QUADRILATERALS

EXERCISE 8.1

- **Q.1.** The angles of a quadrilateral are in the ratio 3:5:9:13. Find all the angles of the quadrilateral.
- **Sol.** Suppose the measures of four angles are 3x, 5x, 9x and 13x.

$$\therefore 3x + 5x + 9x + 13x = 360^{\circ} \quad [Angle sum property of a quadrilateral]$$

$$\Rightarrow 30x = 360^{\circ}$$

$$\Rightarrow x = \frac{360}{30} = 12^{\circ}$$

$$\Rightarrow 3x = 3 \times 12^{\circ} = 36^{\circ}$$

$$5x = 5 \times 12^{\circ} = 60^{\circ}$$

$$9x = 9 \times 12^{\circ} = 108^{\circ}$$

$$13x = 13 \times 12^{\circ} = 156^{\circ}$$

: the angles of the quadrilateral are 36°, 60°, 108° and 156° Ans.

- **Q.2.** If the diagonals of a parallelogram are equal, then show that it is a rectangle.
- **Sol. Given :** ABCD is a parallelogram in which AC = BD.

To Prove : ABCD is a rectangle.

Proof : In
$$\triangle ABC$$
 and $\triangle ABD$

$$AB = AB$$

[Common]

D

$$BC = AD$$

[Opposite sides of a parallelogram]

$$AC = BD$$

[Given]

$$\therefore \Delta ABC \cong \Delta BAD$$

[SSS congruence]

Since, ABCD is a parallelogram, thus,

$$\angle ABC + \angle BAD = 180^{\circ}$$
 ...(ii)

[Consecutive interior angles]

$$\angle ABC + \angle ABC = 180^{\circ}$$

$$\therefore$$
 2 \angle ABC = 180° [From (i) and (ii)]

$$\Rightarrow$$
 $\angle ABC = \angle BAD = 90^{\circ}$

This shows that ABCD is a parallelogram one of whose angle is 90°.

Hence, ABCD is a rectangle. **Proved.**

- **Q.3.** Show that if the diagonals of a quadrilateral bisect each other at right angles, then it is a rhombus.
- **Sol. Given**: A quadrilateral ABCD, in which diagonals AC and BD bisect each other at right angles.

To Prove : ABCD is a rhombus.

Proof: In $\triangle AOB$ and $\triangle BOC$

AO = OC

[Diagonals AC and BD bisect each other]

∠AOB = ∠COB

 $[Each = 90^{\circ}]$

BO = BO

[Common]

 $\therefore \Delta AOB \cong \Delta BOC$

[SAS congruence]

AB = BC

...(i) [CPCT]

Since, ABCD is a quadrilateral in which

$$AB = BC$$

[From (i)]

Hence, ABCD is a rhombus.

 $[\cdot]$ if the diagonals of a quadrilateral bisect each other, then it is a parallelogram and opposite sides of a parallelogram are equal] **Proved.**

Q.4. Show that the diagonals of a square are equal and bisect each other at right angles.

Sol. Given: ABCD is a square in which AC and BD are diagonals.

To Prove : AC = BD and AC bisects BD at right angles, i.e. $AC \perp BD$.

AO = OC, OB = OD

Proof: In $\triangle ABC$ and $\triangle BAD$,

AB = AB

[Common]

BC = AD

[Sides of a square]

 $\angle ABC = \angle BAD = 90^{\circ}$

[Angles of a square]

 $\Delta ABC \cong \Delta BAD$

[SAS congruence]

 \Rightarrow AC = BD

[CPCT]

Now in $\triangle AOB$ and $\triangle COD$,

AB = DC

[Sides of a square]

 $\angle AOB = \angle COD$

[Vertically opposite angles]

 $\angle OAB = \angle OCD$ $\triangle AOB \cong \triangle COD$ [Alternate angles] [AAS congruence]

 $\angle AO = \angle OC$

[CPCT]

Similarly by taking $\triangle AOD$ and $\triangle BOC$, we can show that OB = OD.

