6 Lines And Angles

EXERCISE 6.1

Q.1. In the figure lines $A B$ and $C D$ intersect at O. If $\angle A O C+\angle B O E=70^{\circ}$ and $\angle B O D=40^{\circ}$, find $\angle B O E$ and reflex $\angle C O E$.

Since, $\quad \angle \mathrm{AOC}=\angle \mathrm{BOD}$
(Vertically opposite angles)
Therefore, $\quad \angle \mathrm{AOC}=40^{\circ} \quad[$ From (2)]
and $40^{\circ}+\angle \mathrm{BOE}=70^{\circ} \quad[$ From (1)]
$\Rightarrow \quad \angle \mathrm{BOE}=70^{\circ}-40^{\circ}=30^{\circ}$
(Given)
(Given)

Also, $\angle \mathrm{AOC}+\angle \mathrm{BOE}+\angle \mathrm{COE}=180^{\circ} \quad(\because \mathrm{AOB}$ is a straight line $)$
$\Rightarrow \quad 70^{\circ}+\angle \mathrm{COE}=180^{\circ} \quad[$ Form (1)]
$\Rightarrow \quad \angle \mathrm{COE}=180^{\circ}-70^{\circ}=110^{\circ}$
Now, reflex $\angle \mathrm{COE}=360^{\circ}-110^{\circ}=250^{\circ}$
Hence, $\angle \mathbf{B O E}=\mathbf{3 0}{ }^{\circ}$ and reflex $\angle \mathbf{C O E}=\mathbf{2 5 0}{ }^{\circ}$ Ans.
Q.2. In the figure, lines $X Y$ and $M N$ intersect at O. If $\angle P O Y=90^{\circ}$ and $a: b=2: 3$, find c.
Sol. In the figure, lines XY and MN intersect at O and $\angle \mathrm{POY}=90^{\circ}$.
Also, given $a: b=2: 3$
Let $\quad a=2 x$ and $b=3 x$.
Since, $\angle \mathrm{XOM}+\angle \mathrm{POM}+\angle \mathrm{POY}=180^{\circ}$
(Linear pair axiom)
$\Rightarrow 3 x+2 x+90^{\circ}=180^{\circ}$
$\Rightarrow \quad 5 x=180^{\circ}-90^{\circ}$
$\Rightarrow \quad x=\frac{90^{\circ}}{5}=18^{\circ}$
$\therefore \quad \angle \mathrm{XOM}=b=3 x=3 \times 18^{\circ}=54^{\circ}$
and $\quad \angle \mathrm{POM}=a=2 x=2 \times 18^{\circ}=36^{\circ}$
Now, $\quad \angle \mathrm{XON}=c=\angle \mathrm{MOY}=\angle \mathrm{POM}+\angle \mathrm{POY}$
(Vertically opposite angles)
$=36^{\circ}+90^{\circ}=126^{\circ}$
Hence, $\boldsymbol{c}=126^{\circ} \quad$ Ans.
Q.3. In the figure, $\angle P Q R=\angle P R Q$, then prove that $\angle P Q S=\angle P R T$.

Sol. $\angle \mathrm{PQS}+\angle \mathrm{PQR}=180^{\circ}$

(Linear pair axiom)
$\angle \mathrm{PRQ}+\angle \mathrm{PRT}=180^{\circ} \quad \ldots(2)$
(Linear pair axiom)
But, $\quad \angle \mathrm{PQR}=\angle \mathrm{PRQ} \quad$ (Given)
\therefore From (1) and (2)
$\angle \mathrm{PQS}=\angle \mathrm{PRT} \quad$ Proved.

Q.4. In the figure, if $x+y=w+z$, then prove that $A O B$ is a line.

