CBSE Class 10 Maths (Standard) Question Paper 2020 Set 2

CLASS: X

MATHEMATICS STANDARD

SET 2 SOLVED (CODE 30/5/2)

General Instructions:

Read the following instructions very carefully and strictly follow them:

- i. This question paper comprises four sections A, B, C and D. This question paper carries 40 questions. All questions are compulsory.
- ii. Section A: Question numbers 1 to 20 comprises of 20 questions of one mark each.
- iii. Section B: Question numbers 21 to 26 comprises of 6 questions of two marks each.
- iv. Section C: Question numbers 27 to 34 comprises of 8 questions of three marks each.
- v. Section D: Question numbers 35 to 40 comprises of 6 questions of four marks each.
- vi. There is no overall choice in the question paper. However, an internal choice has been provided in 2 questions of one mark, 2 questions of two marks, 3 questions of three marks and 3 questions of four marks. You have to attempt only one of the choices in such questions.
- vii. In addition to this, separate instructions are given with each section and question, wherever necessary.
- viii. Use of calculators is not permitted.

SECTION - A

Question numbers 1 to 20 carry 1 mark each.

Question numbers 1 to 10 are multiple choice questions.

Choose the correct option.

- 1. The value (s) of k for which the quadratic equation $2x^2 + kx + 2 = 0$ has equal roots, is
 - (a) 4

- (b) ± 4
- (c) 4
- (d) 0

- 2. Which of the following is not an A.P?
 - $(a) 1.2, 0.8, 2.8, \dots$

(b) $3,3+\sqrt{2},3+2\sqrt{2},3+3\sqrt{2}$

(c) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$

- (d) $\frac{-1}{5}$, $\frac{-2}{5}$, $\frac{-3}{5}$,...
- 3. In figure 3, from an external point P, two tangents PQ and PR are drawn to a circle of radius 4 cm with centre O. If $\angle QPR = 90^{\circ}$, then length of PQ is

SET 2 SOLVED (CODE 30/5/2)

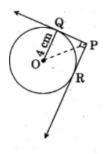


Figure-3

(a) 3 cm

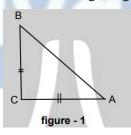
(b) 4 cm

- (c) 2 cm
- (d) $2\sqrt{2}$ cm

4. The distance between the points (m, -n) and (-m, n) is

(a)
$$\sqrt{m^2 + n^2}$$

(b) m + n


(c)
$$2\sqrt{m^2 + n^2}$$

(d)

$$\sqrt{2m^2+2n^2}$$

- 5. The degree of polynomial having zeroes -3 and 4 only is
 - (a) 2

- (b) 1
- (c) more than 3
- (d) 3
- 6. In figure 1, ABC is an isosceles triangle, right angled at C. Therefore

- (a) $AB^2 = 2AC^2$
- (b) $BC^2 = 2AB^2$
- (c) $AC^2 = 2AB^2$
- (d) $AB^2 = 4AC^2$

- 7. The point on the x-axis which is equidistant from (-4, 0) and (10, 0) is
 - (a)(7,0)
- (b) (5, 0)
- (c)(0,0)
- (d)(3,0)

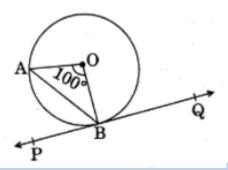
OR

The centre of a circle whose end point of a diameter are (-6, 3) and (6, 4) is

(a)(8, -1)

(b) (4, 7)

- (c) $\left(0, \frac{7}{2}\right)$
- (d) $\left(4,\frac{7}{2}\right)$
- 8. The pair of linear equations $\frac{3x}{2} + \frac{5y}{3} = 7$ and 9x + 10y = 14 is
 - (a) consistent


- (b) inconsistent
- (c) consistent with one solution

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

(d) consistent with many solutions.

9. In figure - 2, PQ is tangent to the circle with centre at O, at the point B. If $\angle AOB = 100^{\circ}$, then $\angle ABP$ is equal to

(a) 50°

(b) 40°

(c) 60°

(d) 80°

10. The radius of a sphere (in cm) whose volume is 12π Cm³, is

(a) 3

(b) $3\sqrt{3}$

(c) $3^{\frac{2}{3}}$

(d) $3^{\frac{1}{3}}$

Fill in the blanks in questions numbers 11 to 15

11. AOBC is a rectangle whose three vertices are A(0, -3), O(0, 0) and B(4, 0). The length of its diagonals is

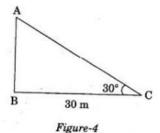
12. In the formula $\overline{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i}\right) \times h$, $u_i = \underline{}$

- 13. All concentric circles are ______ to each other.
- 14. The probability of an event that is sure to happen, is _____
- 15. Simplest from of $(1 \cos^2 A) (1 + \cot^2 A)$ is _____

Answer the following question numbers 16 to 20

- 16. The LCM of two numbers is 182 and their HCF is 13. If one of the numbers is 26, find the other,
- 17. Form a quadratic polynomial, the sum and product of whose zeroes are (-3) and 2 respectively.