In $\triangle ABC$, $\angle BAC + \angle BCA = 90^{\circ}$

$$\Rightarrow$$
 2\times BAC = 90° [\times BAC = ...]
 \Rightarrow \times BCA = 45° or \times BCO = 45°

$$[\angle BAC = \angle BCA, \text{ as } BC = AD]$$

C: :1 1 (CDC) 450

Similarly $\angle CBO = 45^{\circ}$

In ΔBCO.

$$\angle BCO + \angle CBO + \angle BOC = 180^{\circ}$$

$$\Rightarrow 90^{\circ} + \angle BOC = 180^{\circ}$$

$$\Rightarrow \angle BOC = 90^{\circ}$$

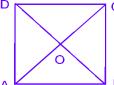
$$\Rightarrow$$
 BO \perp OC \Rightarrow BO \perp AC

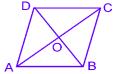
Hence, AC = BD, $AC \perp BD$, AO = OC and OB = OD. **Proved.**

Q.5. Show that if the diagonals of a quadrilateral are equal and bisect each other at right angles, then it is a square.

Sol. Given: A quadrilateral ABCD, in which diagonals AC and BD are equal and bisect each other at right angles,

To Prove : ABCD is a square.





Proof: Since ABCD is a quadrilateral whose diagonals bisect each other, so it is a parallelogram. Also, its diagonals bisect each other at right angles, therefore, ABCD is a rhombus.

$$\Rightarrow$$
 AB = BC = CD = DA

[Sides of a rhombus]

In $\triangle ABC$ and $\triangle BAD$, we have

$$AB = AB$$

[Common]

$$BC = AD$$

[Sides of a rhombus] [Given]

$$AC = BD$$

$$\therefore \qquad \Delta ABC \cong \Delta BAD$$

[SSS congruence]

[CPCT]

But,
$$\angle ABC + \angle BAD = 180^{\circ}$$

[Consecutive interior angles]

$$\angle ABC = \angle BAD = 90^{\circ}$$

$$\angle A = \angle B = \angle C = \angle D = 90^{\circ}$$

[Opposite angles of a ||gm]

⇒ ABCD is a rhombus whose angles are of 90° each.

Hence, ABCD is a square. Proved.

- **Q.6.** Diagonal AC of a parallelogram ABCD bisects $\angle A$ (see Fig.). Show that
 - (i) it bisects $\angle C$ also,
 - (ii) ABCD is a rhombus.

Given: A parallelogram ABCD, in which A diagonal AC bisects $\angle A$, i.e., $\angle DAC = \angle BAC$.

To Prove: (i) Diagonal AC bisects

 $\angle C$ i.e., $\angle DCA = \angle BCA$

(ii) ABCD is a rhomhus.

Proof:

(i)
$$\angle DAC = \angle BCA$$

But,
$$\angle DAC = \angle BAC$$

Hence, AC bisects ∠DCB

Or, AC bisects $\angle C$ Proved.

(ii) In ΔABC and ΔCDA

$$AC = AC$$

[Given]

[Given]

and
$$\angle BCA = \angle DAC$$

[Proved above]

[Alternate angles]

[Alternate angles]

$$\therefore$$
 $\triangle ABC \cong \triangle ADC$

[ASA congruence]

$$\therefore$$
 BC = DC

[CPCT]

But
$$AB = DC$$

[Given]

$$\therefore AB = BC = DC = AD$$

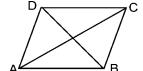
Hence, ABCD is a rhombus **Proved.**

[∵ opposite angles are equal]

- **Q.7.** ABCD is a rhombus. Show that diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$.
- **Sol. Given:** ABCD is a rhombus, i.e.,

$$AB = BC = CD = DA.$$

To Prove:
$$\angle DAC = \angle BAC$$
,



$$\angle ADB = \angle CDB$$
, $\angle ABD = \angle CBD$

Proof: In $\triangle ABC$ and $\triangle CDA$, we have

$$AB = AD$$

[Sides of a rhombus]

$$AC = AC$$

[Common]

$$BC = CD$$

[Sides of a rhombus]

D

$$\triangle ABC \cong \triangle ADC$$

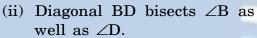
 $\angle BCA = \angle DCA$

[SSS congruence]

Similarly, $\angle ADB = \angle CDB$ and $\angle ABD = \angle CBD$.

Hence, diagonal AC bisects $\angle A$ as well as $\angle C$ and diagonal BD bisects $\angle B$ as well as $\angle D$. **Proved.**

- **Q.8.** ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$. Show that:
 - (i) ABCD is a square (ii) diagonal BD bisects $\angle B$ as well as $\angle D$.
- **Sol. Given :** ABCD is a rectangle in which diagonal AC bisects $\angle A$ as well as $\angle C$.



