b. 18
c. none of these
d. 45
3. $(\sqrt{5}+1)^{2 n+1}-(\sqrt{5}-1)^{2 n+1}$ is
a. 0
b. an even positive integer
c. an odd positive integer
d. not an integer
4. The number of all selections which a student can make for answering one or more questions out of 8 given questions in a paper, when each question has an alternative, is:
a. 255
b. 6561
c. 6560
d. 256
5. If $\mathrm{f}: R \rightarrow R$ satisfies $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y})$ for all $\mathrm{x}, \mathrm{y} \in \mathrm{R}$ and $\mathrm{f}(1)=7$, then $\sum_{r=1}^{n} f(r)$ is a. $7 n(n+1)$
b. $\frac{7(n+1)}{2}$
c. $\frac{7 n(n+1)}{2}$
d. $\frac{7 n}{2}$
6. For all positive integers n, the number $4^{n}+15 n-1$ is divisible by :
a. 16
b. 24
c. 9
d. 36
7. A box contains n pairs of shoes and $2 r$ shoes are selected. $(\mathrm{r}<\mathrm{n})$. The probability that there is exactly one pair is
a. $\frac{\left(n .{ }^{n-1} C_{r-1}\right) 2^{r-1}}{{ }^{2 n} C_{2 r}}$
b. $\frac{{ }^{n-1} C_{r-1}}{{ }^{2 n} C_{2 r}}$
c. $\frac{n^{n-1} C_{r-1}}{{ }^{2 n} C_{2 r}}$
d. none of these
8. The line $\frac{x-x_{1}}{0}=\frac{y-y_{1}}{1}=\frac{z-z_{1}}{2}$ is
a. at right angles to plane YOZ
b. none of these
c. at right angles to x -axis
d. is parallel to Y-axis
9. 8 coins are tossed at a time. The probability of getting 6 heads up is
a. 229/ 256
b. $37 / 256$
c. $57 / 64$
d. $7 / 64$
10. The 1 st three terms in the expansion of $\left(2+\frac{x}{3}\right)^{4}$ are
a. $16+\frac{32 x}{3}+\frac{24 x^{2}}{9}$
b. $16+\frac{34 x}{3}+\frac{24 x^{2}}{9}$
c. $16+12 x+\frac{3}{16} x^{2}$
d. $16+3 x-\frac{3}{16} x^{2}$
11. Fill in the blanks:

Two ordered pairs are equal if their corresponding elements are \qquad .
12. Fill in the blanks:

The total number of terms in the expansion of $(x+a)^{51}-(x+a)^{51}$ after simplification is \qquad .
13. Fill in the blanks:

The value of $2 \times 6!-3 \times 5$! is \qquad .
14. Fill in the blanks:

The three coordinate planes divide the space into \qquad parts.

OR

Fill in the blanks:

If a point P lies in yz-plane, then the coordinates of a point on yz-plane is of the form
\qquad .
15. State true or false:

The derivative of $5 \sin x-6 \cos x+7$ is \qquad .

OR

Fill in the blanks:

The value of the given limit $\lim _{x \rightarrow 0} x \sec x$ is \qquad .
16. Taking the set of natural numbers as the universal set, write down the complement of the set: $\{\mathrm{x}: \mathrm{x}$ is an odd natural number\}
17. Evaluate $2 \times 6!-3 \times 5$!
18. Solve the inequalities: $2 \leqslant 3 x-4 \leqslant 5$

OR

Express the complex numbers $3(7+i 7)+i(7+i 7)$ in standard form
19. Find x and y, if $(x+3,5)=(6,2 x+y)$.
20. How many 3 letter words can be made, using the letters of the word 'ORIENTAL?
21. Find $A \Delta B$, if $A=\{1,3,6,11,12\}$ and $B=\{1,6\}$.

OR

If A is any set, prove that: $A \subseteq \phi \Leftrightarrow A=\phi$
22. A and B are two events such that $\mathrm{P}(\mathrm{A})=0.54, \mathrm{P}(\mathrm{B})=0.69$ and $P(A \cap B)=0.35$. Find
i. $P(A \cup B)$
ii. $P\left(A^{\prime} \cap B^{\prime}\right)$
iii. $P\left(A \cap B^{\prime}\right)$
iv. $P\left(B \cap A^{\prime}\right)$
23. If the middle term in the binomial expansion of $\left(\frac{1}{x}+x \sin x\right)^{10}$ is equal to $\frac{63}{8}$, find the value of x.
24. Find the angle between the lines joining the points $(0,0),(2,3)$ and the points $(2,-2)$, $(3,5)$.

OR

Find the angle between the lines $y=(2-\sqrt{3})(x+5)$ and $y=(2+\sqrt{3})(x-7)$.
25. Rewrite each of the following statements in the form "p if and, only if q"
(i) p : If you watch television, then your mind is free and if your mind is free, then you watch television.
(ii) q : For you to get an A grade, it is necessary and sufficient that you do all the homework regularly.
(iii) r : If a quadrilateral is equiangular, then it is a rectangle and if a quadrilateral is a
rectangle, then it is equiangular.
26. Prove that $\cot \mathrm{A}+\cot \left(60^{\circ}+\mathrm{A}\right)-\cot \left(60^{\circ}-\mathrm{A}\right)=3 \cot 3 \mathrm{~A}$
27. In a survey of 60 people, it was found that 25 people read newspaper $H, 26$ read newspaper T, 26 read newspaper I, 9 read both H and I, 11 read both H and T, 8 read both T and $\mathrm{I}, 3$ read all three newspapers.
Find: the number of people who read exactly one newspaper.
28. If $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ find $\frac{f(1.1)-f(1)}{(1.1-1)}$

OR

If $A=\{1,2,3\}, B=\{3,4\}$ and $C=\{1,3,5\}$, find
i. $A \times(B \cup C)$
ii. $A \times(B \cap C)$
iii. $(A \times B) \cap(A \times C)$
29. Evaluate $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}$.
30. If $(\mathrm{x}+\mathrm{iy})^{1 / 3}=\mathrm{a}+\mathrm{ib}$, where $\mathrm{x}, \mathrm{y}, \mathrm{a}, \mathrm{b} \in \mathrm{R}$, then show that $\frac{x}{a}-\frac{y}{b}=-2\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right)$.
31. Solve the linear inequality $\frac{-3 x+10}{x+1}>0$.