(Or)

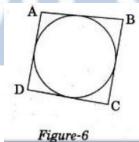

Can $(x^2 - 1)$ be a remainder while dividing $x^4 - 3x^2 + 5x - 6$ by $(x^2 + 3)$?

- 18. Find the sum of the first 100 natural numbers.
- 19. Evaluate:

 $2 \sec 30^{\circ} \times \tan 60^{\circ}$

SET 2 SOLVED (CODE 30/5/2)

20. In figure -4, the angle of elevation of the top of a tower from a point C on the ground, which is 30 m away from the foot of the tower, is 30° . Find the height of the tower.


$\underline{SECTION - B}$

Question numbers 21 to 26 carry 2 marks each.

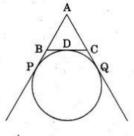
21. Find the mode of the following distribution.

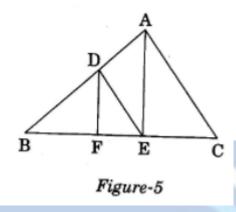
Marks	0 – 10	10 - 20	20 – 30	30 – 40	40 - 50	50 – 60
Number of students	4	6	7	12	5	6

22. In figure -6, a quadrilateral ABCD is drawn to circumscribe a circle. Prove that AB + CD = BC + AD.

(OR)

In figure – 7, find the perimeter of $\triangle ABC$, if AP = 12 cm.




Figure-7

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

- 23. How may cubes of side 2 cm can be made from a solid cube of side 10 cm?
- 24. In the figure -5, DE || AC and DF || AE.

Prove that
$$\frac{BF}{FE} = \frac{BE}{EC}$$

25. Show that $5+2\sqrt{7}$ is an irrational number, where $\sqrt{7}$ is given to be an irrational number.

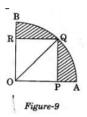
Let $5 + 2\sqrt{7}$ be rational.

(OR)

Check whether 12ⁿ can end with the digit 0 for any natural number n.

$$12^{n} = (2 \times 2 \times 3)^{n}$$

26. If A, B and C are interior angles of a \triangle ABC, then show that $\cot\left(\frac{B+C}{2}\right) = \tan\frac{A}{2}$


SECTION -C

Question numbers 27 to 34 carry 3 marks each.

27. In figure-9, a square OPQR is inscribed in a quadrant OAQB of a circle. If the radius of circle is $6\sqrt{2}$ cm, find the area of the shaded region.

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

28. Construct a $\triangle ABC$ with sides BC = 6 cm, AB = 5 cm and $\angle ABC = 60^{\circ}$. Then construct a triangle whose sides are $\frac{3}{4}$ of the corresponding sides of $\triangle ABC$.

(OR)

Draw a circle of radius 3.5 cm. Take a point P outside the circle at a distance of 7 cm from the centre of the circle and construct a pair of tangents to the circle from that point.

29. Prove that:

$$\frac{2\cos^3\theta - \cos\theta}{\sin\theta - 2\sin^3\theta} = \cot\theta$$

30. A fraction becomes $\frac{1}{3}$ when 1 is subtracted from the numerator and it becomes $\frac{1}{4}$ when 8 is added to its denominator. Find the fraction.

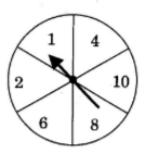
(OR)

The present age of a father is three years more than three times the age of his son. Three years hence the father's age will be 10 years more than twice the age of the son. Determine their present ages.

- 31. Using Euclid's Algorithm, find the largest number which divides 870 and 258 leaving remainder 3 in each case.
- 32. Find the ratio in which the y-axis divides the line segment joining the points (6, -4) and (-2, -7). Also find the point of intersection.

(OR)

Show that the points (7, 10), (-2, 5) and (3, -4) are vertices of an isosceles right triangle.


- 33. In an A.P. given that the first term (a) = 54, the common difference (d) = -3 and the n^{th} term (a_n) = 0, find n and the sum of first n terms (S_n) of the A.P.
- 34. Read the following passage and answer the questions given at the end:

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

Diwali Fair

A game in a booth at a Diwali Fair involves using a spinner first. Then, if the spinner stops on an even number, the player is allowed to pick a marble from a bag. The spinner and the marbles in the bage are respresented in Figure - 8. Prizes are given, when a black marbles is picked. Shweta plays the same once.

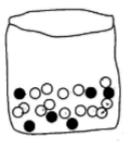


Figure-8

- (i) What is the probability that she will be allowed to pick a marble from the bag?
- (ii) Suppose she is allowed to pick a marble from the bag, what is the probability of getting a prize, When it is given that the bag contains 20 balls out of which 6 are black?

SECTION - D

Question numbers 35 to 40 carry 4 marks each.

35. Sum of the areas of two squares is 544 m^2 . If the diffeence of their perimeter is 32 m, find the sides of the two squares.