Sol. Assume AOB is a line.
Therefore, $x+y=180^{\circ}$
[Linear pair axiom]

$$
\begin{equation*}
w+z=180^{\circ} \tag{1}
\end{equation*}
$$

[Linear pair axiom]
Now, from (1) and (2)

$$
x+y=w+z
$$

Hence, our assumption is correct, AOB is a line Proved.
Q.5. In the figure, $P O Q$ is a line. Ray

OR is perpendicular to line $P Q$. OS is another ray lying between rays OP and OR. Prove that
$\angle R O S=\frac{1}{2}(\angle Q O S-\angle P O S)$

Sol. $\quad \angle \mathrm{ROS}=\angle \mathrm{ROP}-\angle \mathrm{POS}$
and $\quad \angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{QOR}$
Adding (1) and (2),
$\angle \mathrm{ROS}+\angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{QOR}$
$+\angle \mathrm{ROP}-\angle \mathrm{POS}$

$\Rightarrow \quad 2 \angle \mathrm{ROS}=\angle \mathrm{QOS}-\angle \mathrm{POS}\left(\because \angle \mathrm{QOR}=\angle \mathrm{ROP}=90^{\circ}\right)$
$\Rightarrow \quad \angle \mathrm{ROS}=\frac{1}{2}(\angle \mathrm{QOS}-\angle \mathrm{POS}) \quad$ Proved.
Q.6. It is given that $\angle X Y Z=64^{\circ}$ and $X Y$ is produced to point P. Draw a figure from the given information. If ray $Y Q$ bisects $\angle Z Y P$, find $\angle X Y Q$ and reflex $\angle Q Y P$.
Sol. From figure,

| $\angle \mathrm{XYZ}$ | $=64^{\circ} \quad$ (Given) | |
| ---: | :--- | ---: | :--- |
| Now, | $\angle \mathrm{ZYP}+\angle \mathrm{XYZ}$ | $=180^{\circ}$ |
| | (Linear pair axiom) | |
| \Rightarrow | $\angle \mathrm{ZYP}+64^{\circ}$ | $=180^{\circ}$ |
| \Rightarrow | $\angle \mathrm{ZYP}$ | $=180^{\circ}-64^{\circ}-116^{\circ}$ |

Also, given that ray YQ bisects $\angle \mathrm{ZYP}$.
But, $\quad \angle Z Y P=\angle Q Y P \angle Q Y Z=116^{\circ}$
Therefore, $\quad \angle Q Y P=58^{\circ}$ and $\angle Q Y Z=58^{\circ}$
Also, $\quad \angle \mathrm{XYQ}=\angle \mathrm{XYZ}+\angle \mathrm{QYZ}$
$\Rightarrow \quad \angle \mathrm{XYQ}=64^{\circ}+58^{\circ}=122^{\circ}$
and reflex $\quad \angle \mathrm{QYP}=360^{\circ}-\angle \mathrm{QYP}=360^{\circ}-58^{\circ}=302^{\circ} \quad\left(\because \angle \mathrm{QYP}=58^{\circ}\right)$
Hence, $\quad \angle X Y Q=122^{\circ}$ and reflex $\angle \mathrm{QYP}=302^{\circ}$ Ans.

(LINES AND ANGLES

EXERCISE 6.2

Q.1. In the figure, find the values of x and y and then show that $A B \| C D$.

Sol. In the given figure, a transversal intersects two
 lines AB and CD such that
$x+50^{\circ}=180^{\circ}$
(Linear pair axiom)
$\Rightarrow \quad x=180^{\circ}-50^{\circ}$
$=130^{\circ}$
$y=130^{\circ} \quad$ (Vertically opposite angles)
Therefore, $\angle x=\angle y=130^{\circ} \quad$ (Alternate angles)
$\therefore \quad \mathrm{AB} \| \mathrm{CD}$ (Converse of alternate angles axiom) Proved.
Q.2. In the figure, if $A B\|C D, C D\| E F$ and $y: z=3: 7$, find x.
Sol. In the given figure, $\mathrm{AB}\|\mathrm{CD}, \mathrm{CD}\| \mathrm{EF}$
and $y: z=3: 7$.
Let $y=3 a$ and $z=7 a$
$\angle \mathrm{DHI}=y \quad$ (vertically opposite angles)
$\angle \mathrm{DHI}+\angle \mathrm{FIH}=180^{\circ}$