OR

Solve $x+\frac{x}{2}+\frac{x}{3}<11$
32. Prove by Mathematical Induction that $\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$, for all $\mathrm{n} \in \mathrm{N}$.
33. If α and β be the two distinct real numbers satisfying the equation a $\cos \theta+\mathrm{b} \sin \theta=$ c , then prove that $\sin (\alpha+\beta)=\frac{2 a b}{a^{2}+b^{2}}$ and $\sin \alpha \cdot \sin \beta=\frac{c^{s}-a^{2}}{a^{2}+b^{2}}$

Prove that $\cos \frac{2 \pi}{15} \cdot \cos \frac{4 \pi}{15} \cdot \cos \frac{8 \pi}{15} \cdot \cos \frac{16 \pi}{15}=\frac{1}{16}$
34. A farmer buys a used tractor for Rs. 12000. He pays Rs. 6000 cash and agrees to pay the balance in annual installments of Rs. 500 plus 12% interest on the unpaid amount. How much will the tractor cost him?
35. Find out the equation of parabola, if the focus is at $(-6,-6)$ and the vertex is at $(-2,2)$.

OR

A visitor with sign board 'DO NOT LITTER' is moving on a circular path in an exhibition. During the movement he stops at points represented by $(3,-2)$ and $(-2,0)$. Also, centre of the circular path is on the line $2 \mathrm{x}-\mathrm{y}=3$. What is the equation of the path? What message he wants to give to the public?
36. A student obtained the mean and standard deviation of 100 observations as 40 and 5.1 respectively. It was later found that one observation was wrongly copied as 50 , the correct figure being 40 . Find the correct mean and S.D.

CBSE Class 11 Mathematics

Sample Papers 06

Solution
 Section A

1. (d) $\left\{x \in R: x=2 n \pi+\frac{\pi}{2}, n \in I\right\}$. Explanation:
this exists only if

$$
\sin x-1 \geq 0
$$

$\sin x \geq 1$
$\sin x>1$, notpossible

$$
\begin{aligned}
& \therefore \sin x=1 \\
& \Rightarrow \sin x=\sin \left(2 n \pi+\frac{\pi}{2}\right) \\
& \Rightarrow x=2 n \pi+\frac{\pi}{2}(n \in I)
\end{aligned}
$$

2. (a) 9 Explanation:

$$
\text { we have } 3600=2^{4} \cdot 3^{2} \cdot 5^{2}
$$

To get the odd factors we will get rid of 2's
We will make the selection from only 3's and 5's

Number of ways 3 can be selected from a lot of two 3 's= 3 ways (one 3,two 3 's or three 3's)

Number of ways 5 can be selected from a lot of two 5's= 3 ways (one 5,two 5's or three 5's)

Therefore the number of odd factors is $3600=3 \times 3=9$
3. (b) an even positive integer

Explanation: We have $(a+b)^{n}-(a-b)^{n}$
$=\left[{ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{+}{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{a}^{\mathrm{n}-2} \mathrm{~b}_{2}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{a}^{\mathrm{n}-3} \mathrm{~b}^{3}+\ldots \ldots . .{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{n}} \mathrm{b}^{\mathrm{n}}\right]-\left[{ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{a}^{\mathrm{n}}{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{a}^{\mathrm{n}-1} \mathrm{~b}^{\mathrm{n}} \mathrm{C}_{2} a^{\mathrm{n}-}\right.$
${ }^{2} b_{2}-{ }^{n} C_{3} a^{n-3} b_{3}+$ \qquad $\left.+(-1)^{n} \cdot{ }^{n} C_{n} b^{n}\right]$
$=2\left[\begin{array}{lll}{ }^{n} C_{1} & a^{n-1} b+{ }^{n} C_{3} & a^{n-3} b^{3}+\ldots \ldots \ldots .\end{array}\right]$
Let $a=\sqrt{5}$ and $\mathrm{b}=1$ and $\mathrm{n}=2 \mathrm{n}+1$
Now we get $(\sqrt{5}+1)^{2 n+1}-(\sqrt{5}-1)^{2 n+1}=2^{[2 n+1]} C_{1}$
$\left.(\sqrt{3})^{2 n}+{ }^{2 n+1} C_{3} \quad(\sqrt{3})^{2 n-2} 1^{3}+{ }^{2 n+1} C_{5}(\sqrt{3})^{2 n-4} 1^{5}+\ldots \ldots \ldots \ldots \ldots.\right]$
$=2\left[{ }^{2 n+1} C_{1}\right.$
$(3)^{n}+{ }^{2 n+1} C_{3}$
$(3)^{n-1}+{ }^{2 n+1} C_{5}$
$\left.(3)^{n-2}+\ldots \ldots \ldots \ldots\right]$
$=2$ (a positive integer)
Hence we have $(\sqrt{5}+1)^{2 n}-(\sqrt{5}-1)^{2 n+1}$ is an even positive integer

4. (c) 6560 Explanation:

Since a student can solve every question in three ways- either he can attempt the first alternative, or the second alternative or he does not attemp that question

Hence the total ways in which a sudent can attempt one or more of 8 questions $=3^{8}$
Therefore to find the number of all selections which a student can make for answering one or more questions ou tof 8 given questions $=3^{8}-1=6560$ [we will have to exclude only the case of not answering all the 8 questions]
5. (c) $\frac{7 n(n+1)}{2}$ Explanation: Given $f(x+y)=f(x)+f(y) \ldots(i)$
and $f(1)=7$
Put $x=1, y=1$ in equation (i), we obtain $f(1+1)=f(1)+f(1)=14 \Rightarrow f(2)=14$
Similarly $\mathrm{f}(1+1+1)=\mathrm{f}(2)+\mathrm{f}(1)=14+7 \Rightarrow \mathrm{f}(3)=21$
Since we have $\mathrm{f}(1)=1 \times 7=7, \mathrm{f}(2)=2 \times 7=14, \mathrm{f}(3)=3 \times 7=21, \ldots .$.
We can get $\mathrm{f}(\mathrm{n})=\mathrm{n} \times 7=7 \mathrm{n}$
Now $\sum_{r=1}^{n} f(r)=f(1)+f(2)+f(3)+\ldots \ldots \ldots \ldots \ldots+f(n)$
$=7+14+21+\ldots . .+7 n$
$=7[1+2+3+\ldots .+n]=7 \frac{n(n+1)}{2}$
6. (c) 9