(OR)

A motor boat whose speed is 18km/h in still water takes 1 hour more to go 24km upstream than to return downstream to the same spot. Find the speed of the stream.

- 36. A solid toy is in the form of a hemisphere surmounted by a right circular cone of same radius. The height of the cone is 10 cm and the radius of the base is 7 cm. Determine the volume of the toy. Also find the area of the coloured sheet required to cover the toy. $\left(Use \pi = \frac{22}{7} and \sqrt{149} = 12.2\right)$
- 37. For the following data, draw a 'less than' ogive and hence find the median of the distribution. Less than frequency distribution

CLASS: X

SET 2 SOLVED (CODE 30/5/2)

Age (in years)	0 – 10	10 - 20	20 - 30	30 - 40	40 - 50	50 – 60	60 - 70
Number of persons	5	15	20	25	15	11	9

(OR)

The distribution given below shows the number of wickets taken by bowlers in one-day cricket matches. Find the mean and the median of the number of wickets taken.

38. From a point on the ground, the angles of elevation of the bottom and the top of a transmission tower fixed at the top of a 20 m high building are 45° and 60° respectively. Find the height of the tower.

$$\left(Use\sqrt{3}=1.73\right)$$

- 39. Prove that in a right angled triangle the square of hypotenuse is equal to the sum of square of other two sides.
- 40. Obtain other zeroes of the polynomial $p(x) = 2x^4 x^3 11x^2 + 5x + 5$ if two of its zeroes are $\sqrt{5}$ and $-\sqrt{5}$.

What minimum must be added to $2x^3 - 3x^2 + 6x + 7$ so that the resulting polynomial will be divisible by $x^2 - 4x + 8$?

CBSE Class 10 Maths (Standard) Question Paper Solution 2020 Set 2

CLASS: X

MATHEMATICS STANDARD SOLVED

Q. NO	SOLUTION	MARKS			
	SECTION – A				
1.	(B) ±4	1			
2.	(C) $\frac{4}{3}, \frac{7}{3}, \frac{9}{3}, \frac{12}{3}, \dots$	1			
3.	(B) 4 cm	1			
4.	(C) $2\sqrt{m^2+n^2}$	1			
5.	(A) 2	1			
	$(A) AB^2 = 2AC^2$	1			
7.	(D) (3, 0) OR	1			
	(C) $\left(0, \frac{7}{2}\right)$	1			
8.	(B) inconsistent	1			
9.	(A) 50°	1			
10.	(C) $3^{\frac{2}{3}}$	1			
11.	5 units	1			

12.	$u_i = \frac{x_i - a}{h}$	1
	x _i - class mark	
	a – assumed mean	
	h – class size	
13.	Similar	1
14.		1
15.	$(1-\cos^2 A)(1+\cot^2 A) = \sin^2 A \times \cos ec^2 A = 1$	1
16.	LCM × HCF = Product $182 \times 13 = 2.6 \times x$ $x = \frac{182 \times 1/3}{2/62}$	1/2
	262	
	x = 91	
	Other number = 91	1/2
17.	$k\left[x^2+3x+2\right]$	1
	OR	

	No. $x^2 - 1$ can't be remainder. Because degree of the remainder	1
	should be less than the degree of the divisor.	
18.	$S_n = \frac{n(n+1)}{2}$	1/2
	$S_{100} = \frac{100 \times 101}{2} = 5050$	1/2
19.	$2 \sec 30 \times \tan 60 = 2 \times \frac{2}{\sqrt{3}} \times \sqrt{3} = 4$	1/2 + 1/2
20.	$\tan 30 = \frac{1}{\sqrt{3}} = \frac{h}{30}$ $h = \frac{30}{\sqrt{3}} = 10\sqrt{3}m$	1/2
	SECTION – B	
21.	Modal class: 30 – 40	
	$\ell = 30$, $f_1 = 12$, $f_0 = 7$, $f_2 = 5$, $h = 10$	1/2
	$mod\ e = \ell + \left[\frac{f_1 - f_0}{2f_1 - f_0 - f_2}\right] \times h$	1/2
	$= 30 + \left[\frac{12 - 7}{24 - 7 - 5} \times 10 \right]$	

	$= 30 + \left[\frac{5}{12} \times 10\right]$ $= 30 + \frac{50}{12} = 30 + 4.16$ $= 34.17$	1
22.	Let P, Q, R and S be point of contact.	
	s D Q C	1/2
	AP = AS $BP = BQ$ $CQ = CR$ Tan gents drawn from external point of circle	1/2
	DS = DR $AB + CD = AP + BP + CR + RD$	
	= AS + BQ + CQ + DS	
	= AS + DS + BQ + CQ	
	= AD + BC	1
	Hence proved.	
	(OR)	
	Perimeter of $\triangle ABC = AB + BC + AC$	1/2
	= AB + BD + CD + AC	
	= AB + BP + CQ + AC	14
	[Since $BD = BP$ and $CD = CQ$]	1/2

