CBSE Class 11 Mathematics
 Sample Papers 01 (2019-20)

Maximum Marks: 80

Time Allowed: 3 hours

General Instructions:

i. All the questions are compulsory.
ii. The question paper consists of 36 questions divided into 4 sections $\mathrm{A}, \mathrm{B}, \mathrm{C}$, and D .
iii. Section A comprises of 20 questions of 1 mark each. Section B comprises of 6 questions of 2 marks each. Section C comprises of 6 questions of 4 marks each. Section D comprises of 4 questions of 6 marks each.
iv. There is no overall choice. However, an internal choice has been provided in three questions of 1 mark each, two questions of 2 marks each, two questions of 4 marks each, and two questions of 6 marks each. You have to attempt only one of the alternatives in all such questions.
v. Use of calculators is not permitted.

Section A

1. If $\mathrm{f} f(x)=\frac{1}{\sqrt{x-|x|}}$, then D_{f} is equal to
a. ϕ
b. R
c. $(0, \infty)$
d. $(-\infty, 0)$
2. There are 10 true-false questions. The number of ways in which they can be answered is
a. 2^{10}
b. 10
c. none of these
d. 10 !
3. 5th term from the end in the expansion of $\left(\frac{x^{3}}{2}-\frac{2}{x^{2}}\right)^{12}$ is
a. $7920 x^{4}$
b. $7920 x^{-4}$
c. $-7920 x^{-4}$
d. $-7920 x^{4}$
4. Numbers greater than 1000 but not greater than 5000 are to be formed with the digits $0,1,2,3,5$, allowing repetitions, the number of possible numbers is
a. none of these.
b. 365
c. 370
d. 375
5. The domain of the function $f(x)=\sqrt{1-\cos x}$ is
a. none of these
b. R
c. $\{\mathrm{x}=2 \mathrm{n} \pi: \mathrm{n} \in \mathrm{I}\}$
d. $[0,2 \pi]$
6. The statement $\mathrm{P}(\mathrm{n}):$ " $(n+3)^{2}>2^{n+3}$ " is true for :
a. all $\mathrm{n} \geq 2$
b. no $\mathrm{n} \in \mathrm{N}$,
c. all $\mathrm{n} \geq 3$
d. all n .
7. The probability that the length of a randomly chosen chord of a circle lies between $2 / 3$ and $5 / 6$ of it's diameter is
a. $1 / 16$
b. $1 / 4$
c. $5 / 6$
d. $5 / 12$
8. The distance between the planes $\vec{r} \cdot \hat{n}=p_{1}$ and $\vec{r} \cdot(-\hat{n})=p_{2}$ is
a. none of these
b. $p_{2}-p_{1}$
c. $\left|p_{1}-p_{2}\right|$
d. $p_{1}+p_{2}$
9. A pair of dice is tossed once and a total of 8 has come up. The chance that both the dice show up same number is
a. $1 / 5$
b. $1 / 6$
c. none of these
d. $5 / 216$
10. If the 21 st and 22 nd terms in the expansion of $(1+x)^{44}$ are equal, find x
a. $\frac{7}{6}$
b. $\frac{5}{8}$
c. $\frac{7}{8}$
d. $\frac{6}{8}$
11. Fill in the blanks:

The subset of B containing the images of elements of A is called the \qquad of the function.
12. Fill in the blanks:

The number of terms in the binomial expansion of $(1+\sqrt{5} x)^{7}+(1-\sqrt{5} x)^{7}$ is
\qquad .
13. Fill in the blanks:

If the letters of the word RACHIT are arranged in all possible ways as listed in the dictionary, then the rank of the word RACHIT is \qquad .
14. Fill in the blanks:
$\mathrm{x}=\mathrm{a}$ represent a plane parallel to \qquad .

OR

Fill in the blanks:

A line is parallel to xy-plane if all the points on the line have equal \qquad .
15. Fill in the blanks:

The value of limit $\lim _{x \rightarrow 1} \frac{a x^{2}+b x+c}{c x^{2}+b x+a}$ where $\mathrm{a}+\mathrm{b}+\mathrm{c} \neq 0$ is \qquad .

OR

Fill in the blanks:

The value of limit $\lim _{x \rightarrow 2} \frac{3 x^{2}-x-10}{x^{2}-4}$ is \qquad .
16. If $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\}$ find:
$A \cap(B \cup D)$
17. Find the total number of 9-digit numbers which have all different digits.
18. Express (5 i) $\left(\frac{-3}{5} i\right)$ in the form of $a+i b$, where $a, n \in R$.

OR

Find the difference of the complex numbers (-4+7i), (-11-23i)
19. $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$. Define a relation R from A to B by $\mathrm{R}=\{(\mathrm{x}, \mathrm{y})$: the difference between x and y is odd, $\mathrm{x} \in A, y \in B\}$. Write R in roster form.
20. Compute. $\frac{8!}{4!}$, is $\frac{8!}{4!}=2!?$
21. Show that $A \cap B=A \cap C$ need not imply $\mathrm{B}=\mathrm{C}$?