(i) In \triangle ABC and \triangle ADC, we have

$$\angle BAC = \angle DAC$$
 [Given]
 $\angle BCA = \angle DCA$ [Given]

$$AC = AC$$

$$\therefore$$
 $\triangle ABC \cong \triangle ADC$ [ASA congruence]

$$\therefore$$
 AB = AD and CB = CD [CPCT]

But, in a rectangle opposite sides are equal,

i.e.,
$$AB = DC$$
 and $BC = AD$

$$\therefore$$
 AB = BC = CD = DA

Hence, ABCD is a square **Proved.**

(ii) In \triangle ABD and \triangle CDB, we have

$$AD = CD$$

$$AB = CD$$
 [Sides of a square]

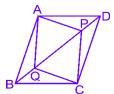
$$BD = BD$$
 [Common]

$$\therefore$$
 $\triangle ABD \cong \triangle CBD$ [SSS congruence]

So,
$$\angle ABD = \angle CBD$$
 $\angle ADB = \angle CDB$ [CPCT]

Hence, diagonal BD bisects $\angle B$ as well as $\angle D$ **Proved.**

- **Q.9.** In parallelogram ABCD, two points P and Q are taken on diagonal BD such that DP = BQ (see Fig.). Show that :
 - (i) $\Delta APD \cong \Delta CQB$
 - (ii) AP = CQ
 - (iii) $\Delta AQB \cong \Delta CPD$
 - (iv) AQ = CP
 - (v) APCQ is a parallelogram



Sol. Given: ABCD is a parallelogram and P and Q are points on diagonal BD such that DP = BQ.

To Prove : (i) $\triangle APD \cong \triangle CQB$

- (ii) AP = CQ
- (iii) $\triangle AQB \cong \triangle CPD$
- (iv) AQ = CP
- (v) APCQ is a parallelogram

Proof: (i) In \triangle APD and \triangle CQB, we have

$$DP = BQ$$
 [Given]

$$\angle ADP = \angle CBQ$$
 [Alternate angles]

$$\therefore$$
 $\triangle APD \cong \triangle CQB$ [SAS congruence]

(ii)
$$\therefore$$
 AP = CQ [CPCT]

(iii) In $\triangle AQB$ and $\triangle CPD$, we have

$$DP = BQ$$
 [Given]

$$\angle ABQ = \angle CDP$$
 [Alternate angles]

$$\therefore \Delta AQB \cong \Delta CPD$$
 [SAS congruence]

(iv)
$$\therefore$$
 AQ = CP [CPCT]

(v) Since in APCQ, opposite sides are equal, therefore it is a parallelogram. Proved.

Q.10. ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on diagonal BD (see Fig.). Show that

(ii)
$$AP = CQ$$

Sol. Given: ABCD is a parallelogram and AP and CQ are perpendiculars from vertices A and C on BD.

To Prove : (i) $\triangle APB \cong \triangle CQD$

$$(ii)$$
 AP = CQ

(i) In \triangle APB and \triangle CQD, we have **Proof:**

$$\angle ABP = \angle CDQ$$

[Alternate angles]

$$[Each = 90^{\circ}]$$

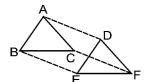
$$\therefore \Delta APB \cong \Delta CQD$$

[ASA congruence]

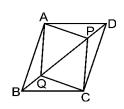
(ii) So,
$$AP = CQ$$

[CPCT] Proved.

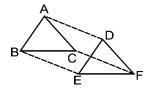
Q.11. In $\triangle ABC$ and $\triangle DEF$, AB = DE, $AB \mid \mid DE$, BC $= EF \ and \ BC \ || \ EF. \ Vertices \ A, \ B \ and \ C \ are$ joined to vertices D, E and F respectively (see Fig.). Show that



- (i) quadrilateral ABED is a parallelogram
- (ii) quadrilataeral BEFC is a parallelogram
- (iii) $AD \mid\mid CF \text{ and } AD = CF$
- (iv) quadrilateral ACFD is a parallelogram
- (v) AC = DF
- (vi) $\triangle ABC \equiv \triangle DEF$



Sol. Given: In DABC and DDEF, AB = DE, AB | | DE, BC = EF and BC | | EF. Vertices A, B and C are joined to vertices D, E and F.