	= AP + AQ	
	= 2AP [AP = AQ, Tangents drawn from	1/2
	external point]	
	$=2\times12$	
	= 24 cm.	1/2
23.	Number of small cubes made = $\frac{\text{Volume of cube of side } 10 \text{ cm}}{\text{Volume of cube of side } 2 \text{ cm}}$	1
	$= \frac{10 \times 10 \times 10}{2 \times 2 \times 2} = 125$ 125 cubes can be made.	1
24.	Given DE AC $BPT \Rightarrow \frac{BE}{EC} = \frac{BD}{AD} \qquad \dots \dots 1$ $and, DF AC$ $By BPT \Rightarrow \frac{BF}{FE} = \frac{BD}{AD} \qquad \dots \dots 2$	1/2
	FE AD From 1 and 2 $ \frac{BE}{EC} = \frac{BF}{FE} $ Hence proved.	1
25.	Let $5+2\sqrt{7}$ be rational. So $5+2\sqrt{7}=\frac{a}{b}$, where a' and b' are integers $b\neq 0$	1/2

	$2\sqrt{7} = \frac{a}{b} - 5$	
	$2\sqrt{7} = \frac{a}{b} - 5$ $2\sqrt{7} = \frac{a - 5b}{5}$	
	$\sqrt{7} = \frac{a - 5b}{2b}$	1/2
	Since 'a' and 'b' are integers a – 5b is also an integer.	
	$\frac{a-5b}{2b}$ is rational. So RHS is rational. LHS should be	
	rational. but it is given that $\sqrt{7}$ is irrational .Our assumption	
	is wrong. So $5+2\sqrt{7}$ is an irrational number.	1
	(OR)	
	$12^{n} = (2 \times 2 \times 3)^{n}$ If a number has to and with digit 0. It should have prime factors 2 and 5. By fundamental theorem of arithmetic,	1
	$12^{\rm n}=(2\times2\times3)^{\rm n}$	
	It doesn't have 5 as prime factor. So 12 ⁿ cannot end with digit 0.	1
26.	Given A, B and C are interior angles of ΔABC	
	So $A + B + C = 180$	
	B + C = 180 - A	1
	$\frac{B+C}{2} = \frac{180-A}{2} = 90 - \frac{A}{2}$	
	$\frac{B+C}{2} = 90 - \frac{A}{2}$	

	$\cot\left(\frac{B+C}{2}\right) = \cot\left(90 - \frac{A}{2}\right)$ $\cot\left(\frac{B+C}{2}\right) = \tan\frac{A}{2}$	1
	SECTION – C	
27.	Given,	
	Radius of circle $r = 6\sqrt{2}$ $OA = OB = OQ = 6\sqrt{2} \text{ cm}$	
	In \triangle OPQ,	
	$(OP)^2 + (PQ)^2 = (OQ)^2$ $2(OP)^2 = (6\sqrt{2})^2$	9
	a = op = 6 cm	1
	Area of the shaded region = ar (quadrant, with $r = 6\sqrt{2}$) – ar (square with side 6 cm)	1
	$= \left[\frac{1}{4}\pi \times r^2\right] - a^2$	
	$= \left[\frac{1}{4} \times 3.14 \times \left(6\sqrt{2}\right)^2\right] - 6^2$	
	= [18 x 3.14] - 36 = 56.52 - 36 $= 20.52cm2(app)$	1

28.	For correct construction of Δ ABC	
	$AB = 5 \text{ cm}, BC = 6 \text{ cm}, \angle B = 60^{\circ}$	1
	A'B C' is required similar Δ .	
	A' B C' is similar to ABC	
	$\frac{A'B}{AB} = \frac{BC'}{BC} = \frac{A'C'}{AC} = \frac{3}{4}$	
	For correct construction of similar	
	triangle with scale factor 3/4	2
	OR	
	OR .	

	For correct construction of given circle	
	OP = 7cm, $OA = OB = 3.5 cm$.	1
	PA and PB are required tangents to the circle with centre O.	
	For correct construction of tangents	2
29.	LHS: $\frac{2\cos^{3}\theta - \cos\theta}{\sin\theta - 2\sin^{3}\theta} = \frac{\cos\theta \left[2\cos^{2}\theta - 1\right]}{\sin\theta \left[1 - 2\sin^{2}\theta\right]}$	1
	$=\frac{\cot\theta\Big[2\big(1-\sin^2\theta\big)-1\Big]}{1-2\sin^2\theta}$	1
30.	$= \frac{\cot \theta \left[2 - 2\sin^2 \theta - 1\right]}{\left(1 - 2\sin^2 \theta\right)} = \frac{\cot \theta \left[1 - 2\sin^2 \theta\right]}{1 - 2\sin^2 \theta}$ $= \cot \theta$ Let the fraction be $\frac{x}{\theta}$ as per the question,	1
	$\frac{x-1}{y} = \frac{1}{3}$	
	3x - 3 = y	
	$3x - y = 3 \qquad \dots \dots$	1
	and, $\frac{x}{y+8} = \frac{1}{4}$	
	4x = 8 + y	
	$4x - y = 8 \qquad \dots \dots$	1/2
	By elimination,	