Explanation:

Replace $\mathrm{n}=1$ we get $18 \mathrm{n}=2$ we get $45 . \ldots$. By the principle of mathematical induction it
is divisible by 9 .
7. (a) $\frac{\left(n .{ }^{n-1} C_{r-1}\right) 2^{r-1}}{{ }^{2 n} C_{2 r}}$ Explanation:

The box contains 2 n shoe. we can choose 2 r shoes out of 2 n shoes in ${ }^{2 n} C_{2 r}$ ways. We can choose one complete pair out of n pairs in ${ }^{n} C_{1}$ ways. Now, we have to avoid a complete pair. While choosing ($2 \mathrm{r}-2$)shoes out of remaining ($\mathrm{n}-1$) pairs of shoes, we first choose (r-1) pairs out of ($n-1$) pairs. This can be done in ${ }^{n-1} C_{r-1}$ ways. From each of these ($\mathrm{r}-1$) pairs, choose ($\mathrm{r}-1$) single (unmatching) shoes from each pair.This can be done in 2^{r-1} ways. Thus, the number of favourable ways is $\left({ }^{n} C_{1}\right)\left({ }^{n-1} C_{r-1}\right) \cdot 2^{r-1}$.

Hence, the probability of the required event
$=\frac{n\left({ }^{n-1} C_{r-1}\right) \cdot 2^{r-1}}{{ }^{2 n} C_{2 r}}$
8. (c) at right angles to x-axis

Explanation:

Since the drs i.e. $a=0$.hence the line is perpendicular to x -axis.
9. (d) $7 / 64$

Explanation:

Total ways of getting 6 heads out of 8 toss of coins is 28.
Total number of outcome is $2^{8}=256$
Therefore probability is $\frac{28}{256}=\frac{7}{64}$
10. (a) $16+\frac{32 x}{3}+\frac{24 x^{2}}{9}$ Explanation:

We have
$(x+a)^{n}={ }^{n} C_{0} \quad x^{n}+{ }^{n} C_{1} \quad x^{n-1} a+{ }^{n} C_{2} \quad x^{n-2} a^{2}+{ }^{n} C_{3} \quad x^{n-3} a^{3}+\ldots \ldots . .+$
${ }^{n} C_{n} a^{n}$
Now consider $\left(2+\frac{x}{3}\right)^{4}$
Here $\mathrm{x}=2, \mathrm{a}=\frac{x}{3}, \mathrm{n}=4$
$\left(2+\frac{x}{3}\right)^{4}={ }^{4} C_{0}$
$(2)^{4}+{ }^{4} C_{1}$
$(2)^{3}\left(\frac{x}{3}\right)+{ }^{4} C_{2}$
$(2)^{2}\left(\frac{x}{3}\right)^{2}+{ }^{4} C_{3}$
$(2)^{1}\left(\frac{x}{3}\right)^{3}+$
$=16+\frac{32 x}{3}+\frac{24 x^{2}}{9}+\ldots \ldots .$.
11. equal
12. 26
13. 1080
14. Eight

OR

(0, y, z)
15. $5 \cos x+6 \sin x$

OR

0
16. Here $U=\{x: x \in N\}$

Let $\mathrm{A}=\{\mathrm{x}: \mathrm{x}$ is an odd natural number $\}$
$A^{\prime}=U-A=\{x: x \in N\}-\{\mathrm{x}: \mathrm{x}$ is an odd natural number $\}$
$=\{\mathrm{x}: \mathrm{x}$ is an even natural number $\}$
17. We have,
$2 \times 6!-3 \times 5!=2 \times 6 \times 5!-3 \times 5!$
$=5!(12-3)$
$=5!\times 9$
$=5 \times 4 \times 3 \times 2 \times 1 \times 9$
$=1080$
18. We have $2 \leqslant 3 x-4 \leqslant 5$
$\Rightarrow 2+4 \leqslant 3 x \leqslant 5+4 \Rightarrow 6 \leqslant 3 x \leqslant 9$
$\Rightarrow 2 \leqslant x \leqslant 3$

OR

$3(7+i 7)+i(7+i 7)$
$=21+21 \mathrm{i}+7 \mathrm{i}+7 \mathrm{i}^{2}=21+28 \mathrm{i}-7$
$=14+28 \mathrm{i}$
19. Given,
$(\mathrm{x}+3,5)=(6,2 \mathrm{x}+\mathrm{y})$
Since the ordered pairs are equal, corresponding elements are also equal.

Thus, $\mathrm{x}+3=6$ and $5=2 \mathrm{x}+\mathrm{y}$

On solving we get, $x=3$ and $y=-1$
20. We have word 'ORIENTAL'

Total number of letters, $n=8$
Number of letters to be used in forming a word, $\mathrm{r}=3$
Thus, total number of words thus formed $={ }^{8} \mathrm{P}_{3}$
$=\frac{8!}{(8-3)!}=\frac{8!}{5!}=\frac{8 \times 7 \times 6 \times 5!}{5!}=336$
21. We know that $\mathrm{A} \Delta \mathrm{B}$ represents the Symmetric Difference between sets A and B .