(Interior angles on the same side of the transversal)

$$
\begin{array}{rlrl}
\Rightarrow & y+z & =180^{\circ} \\
& \Rightarrow & 3 a+7 a & =180^{\circ} \\
& \Rightarrow & 10 a & =180^{\circ} \Rightarrow a=18^{\circ}
\end{array}
$$

$\therefore y=3 \times 18^{\circ}=54^{\circ}$ and $z=18^{\circ} \times 7=126^{\circ}$
Also,

$$
x+y=180^{\circ}
$$

$\Rightarrow \quad x+54^{\circ}=180^{\circ}$
$\therefore \quad x=180^{\circ}-54^{\circ}=126^{\circ}$

Hence, $\boldsymbol{x}=126^{\circ}$ Ans.
Q.3. In the figure, if $A B \| C D, E F \perp C D$ and $\angle G E D=126^{\circ}$. Find $\angle A G E, \angle G E F$ and $\angle F G E$.
Sol. In the given figure, $\mathrm{AB} \| \mathrm{CD}, \mathrm{EF} \perp \mathrm{CD}$ and $\angle \mathrm{GED}=126^{\circ}$
$\angle \mathrm{AGE}=\angle \mathrm{LGE}$ (Alternate angle)
$\therefore \quad \angle \mathrm{AGE}=126^{\circ}$
Now, $\quad \angle \mathrm{GEF}=\angle \mathrm{GED}-\angle \mathrm{DEF}$

$$
=126^{\circ}-90^{\circ}=36^{\circ} \quad\left(\because \angle \mathrm{DEF}=90^{\circ}\right)
$$

Also, $\angle \mathrm{AGE}+\angle \mathrm{FGE}=180^{\circ}$ (Linear pair axiom)
$\Rightarrow 126^{\circ}+\mathrm{FGE}=180^{\circ}$

$\Rightarrow \quad \angle \mathrm{FGE}=180^{\circ}-126^{\circ}=54^{\circ}$
Q.4. In the figure, if $P Q \| S T, \angle P Q R=110^{\circ}$ and $\angle R S T=130^{\circ}$, find $\angle Q R S$.

Sol. Extend PQ to Y and draw LM || ST through R.

$$
\begin{align*}
& \angle \mathrm{TSX}=\angle \mathrm{QXS} \\
& \text { [Alternate angles] } \\
& \Rightarrow \quad \angle \mathrm{QXS}=130^{\circ} \\
& \angle \mathrm{QXS}+\angle \mathrm{RXQ}=180^{\circ} \\
& \text { [Linear pair axiom] } \\
& \Rightarrow \angle \mathrm{RXQ}=180^{\circ}-130^{\circ}=50^{\circ} \\
& \angle \mathrm{PQR}=\angle \mathrm{QRM} \quad \text { [Alternate angles] } \\
& \Rightarrow \quad \angle \mathrm{QRM}=110^{\circ} \tag{2}\\
& \angle \mathrm{RXQ}=\angle \mathrm{XRM} \quad \text { [Alternate angles] } \\
& \Rightarrow \quad \angle \mathrm{XRM}=50^{\circ} \\
& \text { [By (1)] } \\
& \angle \mathrm{QRS}=\angle \mathrm{QRM}-\angle \mathrm{XRM} \\
& =110^{\circ}-50^{\circ}=60^{\circ} \text { Ans. }
\end{align*}
$$

Q.5. In the figure, if $A B \| C D, \angle A P Q=50^{\circ}$ and $\angle P R D=127^{\circ}$, find x and y.
Sol. In the given figure, $\mathrm{AB} \| \mathrm{CD}, \angle \mathrm{APQ}=50^{\circ}$
and $\angle \mathrm{PRD}=127^{\circ}$
$\angle \mathrm{APQ}+\angle \mathrm{PQC}=180^{\circ}$
[Pair of consecutive interior angles are supplementary]
$\Rightarrow 50^{\circ}+\angle \mathrm{PQC}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PQC}=180^{\circ}-50^{\circ}=130^{\circ}$