OR

If A and B are two sets such that $n(A)=35, n(B)=30$ and $n(U)=50$, then find,
i. the greatest value of $n(A \cup B)$
ii. the least value of $(A \cap B)$
22. The probability that a truck stopped at a roadblock will have faulty brakes or badly worn tires are 0.23 and 0.24 , respectively. Also, the probability is 0.38 that a truck stopped at the roadblock will have faulty brakes or badly working tires. What is the probability that a truck stopped at this roadblock will have faulty brakes as well as badly worn tires?
23. Find the 4 th term from the end in the expansion of $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{7}$.
24. Show that the lines $x-y-6=0,4 x-3 y-20=0$ and $6 x+5 y+8=0$ are concurrent

OR

The slope of a line is double of the slope of another line. If tangent of the angle between them is $\frac{1}{3}$, then find the slope of the lines.
25. Show that the statement "For any real numbers a and, $b, a^{2}=b^{2}$ implies that $a=b$ " is not true by giving a counter example.
26. Prove that: $\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ}=\tan 60^{\circ}$
27. For any two sets A and B prove that: $P(A \cap B)=P(A) \cap P(B)$.
28. Which of the following relations are functions? Give reasons. If it is a function determine its domain and range.
(i) $\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
(ii) $\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
(iii) $\{(1,3),(1,5),(2,5)\}$

OR

The Cartesian product $A \times A$ has 9 elements among which are found to be $(-1,0)$ and $(0,1)$. Find the set A and the remaining element of $A \times A$.
29. Find the derivative of the function $f(x)=2 x^{2}+3 x-5$ at $x=-1$. Also, prove that $f^{\prime}(0)+$ $3 f^{\prime}(-1)=0$.
30. Find the multiplicative inverse of the complex numbers $=\sqrt{5}+3 i$
31. Solve the inequalities graphically in two-dimensional plane: $\mathrm{x}-\mathrm{y} \leq 2$

OR

Solve the following system of inequalities graphically: $x+y \geqslant 4,2 x-y<0$
32. Prove the following by using the principle of mathematical induction for all $n \in N$:

$$
\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots \ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

33. Prove that $\cot 7 \frac{1^{\circ}}{2}=\tan 82 \frac{1^{\circ}}{2}=(\sqrt{3}+\sqrt{2})(\sqrt{2}+1)$

OR

Prove that $\cos 12^{\circ}+\cos 60^{\circ}+\cos 84^{\circ}=\cos 24^{\circ}+\cos 48^{\circ}$
34. Find the sum of the following series up to n terms: $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$. .
35. Find the equation of the ellipse whose foci are $(4,0)$ and $(-4,0)$, eccentricity $=1 / 3$.

OR

Draw the shape of the ellipse $4 x^{2}+9 y^{2}=36$ and find its major axis, minor axis, value of c, vertices, directrices, foci, eccentricity and length of latusrectum.
36. In a survey of 44 villages of a state, about the use of LPG as a cooking mode, the following information about the families using LPG was obtained.

Number of families	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$	$50-60$
Number of villages	6	8	16	8	4	2

i. Find the mean deviation about median for the following data.
ii. Do you think more awareness was needed for the villagers to use LPG as a mode of cooking?

CBSE Class 11 Mathematics

Sample Papers 01

Solution
 Section A

1. (a) ϕ Explanation:
this function is defined only if
$x-|x|>0$
$\Rightarrow x>|x|$
which is not possible because
$|x| \geq x$
so, $x \in \phi$
2. (a) 2^{10} Explanation:
you can either choose true or false, therefore for 10 questions you will have
2^{10} possibilities.
3. (b) $7920 x^{-4}$ Explanation: We have the general term of $(x+a)^{n}$ is
$T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$
Now consider $\left(\frac{x^{3}}{2}-\frac{2}{x^{2}}\right)^{12}$
Here $T_{r+1}={ }^{12} C_{r} \quad\left(\frac{x^{3}}{2}\right)^{12-r}\left(-\frac{2}{x^{2}}\right)^{r}$
We have 5th term from the end $=(12-5+2$ (th term from the beginning \backslash
Required term is $T_{9}=T_{8+1}={ }^{12} C_{8} \quad\left(\frac{x^{3}}{2}\right)^{12-8}\left(-\frac{2}{x^{2}}\right)^{8}=495 \times$
$2^{8-4} x^{12-16}=7920 x^{-4}$
4. (d) 375

Explanation:

th	h	t	o
3	5	5	5

One's place can be occupied by any of the 5 numbers, tens place by any of the 5 numbers and hundreds place in 5 ways since repetition is allowed. But thousands place can be occupied by 2,3,1, only since the required number should be greater than 1000 and less than 5000 . Hence total number of arrangement $=3 \times 5 \times 5 \times 5=375$
5. (b) R

Explanation: this function exists only if
$1-\cos x \geq 0$
$\Rightarrow \cos x \leq 1$
it is possible $\forall x \in R$
6. (b) no $\mathrm{n} \in \mathrm{N}$,

Explanation:

When $\mathrm{n}=1$ we get $16>16$, which is false. when $\mathrm{n}=2$ we get $25>32$, which is false as well. As $n=3,4,5 \ldots$.the inequalty does not hold correct.
7. (b) $1 / 4$

Explanation:

If l is the length of a chord, r, the distance of the mid-point of the chord from the centre of the circle and a radius of the given circle, then
$r=a \cos \theta, l=2 a \sin \theta$
Given : $\frac{2}{3} 2 a<2 a \sin \theta<\frac{2}{3} 2 a$
$\Rightarrow \frac{5}{6} a<a \cos \theta<\frac{\sqrt{5}}{3} a$
$\Rightarrow \frac{\sqrt{11}}{6}<r<\frac{\sqrt{5}}{3} a$
Thus the given condition is satisfied if the mid-point of the chord lies within the region between the concentric circles of radius
$\frac{\sqrt{11}}{6}$ and $\frac{\sqrt{5}}{3}$
Hence, required probability $=\frac{\text { The area of the circular annulus }}{\text { Area of the given circle }}$
$=\left(\frac{5}{9}-\frac{11}{36}\right)=\frac{1}{4}$
8. (d) $p_{1}+p_{2}$ Explanation:
P_{1} is distance of first plane from origion in the direction of normal vector and P_{2} is distance of second plane from origion opposite to normal vector. So distance between planes is $P_{1}-\left(-P_{2}\right)=P_{1}+P_{2}$
9. (a) $1 / 5$

Explanation:

on tossing a pair of dice total outcomes are 36
out of which getting a total of 8 have possiblities $\{(2,6),(6,2),(3,5),(5,3),(4,4)\}=5$
and from these 5 outcomes getting same no. on both dice is $(4,4)=1$
so, probability is $1 / 5$
10. (c) $\frac{7}{8}$ Explanation: We have the general term of $(x+a)^{n}$ is $T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$ Now consider $(1+x)^{44}$
Here $T_{r+1}={ }^{44} C_{r} \quad(1)^{44-r}(x)^{r}$
So $T_{21}=T_{20+1}={ }^{44} C_{20}(x)^{20}$ and $T_{22}=T_{21+1}={ }^{44} C_{21}(x)^{21}$
Given $T_{21}=T_{22} \Rightarrow{ }^{44} C_{20}(x)^{20}={ }^{44} C_{21}(x)^{21}$
$\Rightarrow x=\frac{44 \mathrm{C}_{20}}{44 \mathrm{C}_{21}}=\frac{(44)!}{(20)!24!} \frac{(21)!23!}{(44)!}=\frac{21}{24}=\frac{7}{8}$
11. range
12. 4
13. 481
14. yz-plane

OR

z-coordinates
15. 1

OR

$\frac{11}{4}$
16. Here $A=\{3,5,7,9,11\}, B=\{7,9,11,13\}, C=\{11,13,15\}$ and $D=\{15,17\}$
$A \cap(B \cup D)=A \cap(B \cup D)=\{3,5,7,9,11\} \cap(\{7,9,11,13\} \cup\{15,17\})$
$=\{3,5,7,9,11\} \cap\{7,9,11,13,15,17\}$
$=\{7,9,11\}$
17. The total number of 9-digit numbers, having all digits are different $=9 \times{ }^{9} P_{8}$
$=\frac{9 \times 9!}{1!}=9 \times 9!$
[. \therefore in the first place, we select any one of 9 numbers except 0 . In rest of the eight places, we select any eight numbers from the remaining 9 numbers]
18. We have, (5i) $\left(\frac{-3}{5} i\right)=\left[5 \times \frac{(-3)}{5}\right] \times(i \times i)=-3 i^{2}$ $=-3(-1)=3=3+0 i\left[\because \mathrm{i}^{2}=-1\right]$

OR

$(-4+7 i)-(-11-23 i)=(-4+7 i)+(11+23 i)$
$=(-4+11)+(7+23) i$
$=7+30 \mathrm{i}$
19. Given, $A=\{1,2,3,5\}$ and $B=\{4,6,9\}$
$\mathrm{R}=\{(\mathrm{x}, \mathrm{y})$: the difference between x and y is odd, $x \in A, y \in B\}$
In roster form, $\mathrm{R}=\{(1,4),(1,6),(2,9),(3,4),(3,6),(5,4),(5,6)\}$
20. We have,
$\frac{8!}{4!}=\frac{8 \times 7 \times 6 \times 5 \times 4!}{4!}[\because n!=n(n-1)(n-2) \ldots 1]$
$=8 \times 7 \times 6 \times 5=1680$
Again, $2!=2 \times 1=2 \neq 1680$
$\therefore \frac{8!}{4!} \neq 2$!
21. Let $\mathrm{A}=\{1,2,3,4\}, \mathrm{B}=\{2,3,4,5,6\}, \mathrm{C}=\{2,3,4,9,10\}$
$\therefore A \cap B=\{1,2,3,4\} \cap\{2,3,4,5,6\}$
$=\{2,3,4\}$
$A \cap C=\{1,2,3,4\}, \mathrm{B}=\{2,3,4,5,6\}, \mathrm{C}=\{2,3,4,9,10\}$
$=\{2,3,4\}$
$A \cap C=\{1,2,3,4\} \cap\{2,3,4,9,10\}$

$$
=\{2,3,4\}
$$

Now we have $A \cap B=A \cap C$
But $B \neq C$

OR

According to the question, $n(A)=35, n(B)=30$ and $n(U)=50$
i. We know that

$$
\begin{aligned}
& A \cup B \subseteq U \\
& \Rightarrow n(A \cup B) \leq n(U) \\
& \Rightarrow \mathrm{n}(\mathrm{~A} \cup \mathrm{~B}) \leq 50
\end{aligned}
$$

So, the greatest value of $n(A \cup B)$ is 50 .
ii. From (i), we have

$$
\begin{aligned}
& n(A \cup B) \leq 50 \\
& \Rightarrow \quad n(A)+n(B)-n(A \cap B) \leq 50 \\
& \Rightarrow 35+30-n(A \cap B) \leq 50 \\
& \Rightarrow 15 \leq(A \cap B) \Rightarrow n(A \cap B) \geq 15
\end{aligned}
$$

So, the least value of $n(A \cap B)$ is 15 .
22. Suppose B be the event that a truck stopped at the roadblock will have faulty brakes and T be the event that it will have badly worn tires.
Given, $P(B)=0.23, P(T)=0.24$ and $P(B \cup T)=0.38$. We have to find $\mathrm{P}(\mathrm{B}$ $\cap \mathrm{T}$).