$\Theta \frac{3x - y = 3}{4x - y = 8}$ $-x = -5$ $x = 5$ $Put \ x = 5 \ in 1$ $15 - y = 3$ $y = 12$ $\therefore The required fraction is \frac{5}{12}$	1 + ½
Let the present age of son be 'x' years $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1
As per question, 3x + 6 = 10 + 2(x + 3) 3x + 6 = 10 + 2x + 6 x = 10 Father's present age = $3x + 3$ $= 3 \times 10 + 3 = 33$	1

	\therefore Present age of son = 10 years	
	Present age of father = 33 years	1
31.	Required number = HCF $[870 - 3, 258 - 3]$	1
	= HCF [867, 255]	
	$867 = 255 \times 3 + 102$ (by EDL)	
	$255 = 102 \times 2 + 51$	
	$102 = 51 \times 2$	
	HCF = 51	
	∴ Required number = 51	2
32.	Y axis divides the line segment . Any point on y – axis is of the	
	form (o, y)	1/2
	As per the question	
	K 1	
	(6, -4) (0,y) (-2,-7)	
	X1 Y1 X2 Y2	
	As per section formula,	
	$P(x,y) = \left(\frac{kx_2 + x_1}{k+1}, \frac{ky_2 + y_1}{k+1}\right)$	1/2

33.	Given: $a = 54$	1
	$(\sqrt{106})^2 + (\sqrt{106})^2 = (\sqrt{212})^2 \cdot 106 + 106 = 212$ $\therefore ABC \text{ is an isosceles right angled } \Delta.$	1
	$AB^2 + BC^2 = AC^2$	
	(by Pythagoras theorem)	1 + ½
	$BC = \sqrt{5^2 + 9^2} = \sqrt{25 + 81} = \sqrt{106}$ $CA = \sqrt{4^2 + 14^2} = \sqrt{16 + 196} = \sqrt{212}$	
	$AB = \sqrt{9^2 + 5^2} = \sqrt{81 + 25} = \sqrt{106}$	
	OR) Distance between 2 points $ = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2} $ $ (x_1, y_1) (x_2, y_2) $	1/2
	$\therefore Point of intersection \left(0, \frac{-25}{4}\right)$	1
	$y = \frac{-7k - 4}{k + 1} = \frac{-21 - 4}{4} = \frac{-25}{4}$	
	∴ Ratio3:1	1
	k = 3	
	2k = 6	
	$ \begin{array}{c} \kappa + 1 \\ -2k + 6 = 0 \end{array} $	
	$\frac{-2k+6}{k+1} = 0$	
	$=\left(\frac{-2k+6}{k+1},\frac{-7k-4}{k+1}\right)$	

	$d = -3 \qquad n = ?$	
	$a_n = 0 S_n = ?$	
	$a_n = a + (n-1)d = 0$	1/2
	54 + (n-1)(-3) = 0	
	(n-1)(-3) = -54	
	(n-1)=18	
	n = 19	1
_	$S_n = \frac{n}{2} [a + a_n]$	1/2
	$S_{19} = \frac{19}{2} [54 + 0] = 19 \times 27 = 513$	
	$n = 19, S_n = 513$	1
34.	(i) P(to pick a marble from the bag) = P(spinner stops an even	1/2
	number)	
	$A = \{2, 4, 6, 8, 10\}$	
	n(A) = 5	
	n(S) = 6	
	$\Rightarrow P(A) = \frac{n(A)}{n(S)} = \frac{5}{6}$	1

(ii) P(getting a prize) = P(bag contains 20 balls out of which 6
are black)

$$=\frac{6}{20}=\frac{3}{10}$$

1

1/2

SECTION - D

35. Let the sides of the two squares be x and y (x > Y) difference of

perimeter is = 32

$$4x - 4y = 32$$

$$X - y = 8 \implies y = x - 8$$

Sum of area of two squares = 544

1

$$x^2 + y^2 = 544$$

$$x^2 + (x - 8)^2 = 544$$

$$x^2 + x^2 + 64 - 16 x = 544$$

$$2x^2 - 16x = 480$$

$$\div 2$$
, $x^2 - 8x = 240$

$$x^2 - 8x - 240 = 0$$

$$(x-20)(x+12)=0$$

$$X = 20,-12$$

2

Side can't be negative.