To Prove: (i) ABED is a parallelogram

- (ii) BEFC is a parallelogram
- (iii) AD \parallel CF and AD = CF
- (iv) ACFD is a parallelogram
- (v) AC = DF
- (vi) $\triangle ABC \cong \triangle DEF$
- **Proof:** (i) In quadrilateral ABED, we have

$$AB = DE$$
 and $AB \parallel DE$. [Given]

 \Rightarrow ABED is a parallelogram.

[One pair of opposite sides is parallel and equal]

(ii) In quadrilateral BEFC, we have

$$BC = EF$$
 and $BC \mid\mid EF$

[Given]

 \Rightarrow BEFC is a parallelogram.

[One pair of opposite sides is parallel and equal]

(iii) BE = CF and BE | | BECF [BEFC is parallelogram]
AD = BE and AD | | BE [ABED is a parallelogram]

$$\Rightarrow$$
 AD = CF and AD | | CF

(iv) ACFD is a parallelogram.

[One pair of opposite sides is parallel and equal]

- (v) AC = DF [Opposite sides of parallelogram ACFD]
- (vi) In \triangle ABC and \triangle DEF, we have

$$AB = DE$$

[Given]

$$BC = EF$$

[Given]

$$AC = DF$$

[Proved above]

$$\therefore \Delta ABC \cong \Delta DEF$$

[SSS axiom] Proved.

Q.12. ABCD is a trapezium in which AB

$$|| CD \ and \ AD = BC \ (see Fig.).$$
 Show that

now that

(i)
$$\angle A = \angle B$$

(ii)
$$\angle C = \angle D$$

(iii)
$$\Delta ABC \cong \Delta BAD$$

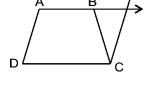
$$(iv)$$
 diagonal $AC = diagonal \ BD$

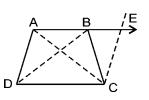
To Prove : (i)
$$\angle A = \angle B$$

(ii)
$$\angle C = \angle D$$

(iii)
$$\triangle ABC \cong \triangle BAD$$

Constructions: Join AC and BD. Extend AB and draw a line through C parallel to DA meeting AB produced at E.



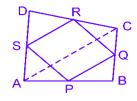


```
Proof:
                 (i) Since
                                 AB || DC
                      \Rightarrow
                                  AE || DC
                                                      ...(i)
                                 AD || CE
                                                       ...(ii)
                                                                       [Construction]
                      and
                      ⇒ ADCE is a parallelogram
                                                                  Opposite pairs of
                                                                   sides are parallel
                         \angle A + \angle E = 180^{\circ}
                                                       ...(iii)
                                                              [Consecutive interior angles]
                      \angle B + \angle CBE = 180^{\circ}
                                                       ...(iv)
                                                                         [Linear pair]
                                 AD = CE
                                                       ...(v) [Opposite sides of a ||gm]
                                 AD = BC
                                                       ...(vi)
                                                                                [Given]
                                  BC = CE
                                                                 [From (v) and (vi)]
                                  \angle E = \angle CBE
                      \Rightarrow
                                                       ...(vii)
                                                                   [Angles opposite to
                                                                          equal sides]
                      \therefore \angle B + \angle E = 180^{\circ}
                                                     ...(viii) [From (iv) and (vii)
                      Now from (iii) and (viii) we have
                         \angle A + \angle E = \angle B + \angle E
                                 \angle A = \angle B Proved.
                 (ii)
                         \angle A + \angle D = 180^{\circ}
                                                          [Consecutive interior angles]
                         \angle B + \angle C = 180^{\circ}
                      \Rightarrow \angle A + \angle D = \angle B + \angle C
                                                                        [\cdot : \angle A = \angle B]
                                 \angle D = \angle C
                      \Rightarrow
                                  \angle C = \angle D Proved.
                      Or
                (iii) In \triangle ABC and \triangle BAD, we have
                              AD = BC
                                              [Given]
                               \angle A = \angle B
                                              [Proved]
                               AB = CD
                                               [Common]
                          \triangle ABC \cong \triangle BAD
                                                                            [ASA congruence]
                (iv) diagonal AC = diagonal BD
                                                                              [CPCT] Proved.
```

QUADRILATERALS

EXERCISE 8.2

Q.1. ABCD is a quadrilateral in which P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. (see Fig.). AC is a diagonal. Show that:

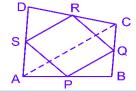


(i)
$$SR \mid\mid AC \text{ and } SR = \frac{1}{2}AC$$

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram.

Given: ABCD is a quadrilateral in which P, Q, R and S are mid-points of AB, BC, CD and DA. AC is a diagonal.