Now, $\angle \mathrm{PQC}+\angle \mathrm{PQR}=180^{\circ} \quad$ [Linear pair axiom]
$\Rightarrow \quad 130^{\circ}+x=180^{\circ}$
$\Rightarrow \quad x=180^{\circ}-130^{\circ}=50^{\circ}$
Also, $\quad x+y=127^{\circ} \quad$ [Exterior angle of a triangle is equal to the sum of the two interior opposite angles]
$\Rightarrow \quad 50^{\circ}+y=127^{\circ}$
$\Rightarrow \quad y=127^{\circ}-50^{\circ}=77^{\circ}$
Hence, $\boldsymbol{x}=50^{\circ}$ and $\boldsymbol{y}=\mathbf{7 7}^{\circ}$ Ans.
Q.6. In the figure, $P Q$ and $R S$ are two mirrors placed parallel to each other. An incident ray $A B$ strikes the mirror $P Q$ at B, the reflected ray moves along the path $B C$ and strikes the mirror $R S$ at C and again reflects back along $C D$. Prove that $A B \| C D$.
Sol. At point B , draw $\mathrm{BE} \perp \mathrm{PQ}$ and at point C , draw $\mathrm{CF} \perp \mathrm{RS}$.

$$
\begin{align*}
\angle 1= & \angle 2 \quad \ldots(\mathrm{i}) \tag{i}\\
& \text { (Angle of incidence is equal } \\
& \text { to angle of reflection) }
\end{align*}
$$

$$
\begin{equation*}
\angle 3=\angle 4 \tag{ii}
\end{equation*}
$$

Also, $\quad \angle 2=\angle 3$
$\Rightarrow \quad \angle 1=\angle 4$
... (iii)

$$
\Rightarrow \quad 2 \angle 1=2 \angle 4
$$

$\Rightarrow \angle 1+\angle 1=\angle 4+\angle 4$
$\Rightarrow \angle 1+\angle 2=\angle 3+\angle 4$
$\Rightarrow \quad \angle \mathrm{BCD}=\angle \mathrm{ABC}$

Hence, $\mathrm{AB}|\mid \mathrm{CD}$. [Alternate angles are equal] Proved.

6 Lines and Angles

EXERCISE 6.3

Q.1. In the figure, sides $Q P$ and $R Q$ of $\triangle P Q R$ are produced to points S and T respectively. If $\angle S P R=135^{\circ}$ and $\angle P Q T=110^{\circ}$, find $\angle P R Q$.

Sol. In the given figure, $\angle \mathrm{SPR}=135^{\circ}$ and $\angle \mathrm{PQT}=110^{\circ}$.

$$
\begin{array}{rlr}
& \angle \mathrm{PQT}+\angle \mathrm{PQR}=180^{\circ} \\
\Rightarrow \quad 110^{\circ}+\angle \mathrm{PQR} & =180^{\circ} \\
\Rightarrow \quad \angle \mathrm{PQR} & =180^{\circ}-110^{\circ}=70^{\circ}
\end{array} \quad \text { [Linear pair axiom] }
$$

Also, $\angle \mathrm{SPR}+\angle \mathrm{QPR}=180^{\circ}$
$\begin{array}{rlrl}\Rightarrow & & 135^{\circ}+\angle \mathrm{QPR} & =180^{\circ} \\ \Rightarrow & \angle \mathrm{QPS} & =180^{\circ}-135^{\circ}=45^{\circ}\end{array}$
Now, in the triangle PQR
$\angle \mathrm{PQR}+\angle \mathrm{PRQ}+\angle \mathrm{QPR}=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 70^{\circ}+\angle \mathrm{PRQ}+45^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PRQ}+115^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PRQ}=180^{\circ}-115^{\circ}=65^{\circ}$
Hence, $\angle \mathbf{P R Q}=\mathbf{6 5}{ }^{\circ}$ Ans.
Q.2. In the figure, $\angle X=62^{\circ}, \angle X Y Z=54^{\circ}$. If $Y O$ and $Z O$ are the bisectors of $\angle X Y Z$ and $\angle X Z Y$ respectively of $\triangle X Y Z$, find $\angle O Z Y$ and $\angle Y O Z$.
Sol. In the given figure,
$\angle \mathrm{X}=62^{\circ}$ and $\angle \mathrm{XYZ}=54^{\circ}$.