So
$$x = 20$$

$$y = x - 8 = 20 - 8 = 12$$

.. Sides of squares are 20 cm,12cm

(OR)

Speed of boat = 18 km/hr

Let speed of the stream be =x km/hr

Speed of upstream = (18-x)km/hr

Speed of downstream = (18+x)km/hr

Distance = 24 km

$$Time = \frac{Distance}{Speed}$$

As per question,

$$\frac{24}{18-x} - \frac{24}{18+x} = 1$$

$$24\left[\frac{1}{18-x} - \frac{1}{18+x}\right] = 1$$

$$\frac{18+x-18+x}{(18-x)(18+x)} = \frac{1}{24}$$

$$\frac{2x}{324 - x^2} = \frac{1}{24}$$

$$324 - x^2 = 48x$$

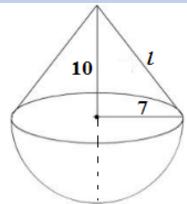
1

1

 $x^2 + 48x - 324 = 0$

$$(x+54)(x-6)=0$$

$$x = 6, -54$$


 $x = 6 \, km / hr$

Speed of stream = $6 \, km / hr$

2

36. Volume of the toy = Volume of cone + Volume of

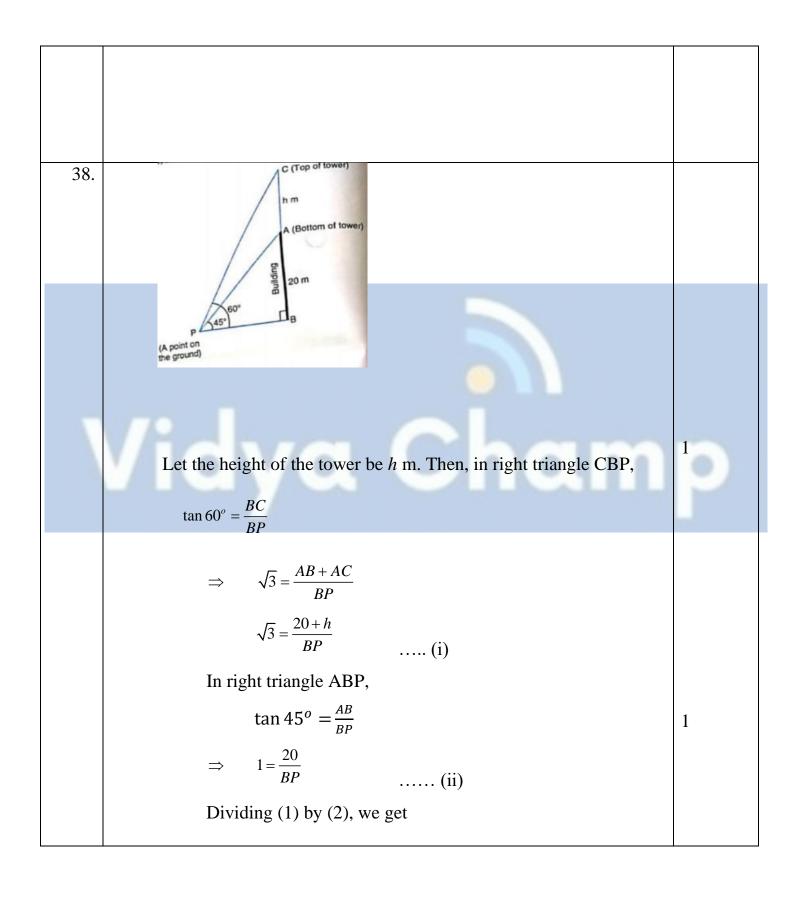
hemisphere

Cone:
$$r = 7 \text{ cm}$$

$$h = 10 \text{ cm}$$

Hemisphere: r = 7 cm

Volume of toy $= \frac{1}{3}\pi r^2 h + \frac{2}{3}\pi r^3$


1

	=	$\frac{1}{3}\pi r^2 \left[h + 2r \right]$			
	=	$\frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \left[10 + 14\right]$			
	=	$\frac{1}{3} \times 22 \times 7 \times 24$			
	Volume of toy =	1232 cm ³			1
	Area of coloured	l sheet required	to cover th	e toy = C	SA 1/2
	of cone + CSA o	of hemisphere			
	=	$\pi r l + 2\pi r^2$			
		$\pi r[l+2r]$ $\frac{22}{7} \times 7[12.2+14]$ 7^2			mp
	$l^2 = 100 +$	- 49			
	$l = \sqrt{149}$				
	<i>l</i> = 12.2				1/2
	=	22×26.2			
	=	$576.4cm^2$			1
37.	Age	No. of persons	Class	CF	
	0 – 10	5	Less than 10	5	
	10 – 2	0 15	Less than 20	20	