As we know,
$P(B \cup T)=P(B)+P(T)-P(B \cap T)$ [By addition theorem]
$\Rightarrow P(B \cap T)=P(B)+P(T)-P(B \cup T)=0.23+0.24-0.38=0.09$
23. We have, $\left(\frac{3}{x^{2}}-\frac{x^{3}}{6}\right)^{7}$

Clearly, the given expansion contains 8 terms. So, 4th term from the end $=(7-4+2)$ th term from the beginning.
\therefore Required term $=\mathrm{T}_{5}=\mathrm{T}_{4+1}={ }^{7} \mathrm{C}_{4}\left(\frac{3}{x^{2}}\right)^{7-4}\left(\frac{-x^{3}}{6}\right)^{4}$
$={ }^{7} \mathrm{C}_{4}\left(\frac{3}{x^{2}}\right)^{3} \frac{x^{12}}{6^{4}}=\frac{7!}{4!3!} \cdot \frac{3^{3}}{x^{6}} \cdot \frac{x^{12}}{6^{4}}$
$=\frac{7 \cdot 6 \cdot 5}{3 \cdot 2 \cdot 1} \cdot \frac{3^{3} \cdot x^{12-6}}{(3 \times 2)^{4}}$
$=\frac{35 \cdot 3^{3} \cdot x^{6}}{(3)^{4} \cdot 2^{4}}$
$=\frac{35 \cdot x^{6}}{3 \cdot 2^{4}}=\frac{35}{48} x^{6}$
24. Given lines are $x-y-6=0 \ldots$ (i)
$4 \mathrm{x}-3 \mathrm{y}-20=0$
and $6 x+5 y+8=0$.
On solving Eq. (i) and Eq. (ii) by cross-multiplication method,
we get
$\frac{x}{20-18}=\frac{y}{-24+20}=\frac{1}{-3+4} \Rightarrow x=2$ and $y=-4$
Thus, intersection point of first two lines is (2,-4).
Now, if given three lines are concurrent, then this point will satisfies the Eq. (iii).
On putting $x=2$ and $y=-4$ in LHS of Eq. (iii), we get
LHS $=6(2)+5(-4)+8=12-20+8=0=$ RHS
Hence, given three lines are concurrent.

OR

If slope of one line is m . Then, the slope of the other line is 2 m .
Let angle between these two lines be θ.
Then, $\tan \theta=\frac{1}{3}$ [given)
$\Rightarrow \quad\left|\frac{2 m-m}{1+2 m \cdot m}\right|=\frac{1}{3}\left[\because \tan \theta=\left|\frac{m_{2}-m_{1}}{1+m_{1} \cdot m_{2}}\right|\right]$
$\Rightarrow \quad \frac{m}{1+2 m^{2}}=\frac{1}{3}$
$\Rightarrow 2 \mathrm{~m}^{2}-3 \mathrm{~m}+1=0$
$\Rightarrow(2 \mathrm{~m}-1)(\mathrm{m}-1)=0 \Rightarrow m=\frac{1}{2}, m=1$
Thus, the slope of these lines are $\frac{1}{2}$ and 1 .
25. The given compound statement is of the form "if p then q ".