$\angle \mathrm{XYZ}+\angle \mathrm{XZY}+\angle \mathrm{YXZ}=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 54^{\circ}+\angle \mathrm{XZY}+62^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{XZY}+116^{\circ}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{XZY}=180^{\circ}-116^{\circ}=64^{\circ}$
Now,

$$
\begin{aligned}
\angle \mathrm{OZY} & =\frac{1}{2} \times \angle \mathrm{XZY} \\
& =\frac{1}{2} \times 64^{\circ}=32^{\circ}
\end{aligned}
$$

$[\because \mathrm{ZO}$ is bisector of $\angle \mathrm{XZY}]$

Similarly, $\angle \mathrm{OYZ}=\frac{1}{2} \times 54^{\circ}=27^{\circ}$
Now, in $\triangle O Y Z$, we have $\angle \mathrm{OYZ}+\angle \mathrm{OZY}+\angle \mathrm{YOZ}=180^{\circ}$ Angle sum property of a triangle]
$\Rightarrow 27^{\circ}+32^{\circ}+\angle \mathrm{YOZ}=180^{\circ}$
$\Rightarrow \angle \mathrm{YOZ}=180^{\circ}-59^{\circ}=121^{\circ}$
Hence, $\angle \mathbf{O Z Y}=\mathbf{3 2}{ }^{\circ}$ and $\angle \mathbf{Y O Z}=121^{\circ}$ Ans.
Q.3. In the figure, if $A B \| D E, \angle B A C=35^{\circ}$ and $\angle C D E=53^{\circ}$, find $\angle D C E$.

Sol. In the given figure

$$
\angle \mathrm{BAC}=\angle \mathrm{CED}
$$

[Alternate angles]
$\Rightarrow \quad \angle \mathrm{CED}=35^{\circ}$
In $\triangle \mathrm{CDE}$,
[Angle sum property of a triangle]

$$
\begin{array}{ll}
\angle \mathrm{CDE}+\angle \mathrm{DCE}+\angle \mathrm{CED}=180^{\circ} \quad[\text { Angle } \\
\Rightarrow & 53^{\circ}+\angle \mathrm{DCE}+35^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{DCE}+88^{\circ}=180^{\circ} \\
\Rightarrow & \angle \mathrm{DCE}=180^{\circ}-88^{\circ}=92^{\circ}
\end{array}
$$

Hence, $\angle \mathbf{D C E}=92^{\circ}$ Ans.

Q.4. In the figure, if lines $P Q$ and $R S$ intersect at point T, such that $\angle P R T=40^{\circ}, \angle R P T$ $=95^{\circ}$ and $\angle T S Q=75^{\circ}$, find $\angle S Q T$.
Sol. In the given figure, lines PQ and RS intersect at point T , such that $\angle \mathrm{PRT}=40^{\circ}$, $\angle \mathrm{RPT}=95^{\circ}$ and $\angle \mathrm{TSQ}=75^{\circ}$.
In \triangle PRT
$\angle \mathrm{PRT}+\angle \mathrm{RPT}+\angle \mathrm{PTR}=180^{\circ}$
[Angle sum property of a triangle]
$\Rightarrow 40^{\circ}+95^{\circ}+\angle \mathrm{PTR}=180^{\circ}$
$\Rightarrow \quad 135^{\circ}+\angle \mathrm{PTR}=180^{\circ}$
$\Rightarrow \quad \angle \mathrm{PTR}=180^{\circ}-135^{\circ}=45^{\circ}$
Also, $\quad \angle \mathrm{PTR}=\angle \mathrm{STQ} \quad$ [Vertical opposite angles]
$\therefore \quad \angle \mathrm{STQ}=45^{\circ}$