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$						
Coordinates to plot less than ogive: $(10, 5)$ $(20, 20)$ $(30, 40)$ $(40, 65)$ $(50, 80)$ $(60, 91)(70, 100)$ $N = 100, N/2 = 50 \text{Median} = 34$ $(50, 50)$ $(50, 50)$ $(60, 91)$ $(70, 100)$ $(50, 50)$ $(60, 91)$ $(70, 100)$ $(10, 5)$ $(10, $		20 – 30	20	Less than 30	40	
Coordinates to plot less than ogive: $(10, 5)$ $(20, 20)$ $(30, 40)$ $(40, 65)$ $(50, 80)$ $(60, 91)(70, 100)$ $N = 100, N/2 = 50 \text{Median} = 34$ $(50, 40)$ $(5$		30 – 40	25	Less than 40	65	
Coordinates to plot less than ogive: $(10, 5)$ $(20, 20)$ $(30, 40)$ $(40, 65)$ $(50, 80)$ $(60, 91)(70, 100)$ $N = 100, N/2 = 50 \text{Median} = 34$ $(50, 50)$ $(50$		40 – 50	15	Less than 50	80	
Coordinates to plot less than ogive: $(10, 5)$ $(20, 20)$ $(30, 40)$ $(40, 65)$ $(50, 80)$ $(60, 91)(70, 100)$ $N = 100, N/2 = 50 \text{Median} = 34$ $(50, 50)$ $(50$		50 - 60	11	Less than 60	91	
Coordinates to plot less than ogive: $(10, 5)$ $(20, 20)$ $(30, 40)$ $(40, 65)$ $(50, 80)$ $(60, 91)(70, 100)$ $N = 100$, $N/2 = 50$ Median = 34 $(50, 10)$ $($			g			
(40, 65) (50, 80) (60, 91)(70, 100) $N = 100, N/2 = 50 Median = 34$ $(70, 100)$ $(7$		00 70	,	Less than 70	100	
(40, 65) (50, 80) (60, 91)(70, 100) $N = 100, N/2 = 50 Median = 34$ $(50, 91) (60, 91) (60, 91)$ $(50, 90) (50, 90)$ $($						
(40, 65) (50, 80) (60, 91)(70, 100) $N = 100, N/2 = 50 Median = 34$ $(70, 100)$ $(7$	Coordinates	s to plot les	s than ogive:	(10.5)	(20, 20) (3	80. 40)
N = 100, $N/2 = 50$ Median = 34		_	_		(20, 20) (2	2
100 100 100 100 100 (60, 10) 100 (10, 15) (10, 1	(40, 65) (50)	0, 80) (60), 91)(70, 100))		
100 ((50, 50) (50, 50	N = 1	00 NI/2 -	50 Madian	_ 24		
10 ((60,91) 30 (50,80) 31 (0 (40,65)) 32 (40,65) 33 (40 (10,5)) 10 ((10,5)) Mediam 3 (1	N = 1	00, N/2 =	= 50 Median	= 34		
10 ((60, 91) 30			111111			
(60, 91) (50, 80) (40, 65) (40, 65) (10 (10, 5) Median 3 4		A				
(60, 91) 30 40 (50, 80) 31 40 (40, 65) 32 40 (10, 5) Median 34 0 10 20 30 40 50 66 70 80 90 100						
(60, 91) 30 40 (50, 80) 31 40 (40, 65) 32 40 (10, 5) Median 34 0 10 20 30 40 50 66 70 80 90 100						
(60, 91) 30 40 (50, 80) 31 40 (40, 65) 10 (10, 5) Median 34 0 10 20 30 40 50 66 70 80 90 100	1 10	00		(10,100)		
30			106			
(10,5) Median 3 9	30					
(40,65) 3 40 (30,40) 10 (10,5) Median 34 20 10 20 10 20 10 20 10 20 10 20 2	\$ 6	20	(50,80	41111		
2 60 3 40 4 30 3 20 (20,20) 10 (10,5) Median 34 0 10 20 30 40 50 60 70 80 90 100	3 -	10	(4. 65)			
10 (10,5) Median 3 h 20 10 20 30 40 50 60 70 80 90 100	2	0	(40,2)			
18 40 (30,40) 20 (20,20) 10 (10,5) Median 34 0 10 20 30 40 50 60 70 80 90 100						
20 (20,20) 10 (10,5) Median 34 0 10 20 30 40 50 60 70 80 90 100	2	50	$-\mu$			
20 (20,20) 10 (10,5) 1 Median 34 0 10 20 30 40 50 60 70 80 90 100	20	40	/(30,40)			
20 (20,20) 10 (10,5) 1 Median 34 0 10 20 30 40 50 60 70 80 90 100	ž	30	7111111			
10 (10,5) Median 34 0 10 20 30 40 50 60 70 80 90 100	3					
0 10 20 30 40 50 60 70 80 90 100		20	(20,20)		11111	
0 10 20 30 40 50 60 70 80 90 100	4-1	10	e)! Media	u 34	+ + + + + + + + + + + + + + + + + + + +	
0 10 20 30 40 50 60 70 80 70 100		116				2
upper limis		0 10 2	0 30 40 50 6	0 70 80 90	100	
			upper di	mis -	-	
1 · · · · · · · · · · · · · · · · · · ·						