We assume that p is true then
$a, b \in R$ such that $\mathrm{a}^{2}=\mathrm{b}^{2}$
Let us take $\mathrm{a}=-3$ and $\mathrm{b}=3$
So when p is true q is false.
Thus the given compound statement is not true.
26. LHS $=\tan 20^{\circ} \tan 40^{\circ} \tan 80^{\circ}=\frac{\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}}{\cos 20^{\circ} \cos 40^{\circ} \cos 80^{\circ}}$
$=\frac{\left(2 \sin 20^{\circ} \sin 40^{\circ}\right) \sin 80^{\circ}}{\left(2 \cos 20^{\circ} \cos 40^{\circ}\right) \cos 80^{\circ}}$
$=\frac{\left(\cos 20^{\circ}-\cos 60^{\circ}\right) \sin 80^{\circ}}{\left(\cos 60^{\circ}+\cos 20^{\circ}\right) \cos 80^{\circ}}[\because 2 \sin \mathrm{a} \sin \mathrm{b}=\cos (\mathrm{a}-\mathrm{b})-\cos (\mathrm{a}+\mathrm{b}), 2 \cos \mathrm{a} \cos \mathrm{b}=\cos (\mathrm{a}+\mathrm{b})$
$+\cos (a-b)]$
$=\frac{\sin 80^{\circ} \cos 20^{\circ}-(1 / 2) \sin 80^{\circ}}{(1 / 2) \cos 80^{\circ}+\cos 80^{\circ} \cos 20^{\circ}}\left[\because \cos 60^{\circ}=\frac{1}{2}\right]$
$=\frac{2 \sin 80^{\circ} \cos 20^{\circ}-\sin 80^{\circ}}{\cos 80^{\circ}+2 \cos 80^{\circ} \cos 20^{\circ}}$
$=\frac{\sin 100^{\circ}+\sin 60^{\circ}-\sin 80^{\circ}}{\cos 80^{\circ}+\cos 100^{\circ}+\cos 60^{\circ}}[\because 2 \sin a \cos b=\sin (a+b)+\sin (a-b)]$
$=\frac{\sin \left(180^{\circ}-80^{\circ}\right)+\sin 60^{\circ}-\sin 80^{\circ}}{\cos 80^{\circ}+\cos \left(180^{\circ}-80^{\circ}\right)+\cos 60^{\circ}}$
$=\frac{\sin 80^{\circ}+\sin 60^{\circ}-\sin 80^{\circ}}{\cos 80^{\circ}-\cos 80^{\circ}+\cos 60^{\circ}}=\frac{\sin 60^{\circ}}{\cos 60^{\circ}}=\tan 60^{\circ}=$ RHS
27. Let $x \in P(A \cap B)$
$\Rightarrow x \subset(A \cap B)$
$\Rightarrow x \subset A$ and $x \subset B$
$\Rightarrow x \in P(A)$ and $x \in P(B)$
$\Rightarrow x \in P(A) \cap P(B)$
$\Rightarrow x \subset P(A) \cap P(B)$
$\therefore P(A \cap B) \subset P(A) \cap P(B) \ldots$ (i)
Let $x \in P(A) \cap P(B)$
$\Rightarrow x \in P(A)$ and $x \in P(B)$
$\Rightarrow x \subset A$ and $\Rightarrow x \subset B$
$\Rightarrow x \subset A \cap B$
$\Rightarrow x \subset P(A \cap B)$
$\therefore P(A) \cap P(B) \subset P(A \cap B) \ldots$ (ii)
From (i) and (ii), we have
$P(A \cup B)=P(A) \cap P(B)$
28. (i) Here the relation is
$\{(2,1),(5,1),(8,1),(11,1),(14,1),(17,1)\}$
All values of x are distinct. Each value of x has a unique value of y.
So the relation is a function.
\therefore Domain of function $=\{2,5,8,11,14,17\}$
Range of function $=\{1\}$
(ii) Here the relation is
$\{(2,1),(4,2),(6,3),(8,4),(10,5),(12,6),(14,7)\}$
All values of x are distinct. Each value of x has a unique value of y.
So the relation is a function.
\therefore Domain of function $=\{2,4,6,8,10,12,14\}$
Range of function $=\{1,2,3,4,5,6,7\}$
(iii) Here the relation is
$\{(1,3),(1,5),(2,5)\}$
This relation is not a function because there is an element 1 which is associated to two elements 3 and 5.

OR

Here $(-1,0) \in A \times A \Rightarrow-1 \in A$ and $0 \in A$
$(0,1) \in A \times A \Rightarrow 0 \in A$ and $1 \in A$
$\therefore-1,0,1, \in A$
It is given that $n(A \times A)=9$ which implies that $\mathrm{n}(\mathrm{A})=3$
$\therefore \mathrm{A}=(-1,0,1)$
$\therefore A \times A=\{(-1,-1),(-1,0),(-1,1)(0,-1),(0,0),(0,1),(1,-1),(1,0),(1,1)\}$
So the remaining elements of $A \times A$ are
$(-1,1),(-1,1),(0,-1),(0,0),(1,-1),(1,0)$ and $(1,1)$
29. First, we find the derivatives of $f(x)$ at $x=-1$ and $x=0$. We have,

$$
\begin{aligned}
& f^{\prime}(-1)=\lim _{h \rightarrow 0} \frac{f(-1+h)-f(-1)}{h} \\
& {\left[\because f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]} \\
& =\lim _{h \rightarrow 0} \frac{\left[2(-1+h)^{2}+3(-1+h)-5\right]-\left[2(-1)^{2}+3(-1)-5\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left[2\left(1+h^{2}-2 h\right)-3+3 h-5\right]-[2-3-5\}}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h^{2}-h}{h}=\lim _{h \rightarrow 0}(2 h-1)=2(0)-1=-1 \\
& \text { and } f^{\prime}(0)=\lim _{h \rightarrow 0} \frac{f(0+h)-f(0)}{h} \\
& {\left[\because f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}\right]} \\
& =\lim _{h \rightarrow 0} \frac{\left[2(0+h)^{2}+3(0+h)-5\right]-\left[2(0)^{2}+3(0)-5\right]}{h}
\end{aligned}
$$

$=\lim _{h \rightarrow 0} \frac{2 h^{2}+3 h}{h}$
$=\lim _{h \rightarrow 0}(2 h+3)$
$=2(0)+3=3$
Now, $\mathrm{f}^{\prime}(0)+3 \mathrm{f}^{\prime}(-1)=3-3=0$.
Hence proved.
30. M.I. of $=\sqrt{5}+3 i$
$=\frac{1}{\sqrt{5}+3 i}=\frac{1}{\sqrt{5}+3 i} \times \frac{\sqrt{5}-3 i}{\sqrt{5}-3 i}$
$=\frac{\sqrt{5}-3 i}{(\sqrt{5})^{2}-(3 i)^{2}}$
$=\frac{\sqrt{5}-3 i}{5-9 i^{2}}=\frac{\sqrt{5}-3 i}{5+9}=\frac{1}{14}(\sqrt{5}-3 i)$
31. The given inequality is $x-y \leq 2$.