To Prove: (i) SR || AC and SR = $\frac{1}{2}$ AC

(ii)
$$PQ = SR$$

(iii) PQRS is a parallelogram

Proof: (i) In $\triangle ABC$, P is the mid-point of AB and Q is the mid-point of BC.

∴ PQ || AC and PQ =
$$\frac{1}{2}$$
AC ...(1)

[Mid-point theorem]

In $\triangle ADC$, R is the mid-point of CD and S is the mid-point of AD

$$\therefore$$
 SR || AC and SR = $\frac{1}{2}$ AC ...(2)

[Mid-point theorem]

- (ii) From (1) and (2), we get PQ || SR and PQ = SR
- (iii) Now in quadrilateral PQRS, its one pair of opposite sides PQ and SR is equal and parallel.

∴ PQRS is a parallelogram. **Proved.**

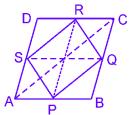
- **Q.2.** ABCD is a rhombus and P, Q, R and S are the mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rectangle.
- **Sol. Given :** ABCD is a rhombus in which P, Q, R and S are mid points of sides AB, BC, CD and DA respectively :

To Prove: PQRS is a rectangle.

Construction: Join AC, PR and SQ.

Proof: In ∆ABC

P is mid point of AB [Given] Q is mid point of BC [Given]



 \Rightarrow PQ || AC and PQ = $\frac{1}{2}$ AC ...(i) [Mid point theorem]

Similarly, in ΔDAC,

SR || AC and SR =
$$\frac{1}{2}$$
AC ...(ii)

From (i) and (ii), we have PQ | | SR and PQ = SR

 \Rightarrow PQRS is a parallelogram

[One pair of opposite sides is parallel and equal]

Since ABQS is a parallelogram

 \Rightarrow AB = SQ [Opposite sides of a || gm]

Similarly, since PBCR is a parallelogram.

 \Rightarrow BC = PR

Thus, SQ = PR [AB = BC]

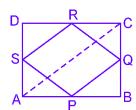
Since SQ and PR are diagonals of parallelogram PQRS, which are equal.

 \Rightarrow PQRS is a rectangle. **Proved.**

- **Q.3.** ABCD is a rectangle and P, Q, R and S are mid-points of the sides AB, BC, CD and DA respectively. Show that the quadrilateral PQRS is a rhombus.
- **Sol. Given:** A rectangle ABCD in which P, Q, R, S are the mid-points of AB, BC, CD and DA respectively, PQ, QR, RS and SP are joined.

To Prove : PQRS is a rhombus.

Construction: Join AC



Proof: In $\triangle ABC$, P and Q are the mid-points of the sides AB and BC.

$$\therefore$$
 PQ || AC and PQ = $\frac{1}{2}$ AC

...(i) [Mid point theorem]

Similarly, in $\triangle ADC$,

SR || AC and SR =
$$\frac{1}{2}$$
 AC

...(ii)

From (i) and (ii), we get

$$PQ \mid \mid SR \text{ and } PQ = SR$$

...(iii)

Now in quadrilateral PQRS, its one pair of opposite sides PQ and SR is [From (iii)] parallel and equal

∴PQRS is a parallelogram.

Now
$$AD = BC$$

...(iv)

[Opposite sides of a rectangle ABCD]

$$\therefore \frac{1}{2} AD = \frac{1}{2} BC$$

$$\Rightarrow$$

$$AS = BQ$$

In $\triangle APS$ and $\triangle BPQ$

$$AP = BP$$

$$Ar = Dr$$

[: P is the mid-point of AB]

[Proved above]

$$AS = BQ$$

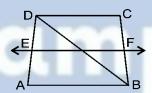
$$[Each = 90^{\circ}]$$

[SAS axiom]

$$\Delta APS \cong \Delta BPQ$$

PS = PQFrom (iii) and (v), we have

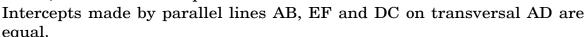
PQRS is a rhombus **Proved.**



- **Q.4.** ABCD is a trapezium inwhichAB || DC, BD is a diagonal and E is the mid-point of AD. A line is drawn through E parallel to AB intersecting BC at F (see Fig.). Show that F is the mid-point of BC.
- Sol. Given: A trapezium ABCD with AB | DC, E is the mid-point of AD and EF || AB.