That is, $\mathrm{A} \Delta \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$

Now, according to the question,
$A=\{1,3,6,11,12\}$ and $B=\{1,6\}$
Then, $(A-B)=\{1,3,6,11,12\}-\{1,6\}=\{3,11,12\}$
and $(B-A)=\{1,6\}-\{1,3,6,11,12\}=\phi$
where ϕ represents null set or empty set.
$\therefore \mathrm{A} \Delta \mathrm{B}=(\mathrm{A}-\mathrm{B}) \cup(\mathrm{B}-\mathrm{A})$
$=\{3,11,12\} \cup \phi$
$=\{3,11,12\}$

OR

The symbol ' \Leftrightarrow ' stands for if and only if (in short if).
In order to show that two sets A and B are equal, we show that $A \subseteq B$ and $B \subseteq A$.
We have $A \subseteq \phi, \because \phi$ is a subset of every set,
$\therefore \quad \phi \subseteq A$

Hence A $=\phi$
To show the backward implication, suppose that $A=\phi$.
\because every set is a subset of itself
$\therefore \quad \phi=A \subseteq \phi$
Hence, proved.
22. Here $\mathrm{P}(\mathrm{A})=0.54, \mathrm{P}(\mathrm{B})=0.69$ and $\mathrm{P}(\mathrm{A} \cap \mathrm{B})=0.35$
i. We know that

$$
\begin{aligned}
& P(A \cup B)=P(A)+P(B)-P(A \cap B) \\
& =0.54+0.69-0.35 \\
& =1.23-0.35=0.88
\end{aligned}
$$

ii. $\mathrm{P}\left(\mathrm{A}^{\prime} \cap \mathrm{B}^{\prime}\right)=\mathrm{P}(\mathrm{A} \cup \mathrm{B})^{\prime}=1-\mathrm{P}(\mathrm{A} \cup \mathrm{B})$
$=1-0.88=0.12$
iii. $\mathrm{P}\left(\mathrm{A} \cap \mathrm{B}^{\prime}\right)=\mathrm{P}(\mathrm{A})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$
$=0.54-0.35=0.19$
iv. $P\left(B \cap A^{\prime}\right)=P(B)-P(A \cap B)$

$$
=0.69-0.35=0.34
$$

23. In the binomial expansion of $\left(\frac{1}{x}+x \sin x\right)^{10},\left(\frac{10}{2}+1\right)^{t h}$ i.e. 6 th term is the middle term.
It is given that
$T_{6}=\frac{63}{8}$
$\Rightarrow \quad{ }^{10} \mathrm{C}_{5}\left(\frac{1}{x}\right)^{10-5}(\mathrm{x} \sin \mathrm{x})^{5}=\frac{63}{8}$
$\Rightarrow \quad \frac{10!}{5!5!}(\sin x)^{5}=\frac{63}{8}$
$\Rightarrow \quad(\sin x)^{5}=\left(\frac{1}{2}\right)^{5}$
$\Rightarrow \quad \sin x=\frac{1}{2}=\sin \frac{\pi}{6}$
$\Rightarrow \quad x=n \pi+(-1)^{n} \frac{\pi}{6}, n \in Z$
24. Let θ be the angle between the given lines.

We have,
$\mathrm{m}_{1}=$ Slope of the line joining $(0,0)$ and $(2,3)=\frac{3-0}{2-0}=\frac{3}{2}$
$\mathrm{m}_{2}=$ Slope of the line joining $(2,-2)$ and $(3,5)=\frac{5+2}{3-2}=7$
$\therefore \tan \theta= \pm\left|\frac{m_{1}-m_{2}}{1+m_{1} m_{2}}\right|= \pm\left|\frac{7-3 / 2}{1+7(3 / 2)}\right|$
$= \pm\left|\frac{11 / 2}{23 / 2}\right|= \pm\left|\frac{11}{23}\right|$
$\Rightarrow \theta=\tan ^{-1}\left|\frac{11}{23}\right|$

OR

Given equation of lines are
$y=(2-\sqrt{3})(x+5)$ and $y=(2+\sqrt{3})(x-7)$
$\Rightarrow \quad y=(2-\sqrt{3}) x+5(2-\sqrt{3})$
and $y=(2+\sqrt{3}) x-7(2+\sqrt{3})$
Slope of above lines are,
$m_{1}=2-\sqrt{3}, m_{2}=2+\sqrt{3}$
Angle between two lines,
$\tan \theta=\left|\frac{m_{2}-m_{1}}{m_{1}+m_{2}}\right|=\left|\frac{2+\sqrt{3}-(2-\sqrt{3})}{1+(2+\sqrt{3})(2-\sqrt{3})}\right|$
$\Rightarrow \quad \tan \theta=|\sqrt{3}|$
i.e., $\tan \theta=\sqrt{3}$ and $\tan \theta=-\sqrt{3}$
$\therefore \quad \theta=\frac{\pi}{3}$ or $\frac{2 \pi}{3}$
25. (i) You watch television if and only if your mind is free.
(ii) You get an A grade if and only if you do all the homework regularly.
(iii) A quadrilateral is equiangular if and only if it is a rectangle.
26. LHS: $\cot \mathrm{A}+\cot \left(60^{\circ}+\mathrm{A}\right)-\cot \left(60^{\circ}-\mathrm{A}\right)$
$=\frac{1}{\tan A}+\frac{1}{\tan \left(60^{\circ}+A\right)}-\frac{1}{\tan \left(60^{\circ}-A\right)}$
$=\frac{1}{\tan A}+\frac{1-\sqrt{3} \tan A}{\sqrt{3}+\tan A}-\frac{1+\sqrt{3} \tan A}{\sqrt{3}-\tan A}\left[\because \tan (\mathrm{~A}+\mathrm{B})=\frac{\tan A+\tan B}{1-\tan A \tan B}\right.$ and $\left.\tan 60^{\circ}=\sqrt{3}\right]$
$=\frac{1}{\tan A}-\frac{8 \tan A}{3-\tan ^{2} A}$
$=\frac{3-9 \tan ^{2} A}{3 \tan A-\tan ^{3} A}=3\left(\frac{1-3 \tan ^{2} A}{3 \tan A-\tan ^{3} A}\right)$
$=\frac{3}{\tan 3 A}$
$=3 \cot 3 A=$ RHS
Hence proved.
27. Here
$n(U)=a+b+c+d+e+f+g+h=60$ \qquad
$n(H)=a+b+c+d=25$
$\mathrm{n}(\mathrm{T})=\mathrm{b}+\mathrm{c}+\mathrm{f}+\mathrm{g}=26$
$\mathrm{n}(\mathrm{I})=\mathrm{c}+\mathrm{d}+\mathrm{e}+\mathrm{f}=26$
$n(H \cap I)=c+d=9$.
$n(H \cap T)=b+c=11$
$n(T \cap I)=c+f=8$
$n(H \cap T \cap I)=c=3 \ldots \ldots$ (viii)