Draw the graph of the line $x-y=2$
Table of values satisfying the equation $x-y=2$

Putting $(0,0)$ in the given inequation, we have
$0-0 \leq 2 \Rightarrow 0 \leq 2$ which is true
\therefore Half-plane of $\mathrm{x}-\mathrm{y} \leq 2$ is towards origin

OR

The given inequality is $x+y \geqslant 4$
Draw the graph of the line $x+y=4$.
Table of values satisfying the equation $x+y=4$.

X	3	2
Y	1	2

Putting $(0,0)$ in the given inequation, we have
$0+0 \geqslant 4 \Rightarrow 0 \geqslant 4$, which is false.
\therefore Half plane of $x+y \geqslant 4$ is away from origin.
Also the given inequality is $2 \mathrm{x}-\mathrm{y}<0$
Draw the graph of the line $2 \mathrm{x}-\mathrm{y}=0$
Table of values satisfying the equation $2 \mathrm{x}-\mathrm{y}=0$

X	1	2
Y	2	4

Putting $(3,0)$ in the given inequation, we have
$2 \times 3-0<0 \Rightarrow 6<0$, which is false.
\therefore Half plane of $2 \mathrm{x}-\mathrm{y}=0$ does not contain $(3,0)$
32. Let $\mathrm{P}(\mathrm{n})=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)}$

For $\mathrm{n}=1$
$P(1)=\frac{1}{1(1+1)(1+2)}=\frac{1(1+3)}{4(1+1)(1+2)} \Rightarrow \frac{1}{1 \times 2 \times 3}=\frac{4}{4 \times 2 \times 3} \Rightarrow \frac{1}{6}=\frac{1}{6}$
$\therefore \mathrm{P}(1)$ is true
Let $P(n)$ be true for $n=k$
$\therefore P(k)=\frac{1}{1 \cdot 2 \cdot 3}+\frac{1}{2 \cdot 3 \cdot 4}+\frac{1}{3 \cdot 4 \cdot 5}+\ldots+\frac{1}{k(k+1)(k+2)}+\frac{k(k+3)}{4(k+1)(k+2)} \ldots$ (i)

For $\mathrm{P}(\mathrm{k}+1)$
R.H.S. $=\frac{(k+1)(k+4)}{4(k+2)(k+3)}$
L.H.S. $=\frac{k(k+3)}{4(k+1)(k+2)}+\frac{1}{(k+1)(k+2)(k+3)}$ [Using (i)]
$=\frac{1}{(k+1)(k+2)}\left[\frac{k^{2}+3 k}{4}+\frac{1}{k+3}\right]$
$=\frac{1}{(k+1)(k+2)}\left[\frac{k^{3}+6 k^{2}+9 k+4}{4(k+3)}\right]=\frac{1}{(k+1)(k+2)}\left[\frac{(k+1)^{2}(k+4)}{4(k+3)}\right]$
$=\frac{(k+1)(k+4)}{4(k+2)(k+3)}$
$\therefore \mathrm{P}(\mathrm{k}+1)$ is true
Thus $P(k)$ is true $\Rightarrow P(k+1)$ is true
Hence by principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.
33. $\mathrm{LHS}=\tan 82 \frac{1^{\circ}}{2}=\tan \left(90^{\circ}-7 \frac{1^{\circ}}{2}\right)=\cot 7 \frac{1^{\circ}}{2}=\cot A$ [say]
where, $A=7 \frac{1^{\circ}}{2}$
Now, $\cot A=\frac{\cos A}{\sin A}=\frac{\cos A(2 \cos A)}{\sin A(2 \cos A)}$
[multiplying numerator and denominator by $2 \cos A$]
$=\frac{2 \cos ^{2} A}{2 \sin A \cdot \cos A}$
$=\frac{1+\cos 2 A}{\sin 2 A}\left[\because \cos ^{2} x=\frac{1+\cos 2 x}{2}\right.$ and $\left.\sin 2 x=2 \sin x \times \cos x\right]$
$\Rightarrow \cot 7 \frac{1^{\circ}}{2}=\frac{1+\cos 2\left(7 \frac{1^{\circ}}{2}\right)}{\sin 2\left(7 \frac{1^{\circ}}{2}\right)}=\frac{1+\cos 2\left(\frac{15}{2}\right)^{\circ}}{\sin 2\left(\frac{15}{2}\right)^{\circ}}\left[\right.$ put $\left.A=7 \frac{1^{\circ}}{2}\right]$
$\Rightarrow \cot 7 \frac{1}{2}=\frac{1+\cos 15^{\circ}}{\sin 15^{\circ}}=\frac{1+\cos \left(45^{\circ}-30^{\circ}\right)}{\sin \left(45^{\circ}-30^{\circ}\right)}$
$=\frac{1+\left(\cos 45^{\circ} \cdot \cos 30^{\circ}+\sin 45^{\circ} \cdot \sin 30^{\circ}\right)}{\left(\sin 45^{\circ} \cdot \cos 30^{\circ}-\cos 45^{\circ} \cdot \sin 30^{\circ}\right)}$
$[\because \cos (x-y)=\cos x \cos y+\sin x \sin y$ and
$\sin (x-y)=\sin x \cos y-\cos x \sin y]$
$=\frac{1+\left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}+\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)}{\left(\frac{1}{\sqrt{2}} \cdot \frac{\sqrt{3}}{2}-\frac{1}{\sqrt{2}} \cdot \frac{1}{2}\right)}$
$=\frac{1+\left(\frac{\sqrt{3}}{2 \sqrt{2}}+\frac{1}{2 \sqrt{2}}\right)}{\left(\frac{\sqrt{3}}{2 \sqrt{2}}-\frac{1}{2 \sqrt{2}}\right)}$
$=\frac{2 \sqrt{2}+\sqrt{3}+1}{(\sqrt{3}-1)} \times \frac{\sqrt{3}+1}{\sqrt{3}+1}$
[multiplying numerator and denominator by $\sqrt{3}+1$]
$=\frac{2 \sqrt{2}(\sqrt{3}+1)+(\sqrt{3}+1)(\sqrt{3}+1)}{(\sqrt{3}-1)(\sqrt{3}+1)}$
$=\frac{2 \sqrt{6}+2 \sqrt{2}+(\sqrt{3}+1)^{2}}{3-1}=\frac{2 \sqrt{6}+2 \sqrt{2}+3+1+2 \sqrt{3}}{2}$
$=\frac{2 \sqrt{6}+2 \sqrt{2}+2 \sqrt{3}+4}{2}$
$=\frac{2(\sqrt{6}+\sqrt{2}+2+\sqrt{3})}{2}=\sqrt{6}+\sqrt{2}+2+\sqrt{3}$
$=\sqrt{2} \cdot \sqrt{3}+\sqrt{2}+\sqrt{2} \cdot \sqrt{2}+\sqrt{3}$
$=(\sqrt{2} \cdot \sqrt{3}+\sqrt{2} \cdot \sqrt{2})+(\sqrt{2}+\sqrt{3})$
$=\sqrt{2}(\sqrt{3}+\sqrt{2})+1(\sqrt{2}+\sqrt{3})=(\sqrt{2}+1)(\sqrt{3}+\sqrt{2})$
= RHS
\therefore LHS = RHS
Hence proved.