To Prove : F is the mid-point of BC.

$$\Rightarrow$$
 AB, EF and DC are parallel.

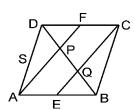


: Intercepts made by those parallel lines on transversal BC are also egual.

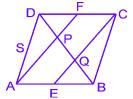
i.e.,
$$BF = FC$$

$$\Rightarrow$$
 F is the mid-point of BC.

Q.5. In a parallelogram ABCD, E and F are the mid-points of sides AB and CD respectively (see Fig.). Show that the line segments AF and EC trisect the diagonal BD.



Sol. Given: A parallelogram ABCD, in which E and F are mid-points of sides AB and DC respectively.



To Prove : DP = PQ = QB

Proof: Since E and F are mid-points of AB and DC respectively.

$$\Rightarrow$$
 AE = $\frac{1}{2}$ AB and CF = $\frac{1}{2}$ DC ...(i)

But,
$$AB = DC$$
 and $AB \parallel DC$...(ii)

[Opposite sides of a parallelogram]

$$\therefore$$
 AE = CF and AE || CF.

 \Rightarrow AECF is a parallelogram.

[One pair of opposite sides is parallel and equal]

In $\triangle BAP$,

E is the mid-point of AB

EQ || AP

 \Rightarrow Q is mid-point of PB

[Converse of mid-point theorem]

$$\Rightarrow$$
 PQ = QB ...(iii)

Similarly, in ΔDQC ,

P is the mid-point of DQ

$$DP = PQ$$
 ...(iv)

From (iii) and (iv), we have

$$DP = PQ = QB$$

or line segments AF and EC trisect the diagonal BD. Proved.

- **Q.6.** Show that the line segments joining the mid-points of the opposite sides of a quadrilateral bisect each other.
- **Sol. Given:** ABCD is a quadrilateral in which EG and FH are the line segments joining the mid-points of opposite sides. To Prove: EG and FH bisect each other.

Construction: Join EF, FG, GH, HE and AC.

Proof: In $\triangle ABC$, E and F are mid-points of AB and BC respectively.

$$\therefore EF = \frac{1}{2}AC \text{ and } EF \mid\mid AC \qquad ...(i)$$

In $\triangle ADC$, H and G are mid-points of AD and CD respectively.

∴ HG =
$$\frac{1}{2}$$
 AC and HG || AC ...(ii)

From (i) and (ii), we get

EF = HG and $EF \mid\mid HG$

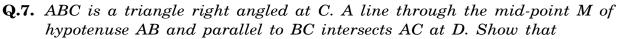
: EFGH is a parallelogram.

[: a quadrilateral is a parallelogram if its one pair of opposite sides is equal and parallel]

Now, EG and FH are diagonals of the parallelogram EFGH.

: EG and FH bisect each other.

[Diagonal of a parallelogram bisect each other] **Proved.**



- (i) D is the mid-point of AC.
- (ii) $MD \perp AC$

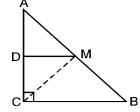
(iii)
$$CM = MA = \frac{1}{2}AB$$

Sol. Given: A triangle ABC, in which $\angle C = 90^{\circ}$ and M is the mid-point of AB and BC || DM.

To Prove: (i) D is the mid-point of AC [Given]

(ii) DM \perp BC

(iii)
$$CM = MA = \frac{1}{2}AB$$



Construction: Join CM.

Proof: (i) In $\triangle ABC$,

M is the mid-point of AB.

BC || DM

But

[Given]

[Given]

D is the mid-point of AC

 $\angle ACB = 90^{\circ}$

[Converse of mid-point theorem] **Proved.**

(ii)
$$\angle ADM = \angle ACB$$

But
$$\angle ADM + \angle CDM = 180^{\circ}$$

Hence, MD
$$\perp$$
 AC **Proved.**

(iii)
$$AD = DC$$
 ...(1) [: D is the mid-point of AC]

Now, in \triangle ADM and \triangle CMD, we have

$$[Each = 90^{\circ}]$$

$$AD = DC$$

$$DM = DM$$

$$\therefore$$
 $\triangle ADM \cong \triangle CMD$

$$\Rightarrow$$
 CM = MA

$$\dots$$
(2) [CPCT]

Since M is mid-point of AB,

$$\therefore \qquad \text{MA} = \frac{1}{2} \text{AB} \qquad \dots (3)$$

Hence, CM = MA =
$$\frac{1}{2}$$
AB **Proved.** [From (2) and (3)]