Putting value of c in (vii),
$3+\mathrm{f}=8 \Rightarrow \mathrm{f}=5$
Putting value of c in (vi),
$3+b=11 \Rightarrow b=8$
Putting values of c in (v),
$3+d=9 \Rightarrow d=6$
Putting value of c, d, f in (iv),
$3+6+e+5=26 \Rightarrow e=26-14=12$
Putting value of b, c, f in (iii),
$8+3+5+\mathrm{g}=26 \Rightarrow \mathrm{~g}=26-16=10$
Putting value of b, c, d in (ii)
$a+8+3+6=25 \Rightarrow a=25-17=8$
Number of people who read exactly one newspapers
$=a+e+g$
$=8+12+10=30$
28. Here $f(x)=x^{2}$

At $\mathrm{x}=1.1$
$\mathrm{f}(1.1)=(1.1)^{2}=1.21$
$f(1)=(1)^{2}=1$
$\therefore \frac{f(1.1)-f(1)}{(1.1-1)}=\frac{1.21-1}{0.1}=\frac{0.21}{0.1}=2.1$

OR

Given: $\mathrm{A}=\{1,2,3\}, \mathrm{B}=\{3,4\}$ and $\mathrm{C}=\{1,3,5\}$
i. Clearly, $B \cup C=\{1,3,4,5\}$
$\therefore A \times(B \cup C),=\{1,2,3\} \times\{1,3,4,5\}$
$=\{(1,1),(1,3),(1,4),(1,5),(2,1),(2,3),(2,4),(2,5),(3,1),(3,3),(3,4),(3,5)\}$
ii. Clearly, $B \cap C=\{3\}$.

$$
\therefore A \times(B \cap C)=\{1,2,3\} \times\{3\}=\{(1,3),(2,3),(3,3)\}
$$

iii. $A \times B=\{1,2,3\} \times\{3,4\}=\{(1,3),(1,4),(2,3),(2,4),(3,3),(3,4)\}$, and, $A \times C=\{1,2,3\} \times\{1,3,5\}=\{(1,1),(1,3),(1,5),(2,1),(2,3),(2,5),(3,1),(3,3)$, $(3,5)\}$

$$
\therefore(A \times B) \cap(A \times C)=\{(1,3),(2,3),(3,3)\}
$$

29. Given, $\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}}$

On multiplying and dividing by $\sqrt{x}+\sqrt{a}$, we get
$=\lim _{x \rightarrow a} \frac{\sin x-\sin a}{\sqrt{x}-\sqrt{a}} \times \frac{\sqrt{x}+\sqrt{a}}{\sqrt{x}+\sqrt{a}}$
$=\lim _{x \rightarrow a} \frac{(\sin x-\sin a)(\sqrt{x}+\sqrt{a})}{x-a}$
On putting $\mathrm{x}-\mathrm{a}=\mathrm{h}$, as $\mathrm{x} \rightarrow \mathrm{a}$, then $\mathrm{h} \rightarrow 0$
$\therefore \lim _{h \rightarrow 0} \frac{[\sin (a+h)-\sin a][\sqrt{a+h}+\sqrt{a}]}{h}$
$=\lim _{h \rightarrow 0} \frac{2 \cos \frac{a+h+a}{2} \sin \left(\frac{a+h-a}{2}\right)(\sqrt{a+h}+\sqrt{a})}{h}$
$\left[\because \sin C-\sin D=2 \cos \left(\frac{C+D}{2}\right) \sin \left(\frac{C-D}{2}\right)\right]$
$=\lim _{h \rightarrow 0} \frac{2 \cos \frac{2 a+h}{2}\left(\sin \frac{h}{2}\right)(\sqrt{a+h}+\sqrt{a})}{2\left(\frac{h}{2}\right)}$
$=\frac{2 \cos \left(\frac{2 a+0}{2}\right)(\sqrt{a+0}+\sqrt{a})}{2}\left[\because \lim _{h \rightarrow 0} \frac{\sin h / 2}{h / 2}=1\right]$
$=2 \sqrt{a} \cos a$
30. We have, $(x+i y)^{1 / 3}=a+i b$
$\Rightarrow \mathrm{x}+\mathrm{iy}=(\mathrm{a}+\mathrm{ib})^{3}$ [cubing on both sides]
$\Rightarrow \mathrm{x}+\mathrm{iy}=\mathrm{a}^{3}+\mathrm{i}^{3} \mathrm{~b}^{3}+3 \mathrm{iab}(\mathrm{a}+\mathrm{ib})$
$\Rightarrow x+i y=a^{3}-b^{3}+i 3 a^{2} b-3 a b^{2}$
$\Rightarrow \mathrm{x}+\mathrm{iy}=\mathrm{a}^{3}-3 \mathrm{ab}{ }^{2}+\mathrm{i}\left(3 \mathrm{a}^{2} \mathrm{~b}-\mathrm{b}^{3}\right)$
On equating real and imaginary parts from both sides, we get
$x=a^{3}-3 a b^{2}$ and $y=3 a^{2} b-b^{3}$
$\Rightarrow \frac{x}{a}=\mathrm{a}^{2}-3 \mathrm{~b}^{2}$ and $\frac{y}{b}=3 \mathrm{a}^{2}-\mathrm{b}^{2}$
Now, $\frac{x}{a}-\frac{y}{b}=\mathrm{a}^{2}-3 \mathrm{~b}^{2}-3 \mathrm{a}^{2}+\mathrm{b}^{2}$
$=-2 a^{2}-2 b^{2}=-2\left(a^{2}+b^{2}\right)$
Hence proved.
31. We have $\frac{-3 x+10}{x+1}>0$
$\Rightarrow \frac{-3 x+10}{x+1} \times(x+1)^{2}>0 \cdot(x+1)^{2}$ [multiplying both sides by $(\mathrm{x}+1)^{2}$]
$\Rightarrow(-3 \mathrm{x}+10)(\mathrm{x}+1)>0$
Therefore, Product of $(-3 x+10)$ and $(x+1)$ will be positive.