OR

LHS $=\cos 12^{\circ}+\cos 60^{\circ}+\cos 84^{\circ}$
$=\cos 12^{\circ}+\left(\cos 84^{\circ}+\cos 60^{\circ}\right)$
$=\cos 12^{\circ}+\left[2 \cos \left(\frac{84^{\circ}+60^{\circ}}{2}\right) \times \cos \left(\frac{84^{\circ}-60^{\circ}}{2}\right)\right]$
$\left[\because \cos \mathrm{X}+\cos \mathrm{y}=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right]$
$=\cos 12^{\circ}+\left[2 \cos \frac{144^{\circ}}{2} \times \cos \frac{24^{\circ}}{2}\right]$
$=\cos 12^{\circ}+\left[2 \cos 72^{\circ} \times \cos 12^{\circ}\right]=\cos 12^{\circ}\left[1+2 \cos 72^{\circ}\right]$
$=\cos 12^{\circ}\left[1+2 \cos \left(90^{\circ}-18^{\circ}\right)\right]$
$=\cos 12^{\circ}\left[1+2 \sin 18^{\circ}\right]\left[\because \cos \left(90^{\circ}-\theta\right)=\sin \theta\right]$
$=\cos 12^{\circ}\left[1+2\left(\frac{\sqrt{5}-1}{4}\right)\right]\left[\because \sin 18^{\circ}=\frac{\sqrt{5}-1}{4}\right]$
$=\left(1+\frac{\sqrt{5}-1}{2}\right) \cos 12^{\circ}=\left(\frac{\sqrt{5}+1}{2}\right) \cos 12^{\circ}$