$$
\begin{array}{rlrl}
\text { Now, in } \triangle \mathrm{STQ}, \\
\angle \mathrm{STQ}+\angle \mathrm{TSQ}+\angle \mathrm{SQT} & =180^{\circ} \\
\Rightarrow \quad 45^{\circ}+75^{\circ}+\angle \mathrm{SQT} & =180^{\circ} \\
\Rightarrow \quad & 120^{\circ}+\angle \mathrm{SQT} & =180^{\circ} \\
\Rightarrow \quad \angle \mathrm{SQT} & =180^{\circ}-120^{\circ}=60^{\circ}
\end{array}
$$

Hence, $\angle \mathbf{S Q T}=\mathbf{6 0}{ }^{\circ}$ Ans.
Q.5. In the figure, if $P T \perp P S, P Q \| S R, \angle S Q R$ $=28^{\circ}$ and $\angle Q R T=65^{\circ}$, then find the values of x and y.
Sol. In the given figure, lines $\mathrm{PQ} \perp \mathrm{PS}, \mathrm{PQ} \|$
 $\mathrm{SR}, \angle \mathrm{SQR}=28^{\circ}$ and $\angle \mathrm{QRT}=65^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{PQR}=\angle \mathrm{QRT} \quad \text { [Alternate angles] } \\
\Rightarrow & x+28^{\circ}=65^{\circ} \\
\Rightarrow \quad x & =65^{\circ}-28^{\circ}=37^{\circ}
\end{aligned}
$$

In $\triangle \mathrm{PQS}$,

$$
\begin{aligned}
& \angle \mathrm{SPQ}+\angle \mathrm{PQS}+\angle \mathrm{QSP}=180^{\circ} \quad \text { [Angle sum property of a triangle] } \\
& \Rightarrow \quad 90^{\circ}+37^{\circ}+y=180^{\circ} \\
& \Rightarrow \quad\left[\because \mathrm{PQ} \perp \mathrm{PS}, \angle \mathrm{PQS}=x=37^{\circ} \text { and } \angle \mathrm{QSP}=y\right) \\
& \Rightarrow \quad 127^{\circ}+y=180^{\circ} \\
& \Rightarrow \quad y=180^{\circ}-127^{\circ}=53^{\circ} \\
& \text { Hence, } \boldsymbol{x}=\mathbf{3 7 ^ { \circ }} \text { and } \boldsymbol{y}=53^{\circ} \quad \text { Ans. }
\end{aligned}
$$

Q.6. In the figure, the side $Q R$ of $\triangle P Q R$ is produced to a point S. If the bisectors of $\angle P Q R$ and $\angle P R S$ meet at point T, then prove that $\angle Q T R=\frac{1}{2} \angle Q P R$.
Sol. Exterior $\angle \mathrm{PRS}=\angle \mathrm{PQR}+\angle \mathrm{QPR}$

[Exterior angle property]
Therefore, $\frac{1}{2} \angle \mathrm{PRS}=\frac{1}{2} \angle \mathrm{PQR}+\frac{1}{2} \angle \mathrm{QPR}$
$\Rightarrow \quad \angle \mathrm{TRS}=\angle \mathrm{TQR}+\frac{1}{2} \angle \mathrm{QPR}$

But in \triangle QTR,
Exterior $\angle \mathrm{TRS}=\angle \mathrm{TQR}+\angle \mathrm{QTR}$
[Exterior angles property]
Therefore, from (i) and (ii)

$$
\begin{array}{rlr}
\angle \mathrm{TQR}+\angle \mathrm{QTR} & =\angle \mathrm{TQR}+\frac{1}{2} \angle \mathrm{QPR} \\
\Rightarrow \quad \angle \mathrm{QTR} & =\frac{1}{2} \angle \mathrm{QPR} & \text { Proved. }
\end{array}
$$