Case I: if both are positive.
i.e., $(-3 x+10)>0$ and $(x+1)>0$
$\Rightarrow 3 \mathrm{x}<10$ and $\mathrm{x}>-1$
$\Rightarrow \quad x<\frac{10}{3}$ and $x>-1$
$\Rightarrow \quad-1<x<\frac{10}{3}$
$\Rightarrow \quad x \in\left(-1, \frac{10}{3}\right)$

Case II: If both are negative.
i.e., $(-3 x+10)<0$ and $(x+1)<0$
$\Rightarrow-3 \mathrm{x}<-10$ and $\mathrm{x}<-1$
$\Rightarrow 3 \mathrm{x}>10$ and $\mathrm{x}<-1$
$\Rightarrow \quad x>\frac{10}{3}$ and $x<-1$
So, this is impossible. [since, system of inequalities have no common solution] Thus, the solution is $\left(-1, \frac{10}{3}\right)$.

OR

Here $x+\frac{x}{2}+\frac{x}{3}<11$
$\Rightarrow \frac{6 x+3 x+2 x}{6}<11$
$\Rightarrow \frac{11 x}{6}<11$
Multiplying both sides by 6 , we have
$11 \mathrm{x}<66$
Dividing both sides by 11, we have
$\mathrm{x}<6$
Thus the solution set is $(-\infty, 6)$
32. StepI: Let $P(n)$ be the given statement. Then,
$P(n): \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 n-1)(2 n+1)}=\frac{n}{2 n+1}$
Step II: For $n=1$, we have
LHS $=\frac{1}{(2 \cdot 1-1)(2 \cdot 1+1)}=\frac{1}{(1)(3)}=\frac{1}{3}$
RHS $=\frac{1}{2 \cdot 1+1}=\frac{1}{3}$
$\therefore P(1)$ is true.
Step III: For $n=k$, assume that $P(k)$ is true
i.e, $P(k): \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{(2 k-1)(2 k+1)}=\frac{k}{2 k+1}$.

Step IV: For $n=k+1$, we have to show that
$P(k+1): \frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\frac{1}{5 \cdot 7}+\ldots+\frac{1}{[(2 k-1)(2 k+1)\}}+\frac{1}{[2(k+1)-1][2(k+1)+1]}=\frac{k+1}{2(k+1)+1}$
Now, consider LHS
$=\frac{1}{1 \cdot 3}+\frac{1}{3 \cdot 5}+\ldots+\frac{1}{(2 k-1)(2 k+1)}+\frac{1}{[2(k+1)-1][2(k+1)+1]}$
$=\frac{k}{2 k+1}+\frac{1}{[2 k+2-1][2 k+2+1]}$ [From Eq.(i)]
$=\frac{k}{2 k+1}+\frac{1}{(2 k+1)(2 k+3)}$
$=\frac{1}{(2 k+1)}\left(k+\frac{1}{2 k+3}\right)$
$=\frac{1}{(2 k+1)}\left[\frac{k(2 k+3)+1}{(2 k+3)}\right]=\frac{1}{(2 k+1)} \frac{\left[2 k^{2}+3 k+1\right]}{(2 k+3)}$
$=\frac{2 k^{2}+2 k+k+1}{(2 k+1)(2 k+3)}=\frac{2 k(k+1)+1(k+1)}{(2 k+1)(2 k+3)}$
$=\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)}=\frac{k+1}{2 k+3}=\frac{k+1}{2(k+1)+1}$
$=$ RHS
So, $P(k+1)$ is true, whenever $P(k)$ is true.
Hence, $P(n)$ is true for all $\mathrm{n} \in \mathrm{N}$.
33. Given, $a \cos \theta+b \sin \theta=c$...(i)
$\Rightarrow b \sin \theta=c-a \cos \theta$
On squaring both sides, we get
$b^{2} \sin ^{2} \theta=c^{2}+a^{2} \cos ^{2} \theta-2 a c \cos \theta$
$\left[\because(a+b)^{2}=a^{2}+b^{2}+2 a b\right]$
$\Rightarrow b^{2}\left(1-\cos ^{2} \theta\right)=c^{2}+a^{2} \cos ^{2} \theta-2 a c \cos \theta$
$\left[\because \cos ^{2} x+\sin ^{2} x=1 \Rightarrow \sin ^{2} x=1-\cos ^{2} x\right]$
$\Rightarrow\left(a^{2}+b^{2}\right) \cos ^{2} \theta-2 a c \cos \theta+c^{2}-b^{2}=0 \ldots$ (ii)
It is a quadratic equation in $\cos \theta$
Since, α and β are the roots of Eq. (i).
So, $\cos \alpha$ and $\cos \beta$ are the roots of Eq. (ii).
$\therefore \cos \alpha \times \cos \beta=\frac{c^{2}-b^{2}}{a^{2}+b^{2}} \ldots$ (iii)
$\left[\because\right.$ product of roots in quadratic equation $\left.=\frac{\text { constant term }}{\text { coefficient of square term }}\right]$
On squaring Eq. (i), we get
$a^{2} \cos ^{2} \theta+b^{2} \sin ^{2} \theta+2 a b \sin \theta \cos \theta=c^{2}$
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2} \tan ^{2} \theta+2 \mathrm{ab} \tan \theta=\mathrm{c}^{2} \sec ^{2} \theta$
[dividing both sides by $\cos ^{2} \theta$]
$\Rightarrow \mathrm{a}^{2}+\mathrm{b}^{2} \tan ^{2} \theta+2 \mathrm{ab} \tan \theta=\mathrm{c}^{2}\left(1+\tan ^{2} \theta\right)$
$\left[\because \sec ^{2} x=1+\tan ^{2} x\right]$
$\Rightarrow\left(\mathrm{b}^{2}-\mathrm{c}^{2}\right) \tan ^{2} \theta+2 \mathrm{ab} \tan \theta+\mathrm{a}^{2}-\mathrm{c}^{2}=0$
Since, $\tan \alpha$ and $\tan \beta$ are roots of Eq. (iv).
$\therefore \tan \alpha+\tan \beta=\frac{-2 a b}{b^{2}-c^{2}}$
and $\tan \alpha \times \tan \beta=\frac{a^{2}-c^{2}}{b^{2}-c^{2}}$
$\Rightarrow \frac{\sin \alpha \cdot \sin \beta}{\cos \alpha \cdot \cos \beta}=\frac{a^{2}-c^{2}}{b^{2}-c^{2}}$
$\Rightarrow \sin \alpha \times \sin \beta=\frac{a^{2}-c^{2}}{b^{2}-c^{2}} \times \cos \alpha \times \cos \beta$
$=\frac{a^{2}-c^{2}}{b^{2}-c^{2}} \times \frac{c^{2}-b^{2}}{a^{2}+b^{2}}$ [using Eq. (iii)]
$=\frac{c^{2}-a^{2}}{a^{2}+b^{2}}$
We have, $\tan \alpha+\tan \beta=\frac{-2 a b}{b^{2}-c^{2}}$
$\Rightarrow \frac{\sin \alpha}{\cos \alpha}+\frac{\sin \beta}{\cos \beta}=\frac{-2 a b}{b^{2}-c^{2}}$
$\Rightarrow \frac{\sin \alpha \cdot \cos \beta+\sin \beta \cdot \cos \alpha}{\cos \alpha \cdot \cos \beta}=\frac{-2 a b}{b^{2}-c^{2}}$
$\Rightarrow \sin (\alpha+\beta)=\frac{-2 a b}{b^{2}-c^{2}}(\cos \alpha \times \cos \beta)$
$=\frac{-2 a b}{b^{2}-c^{2}} \times \frac{c^{2}-b^{2}}{a^{2}+b^{2}}$ [using Eq. (iii)]
$\therefore \sin (\alpha+\beta)=\frac{2 a b}{a^{2}+b^{2}}$