RHS $=\cos 24^{\circ}+\cos 48^{\circ}$
$=2 \cos \left(\frac{24^{\circ}+48^{\circ}}{2}\right) \cos \left(\frac{24^{\circ}-48^{\circ}}{2}\right)\left[\because \cos \mathrm{x}+\cos \mathrm{y}=2 \cos \left(\frac{x+y}{2}\right) \cos \left(\frac{x-y}{2}\right)\right]$
$=2 \cos 36^{o} \cos \left(-12^{\circ}\right)$
$=2 \cos 36^{\circ} \times \cos 12^{\circ}[\because \cos (-\theta)=\cos \theta]$
$=2 \times \frac{\sqrt{5}+1}{4} \times \cos 12^{\circ}=\frac{\sqrt{5}+1}{2} \times \cos 12^{\circ}\left[\because \cos 36^{\circ}=\frac{\sqrt{5}+1}{4}\right]$
\therefore LHS = RHS
Hence proved.
34. Given: $\frac{1^{3}}{1}+\frac{1^{3}+2^{3}}{1+3}+\frac{1^{3}+2^{3}+3^{3}}{1+3+5}+\ldots$. up to n terms
$\therefore a_{n}=\frac{1^{3}+2^{3}+3^{3}+\ldots \ldots+n^{3}}{1+3+5+\ldots \ldots(2 n-1)}$
$=\frac{\sum n^{3}}{\frac{n}{2}[2+(n-1) 2]}=\frac{\sum n^{3}}{\frac{n}{2}(2 n)}=\frac{\sum n^{3}}{n^{2}}=\frac{n^{2}(n+1)^{2}}{4 n^{2}}$
$=\frac{1}{4}\left(n^{2}+2 n+1\right)$
$\therefore S_{n}=\sum_{k=1}^{n} a_{k}=\sum_{k=1}^{n} \frac{k^{2}+2 k+1}{4}$
$=\frac{1}{4}\left[\left(1^{2}+2.1+1\right)+\left(2^{2}+2.2+1\right)+\left(3^{2}+2.3+1\right)+\ldots \ldots+\left(n^{2}+2 n+1\right)\right]$
$=\frac{1}{4}\left[\sum n^{2}+2 \sum n+n\right]$
$=\frac{1}{4}\left[\frac{n(n+1)(2 n+1)}{6}+\frac{2 n(n+1)}{2}+n\right]$
$=\frac{n}{4}\left[\frac{2 n^{2}+3 n+1+6 n+6+6}{6}\right]$
$=\frac{n}{24}\left(2 n^{2}+9 n+13\right)$
35. Let the equation of the required ellipse be
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$
The coordinate of foci are $(+\mathrm{ae}, 0)$ and $(-\mathrm{ae}, 0)$.
\therefore ae $=4[\because$ foci $:(\pm 4,0)]$
$\Rightarrow \mathrm{a} \times \frac{1}{3}=4\left[\because e=\frac{1}{3}\right]$
$\Rightarrow \mathrm{a}=12$
$\Rightarrow \mathrm{a}^{2}=144$
Now, $b^{2}=a^{2}\left(1-e^{2}\right)$
$\Rightarrow \mathrm{b}^{2}=144\left[1-\left(\frac{1}{3}\right)^{2}\right]$
$\Rightarrow \mathrm{b}^{2}=144\left[1-\frac{1}{9}\right]$
$\Rightarrow \mathrm{b}^{2}=144 \times \frac{8}{9}$
$\Rightarrow \mathrm{b}^{2}=16 \times 8=128$

Substituing $\mathrm{a}^{2}=144$ and $\mathrm{b}^{2}=128$ in equation (i), we get
$=\frac{x^{2}}{144}+\frac{y^{2}}{128}=1$
$\Rightarrow \frac{1}{16}\left[\frac{x^{2}}{9}+\frac{y^{2}}{8}\right]=1$
$\Rightarrow \frac{x^{2}}{9}+\frac{y^{2}}{8}=16$
This is the required equation of the ellipse.

OR

We have, equation of ellipse is $4 x^{2}+9 y^{2}=36$
or $\frac{x^{2}}{9}+\frac{y^{2}}{4}=1$
Since, the denominator of $\frac{x^{2}}{9}$ is greater than denominator of $\frac{y^{2}}{4}$
So, the major axis lies along X-axis.

i. Shape is shown above.
ii. Major axis, $2 \mathrm{a}=2 \times 3=6$
iii. Minor axis, $2 \mathrm{~b}=2 \times 2=4$
iv. Value of $\mathrm{c}=\sqrt{a^{2}-b^{2}}=\sqrt{9-4}=\sqrt{5}$
v. Vertices $=(-a, 0)$ and $(a, 0)$ i.e., $(-3,0)$ and $(3,0)$
vi. Directrices, $\mathrm{x}= \pm \frac{a^{2}}{c}= \pm \frac{9}{\sqrt{5}}$
vii. Foci $=(-\mathrm{c}, 0)$ and $(\mathrm{c}, 0)$ i.e., $(-\sqrt{5}, 0)$ and $(\sqrt{5}, 0)$
viii. Eccentricity, $\mathrm{e}=\frac{c}{a}=\frac{\sqrt{5}}{3}$
ix. Length of latusrectum, $2 \mathrm{l}=\frac{2 b^{2}}{a}=\frac{2 \times 4}{3}=\frac{8}{3}$
36. i.

Number of families	Mid value $\left(x_{i}\right)$	Number of villages $\left(f_{i}\right)$	cf	$\mid x_{i}-$ $M \mid$	$f_{i} \mid x_{i}-$ $M \mid$

$0-10$	5	6	6	20	120
$10-20$	15	8	14	10	80
$20-30$	25	16	30	0	0
$30-40$	35	8	38	10	80
$40-50$	45	4	42	20	80
$50-60$	55	2	44	30	60
					420

Here, $N=44$
Now, $\frac{N}{2}=\frac{44}{2}=22$, which, lies in the cumulative frequency of 30 , therefore median class is 20-30.
$\therefore l=20, f=16, c f=14$ and $h=10$
\therefore Median (M) $=l+\frac{\frac{N}{2}-c f}{f} \times b$
$=20+\frac{22-14}{16} \times 10$
$=20+\frac{8}{16}^{16} \times 10=20+5=25$
\therefore Mean deviation about median $=\frac{\sum_{i=1}^{6} f_{i}\left|x_{i}-M\right|}{\sum f_{i}}=\frac{420}{44}=9.55$
ii. There is a need for awareness among villagers for using LPG as a mode of cooking. Because it will help in keeping the environment clean and will also help in saving of forests.