Number of wickets 20 – 60 60 – 100	Number of bowlers (f)	xi	$u_i = \frac{x_i - a}{h}$	u _i f _i		
wickets 20 - 60 60 - 100	bowlers (f)	xi	$u_{\cdot} = \frac{x_i - a}{\cdot}$	u _i f _i		
60 – 100	7		h			
	,	40	-3	-21		
	5	80	-2	-10		
100 - 140	16	120	-1	-16		
140 - 180	12	160	0	0		
180 – 220	2	200	1	2		
220 – 260	3	240	2	6		
	45			-39	1	
$Mean x = a + \left(\frac{\sum_{i=1}^{n} a_i}{\sum_{i=1}^{n} a_i}\right)$	$\sum_{i=1}^{n} f_i u_i \times h$					
=160+	$\left(\frac{\cancel{39}-13}{\cancel{45}\cancel{9}3}\times\cancel{40}\right)$					
=160+	$\left(\frac{-104}{3}\right)$					
_						
x = 125.33	3				1	
	Assumed more Class size h $Mean $		Assumed mean $a = 160$ Class size $h = 40$ $Mean \bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$ $= 160 + \left(\frac{-39 - 13}{\cancel{45}\cancel{9}\cancel{3}} \times \cancel{40}\right)$ $= 160 + \left(\frac{-104}{\cancel{3}}\right)$ $= 160 - 34.66 \dots$ = 160 - 34.67	Assumed mean $a = 160$ Class size $h = 40$ $Mean \bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$ $= 160 + \left(\frac{\cancel{-39} - 13}{\cancel{45}\cancel{/3}} \times \cancel{\cancel{40}}\right)$ $= 160 + \left(\frac{-104}{3}\right)$ $= 160 - 34.66 \dots$ = 160 - 34.67	Assumed mean $a = 160$ Class size $h = 40$ $Mean \bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$ $= 160 + \left(\frac{-39 - 13}{\cancel{45}\cancel{9}\cancel{3}} \times \cancel{40}\right)$ $= 160 + \left(\frac{-104}{3}\right)$ $= 160 - 34.66 \dots$ = 160 - 34.67	Assumed mean $a = 160$ Class size $h = 40$ $Mean \bar{x} = a + \left(\frac{\sum f_i u_i}{\sum f_i} \times h\right)$ $= 160 + \left(\frac{-39 - 13}{\cancel{45} \cancel{9} \cancel{3}} \times \cancel{40}\right)$ $= 160 - 34.66 \dots$ = 160 - 34.67 = 125.33

Te	o find median,			
N	umber of workers CI	No. of bowlers (f)	CF	
	20 - 60	7	7	
	60 - 100	5	12	
	100 - 140	16	28	
	140 - 180	12	40	
	180 – 220	2	42	
	220 – 260	3	<u>45</u>	1
	N:	=45, $> N/$	2 → > 22.5	1
	. 1. 1 100	1.40		
M	ledian class: 100 -	- 140		
	F = 16 $CF = 12$	h = 40 $1 = 100$		np
	$Median = \ell + \left(\frac{N/2}{2}\right)$	$\left(\frac{C-CF}{f} \times h\right)$		
	$=100+\left(\frac{4!}{2}\right)$	$\frac{5}{264} \times 4010$		
		$00 + \frac{105}{4} = 100 + 26.25$ 26.25		
				1

	$\sqrt{3} = \frac{20+h}{20}$	
	$\Rightarrow 20\sqrt{3} = 20 + h$	
	$\Rightarrow h = 20\sqrt{3} - 20$	
	$\Rightarrow h = 20\left(\sqrt{3} - 1\right)$	
	Hence, the height of the tower $20(\sqrt{3}-1)m = 20(1.73-1)=20 \text{ x}$	
	0.73= 14.6 m	2
39.	For correct Given, to prove, Construction and figure	½ x 4 =
		2
	For Correct proof	2
	Pythagoras theorem proof: Refer NCERT text book Pg: No. 145	\sim
40.	$p(x) = 2x^4 - x^3 - 11 x^2 + 5x + 5$	
	Two zeros are $\sqrt{5}$ and $-\sqrt{5}$	
	$\therefore x = \sqrt{5} x = -\sqrt{5}$	
	$(x-\sqrt{5})(x+\sqrt{5}) = x^2-5$ is a factor of $p(x)$	
	To find other zeroes	1
	$ \begin{array}{r} 2x^2 - x - 1 \\ x^2 - 5 & 2x^4 - x^3 - 11x^2 + 5x + 5 \end{array} $	
	- + 2x ⁴ - 10x ²	
	$ \begin{array}{r} -x^3 - x^2 + 5x \\ +x^3 - x^3 + 5x \end{array} $	
	$-x^2 + 5$ $-x^2 + 5$	
	0	

	-1is a factor		2
	x + x - 1 = 0		
	1) + 1 (x - 1) = 0		
(2x+1)	(x-1)=0		
x = -1/2	x = 1		1
: Other	zeroes are -1/2, 1		
	(OR)		
x ² - 4x + 8	2x + 5 2x ³ - 3x ² + 6x + 7 - + -		
	2x ³ - 8x ² + 16x		
	$5x^{2} - 10x + 7$ $5x^{2} - 20x + 40$ $10x - 33$	nam	3
•			