OR

LHS $=\cos \frac{2 \pi}{15} \cdot \cos \frac{4 \pi}{15} \cdot \cos \frac{8 \pi}{15} \cdot \cos \frac{16 \pi}{15}$
$=\cos \frac{2 \pi}{15} \cos 2\left(\frac{2 \pi}{15}\right) \cos 4\left(\frac{2 \pi}{15}\right) \cos 8\left(\frac{2 \pi}{15}\right)$
Put $\frac{2 \pi}{15}=\alpha$
\Rightarrow LHS $=\cos \alpha \cdot \cos 2 \alpha \cdot \cos 4 \alpha \cdot \cos 8 \alpha$
$=\frac{2 \sin \alpha[\cos \alpha \cdot \cos 2 \alpha \cdot \cos 4 \alpha \cdot \cos 8 \alpha]}{2 \sin \alpha}$ [multiplying numerator and denominator by $2 \sin \alpha$]
$=\frac{(2 \sin \alpha \cdot \cos \alpha) \cdot \cos 2 \alpha \cdot \cos 4 \alpha \cdot \cos 8 \alpha}{2 \sin \alpha}$
$=\frac{2(\sin 2 \alpha \cdot \cos 2 \alpha \cdot \cos 4 \alpha \cdot \cos 8 \alpha)}{2(2 \sin \alpha)}[\because 2 \sin \alpha \cos \alpha=\sin 2 \alpha$ and multiplying numerator
and denominator by 2]
$=\frac{(2 \sin 2 \alpha \cdot \cos 2 \alpha) \cdot \cos 4 \alpha \cdot \cos 8 \alpha}{4 \sin \alpha}$
$=\frac{2(\sin 4 \alpha \cdot \cos 4 \alpha) \cos 8 \alpha}{2(4 \sin \alpha)}[\because 2 \sin \alpha \cos \alpha=\sin 2 \alpha$ and multiplying numerator and
denominator by 2]
$=\frac{2(\sin 8 \alpha \cdot \cos 8 \alpha)}{2(8 \sin \alpha)}$
$=\frac{\sin 16 \alpha}{16 \sin \alpha}=\frac{\sin (15 \alpha+\alpha)}{16 \sin \alpha}$
Now, $15 \alpha=2 \pi$,
$=\frac{\sin (2 \pi+\alpha)}{16 \sin \alpha}=\frac{\sin \alpha}{16 \sin \alpha}=\frac{1}{16}=$ RHS
\therefore LHS = RHS
Hence proved.
34. Total cost of the tractor $=$ Rs. 12000 , Cash paid $=$ Rs. 6000

Balance to be paid $=12000-6000=$ Rs. 6000

Annual installment = Rs. 500
\therefore Number of installment $=\frac{6000}{500}=12$
Interest of $1^{\text {st }}$ installment $=\frac{6000 \times 12 \times 1}{100}=$ Rs. 720

Amount of $1^{\text {st }}$ installment $=500+720=$ Rs. 1220

Interest of $2^{\text {nd }}$ installment $=\frac{5500 \times 12 \times 1}{100}=$ Rs. 660
Amount of $2{ }^{\text {nd }}$ installment $=500+660=$ Rs. 1160
Interest of $3^{\text {rd }}$ installment $=\frac{5000 \times 12 \times 1}{100}=$ Rs. 600
Amount of $3^{\text {rd }}$ installment $=500+600=$ Rs. 1100
\therefore Sequence of installments is $1220,1160,1100$, \qquad which is in A.P

Here, $a=1220, d=1160-1220=-60$ and $n=12$

$$
\begin{aligned}
& \therefore \mathrm{S}_{n}=\frac{n}{2}[2 a+(n-1) d] \\
& =\frac{12}{2}[2 \times 1220+(12-1) \times(-60)] \\
& =6[2440-660]=\text { Rs. } 10680
\end{aligned}
$$

Therefore, the total cost of tractor is $(10680+6000)=$ Rs. 16680.
35. Given, focus is at $(-6,-6)$ and vertex is at $(-2,2)$.

Now we have to find equation of the parabola with focus ($-6,-6$) and vertex $(-2,2)$ Let $\left(x_{1}, y_{1}\right)$ be the coordinate of the point of intersection of axis and directrix.

Then, $(-2,2)$ is the mid-point of the line segment joining $(-6,-6)$ and $\left(x_{1}, y_{1}\right)$.

$\therefore-2=\frac{x_{1}-6}{2} \Rightarrow \mathrm{x}_{1}=2$
and $2=\frac{y_{1}-6}{2} \Rightarrow \mathrm{y}_{1}=10$
Thus, the point $(2,10)$ is the point of intersection of axis and directrix.
Now, the slope of line segment joining vertex and focus is given by
$m_{1}=\frac{-6-2}{-6+2}=2$
$\Rightarrow m_{1}=2$
also Slope of directrix,
that is, $m_{2}=\frac{-1}{2}$
Now using the values in the general we get the equation of directrix which is given by $\mathrm{y}-10=\frac{-1}{2}(\mathrm{x}-2)$
$\Rightarrow 2 y-20=-x+2$
$\Rightarrow x+2 y=2+20$
$\Rightarrow \mathrm{x}+2 \mathrm{y}=22$
Let $P(x, y)$ be any point on parabola and $P N$ be the length of perpendicular from P on directrix and FP be the distance between focus F and point P.

So, $\mathrm{FP}=\mathrm{PN} \Rightarrow(\mathrm{FP})^{2}=(\mathrm{PN})^{2}$
$\Rightarrow(\mathrm{x}+6)^{2}+(\mathrm{y}+6)^{2}=\left(\frac{x+2 y-22}{\sqrt{1+4}}\right)^{2}$
$\Rightarrow \mathrm{x}^{2}+36+12 \mathrm{x}+\mathrm{y}^{2}+36+12 \mathrm{y}=\frac{x^{2}+4 y^{2}+484+4 x y-44 x-88 y}{5}$
$\Rightarrow 5 x^{2}+180+60 x+5 y^{2}+60 y+180=x^{2}+4 y^{2}+484+4 x y-44 x-88 y$
$\Rightarrow 4 \mathrm{x}^{2}+\mathrm{y}^{2}-4 \mathrm{xy}+104 \mathrm{x}+148 \mathrm{y}-124=0$
which is the required equation of the parabola.

Let the equation of circle whose centre ($-\mathrm{g},-\mathrm{f}$) be
$x^{2}+y^{2}+2 g x+2$ fy $+c=0$
Since, is passes through points $(3,-2)$ and $(-2,0)$
$\therefore(3)^{2}+(-2)^{2}+2 \mathrm{~g}(3)+2 \mathrm{f}(-2)+\mathrm{c}=0$
and $(-2)^{2}+(0)^{2}+2 g(-2)+2 f(0)+c=0$
$\Rightarrow 9+4+6 \mathrm{~g}-4 \mathrm{f}+\mathrm{c}=0$
and $4+0-4 g+0+c=0$
$\Rightarrow 6 \mathrm{~g}-4 \mathrm{f}+\mathrm{c}=-13$
and $\mathrm{c}=4 \mathrm{~g}-4 \ldots$ (ii)
$\therefore 6 \mathrm{~g}-4 \mathrm{f}+(4 \mathrm{~g}-4)=-13$
$\Rightarrow 10 \mathrm{~g}-4 \mathrm{f}=-9$...(iii)
Also, centre $(-g,-f)$ lies on the line $2 x-y=3$
$\therefore-2 \mathrm{~g}+\mathrm{f}=3$...(iv)
On solving Eqs. (iii) and (iv), we get
$\mathrm{g}=\frac{3}{2}$ and $\mathrm{f}=6$
On putting the values of g and f in Eq. (ii), we get
$c=4\left(\frac{3}{2}\right)-4=6-4=2$
On putting the values of g , f and c in Eq. (i), we get
$\mathrm{x}^{2}+\mathrm{y}^{2}+2\left(\frac{3}{2}\right) \mathrm{x}+2(6) \mathrm{x}+2=0$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}+3 \mathrm{x}+12 \mathrm{x}+2=0$
which is the required equation of the path
The message which he wants to give to the public is 'Keep your place clean'.
36. We have, $\mathrm{n}=100, \bar{x}=40$ and $\sigma=5.1$
$\therefore \bar{x}=\frac{1}{n} \Sigma x_{i}$
$\Rightarrow \Sigma x_{i}=n \bar{x}=100 \times 40=4000$
\therefore Incorrect $\Sigma \mathrm{x}_{\mathrm{i}}=4000$
and,
$\sigma=5.1$
$\Rightarrow \sigma^{2}=26.01$
$\Rightarrow \frac{1}{n} \Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}-(\text { mean })^{2}=26.01$
$\Rightarrow \frac{1}{100} \Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}-1600=26.01$
$\Rightarrow \Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}=1626.01 \times 100$
\therefore Incorrect $\Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}=162601$

To correct the $\sum x_{i}$, we need to subtract the incorrect observation 50 and add correct observation is 40 .
We have, incorrect $\Sigma \mathrm{x}_{\mathrm{i}}=4000$
\therefore Correct $\Sigma \mathrm{x}_{\mathrm{i}}=4000-50+40=3990$
and,
Similarly, to obtain correct $\sum x_{i}^{2}$ we need to subtract 50^{2} and add 40^{2} to incorrect one.

Incorrect $\Sigma \mathrm{x}_{\mathrm{i}}{ }^{2}=162601$
\therefore Correct $\Sigma \mathrm{x}_{\mathrm{i}}^{2}=162601-50^{2}+40^{2}=161701$
Now, Correct mean $=\frac{3990}{100}=39.90$
Correct variance $=\frac{1}{100}\left(\right.$ Correct $\left.\Sigma \mathrm{x}_{\mathrm{i}}^{2}\right)-(\text { Correct mean })^{2}$
\Rightarrow Correct variance $=\frac{161701}{100}-\left(\frac{3990}{100}\right)^{2}$
\Rightarrow Correct variance $=\frac{161701 \times 100-(3990)^{2}}{(100)^{2}}$
\Rightarrow Correct variance $=\frac{16170100-15920100}{10000}=25$
\therefore Correct standard deviation $=\sqrt{25}=5$

