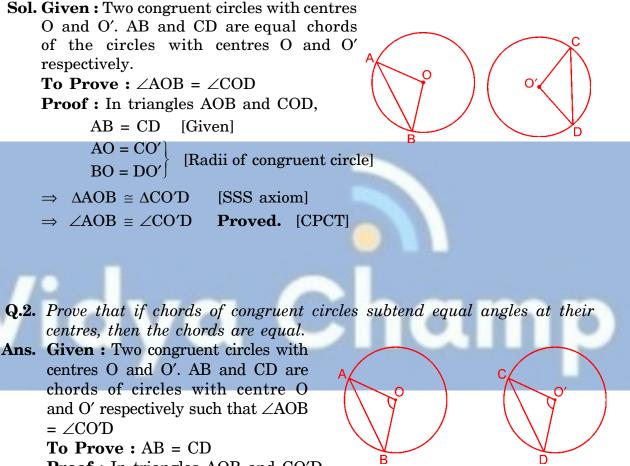
10 CIRCLES

EXERCISE 10.1

- **Q.1.** Fill in the blanks :
 - (i) The centre of a circle lies in _____ of the circle. (exterior/ interior)
 - (ii) A point, whose distance from the centre of a circle is greater than its radius lies in ______ of the circle. (exterior/interior)
 - (iii) The longest chord of a circle is a _____ of the circle.
 - (iv) An arc is a _____ when its ends are the ends of a diameter.
 - (v) Segment of a circle is the region between an arc and ______ of the circle.
 - (vi) A circle divides the plane, on which it lies in _____ parts.
- Sol. (i) interior (ii) exterior (iii) diameter (iv) semicircle (v) the chord (vi) three
- **Q.2.** Write True or False: Give reasons for your answers.
 - (i) Line segment joining the centre to any point on the circle is a radius of the circle.
 - (ii) A circle has only finite number of equal chords.
 - (iii) If a circle is divided into three equal arcs, each is a major arc.
 - (iv) A chord of a circle, which is twice as long as its radius, is a diameter of the circle.
 - (v) Sector is the region between the chord and its corresponding arc.
 - (vi) A circle is a plane figure.
- Sol. (i) True (ii) False (iii) False (iv) True (v) False (vi) True

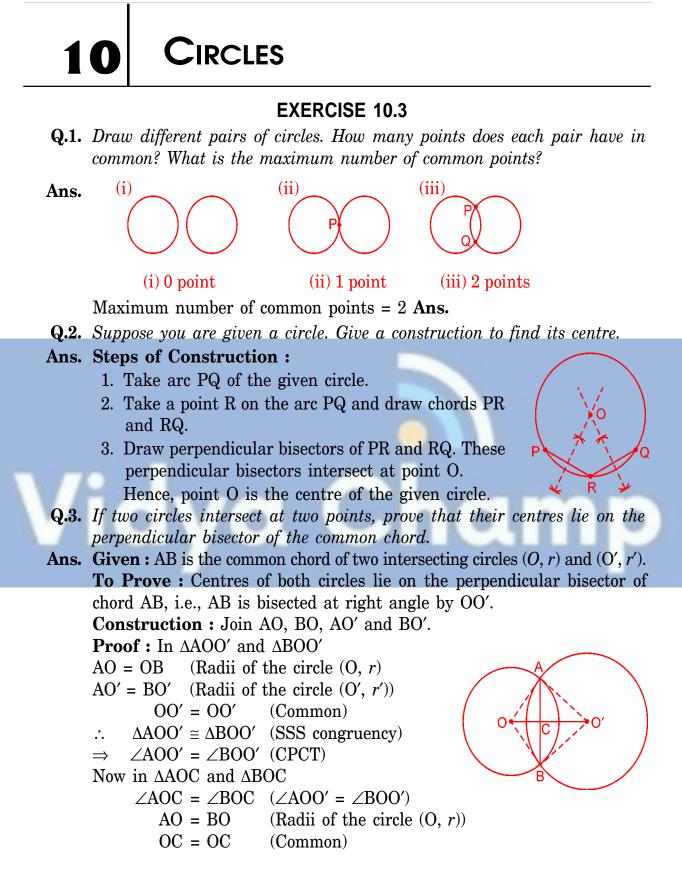
EXERCISE 10.2

Q.1. Recall that two circles are congruent if they have the same radii. Prove that equal chords of congruent circles subtend equal angles at their centres.



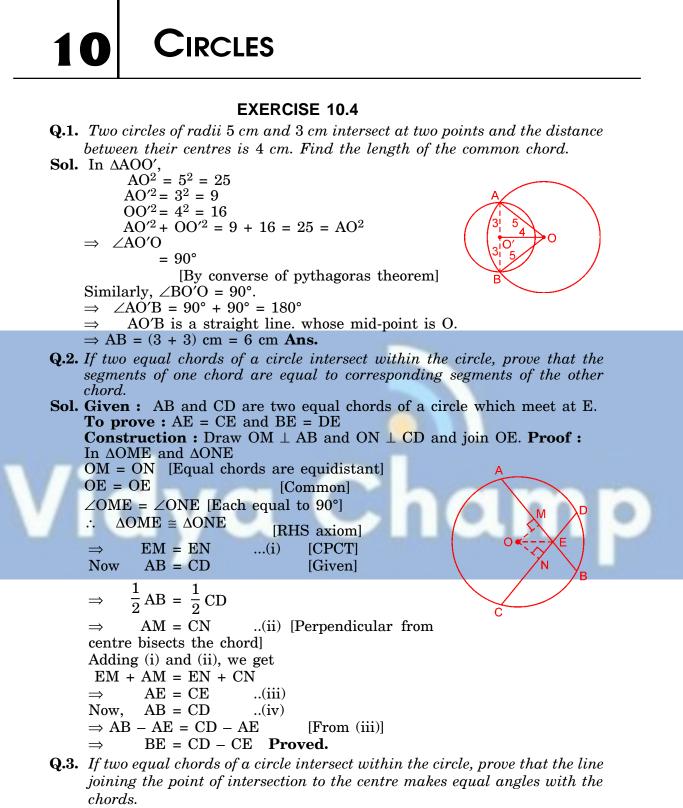
Proof : In triangles AOB and CO'D,

AO = CO' BO = DO'[Radii of congruent circle] $\angle AOB = \angle CO'D$ [Given] $\Rightarrow \Delta AOB \cong \Delta CO'D$ [SAS axiom] $\Rightarrow AB = CD$ **Proved.** [CPCT]



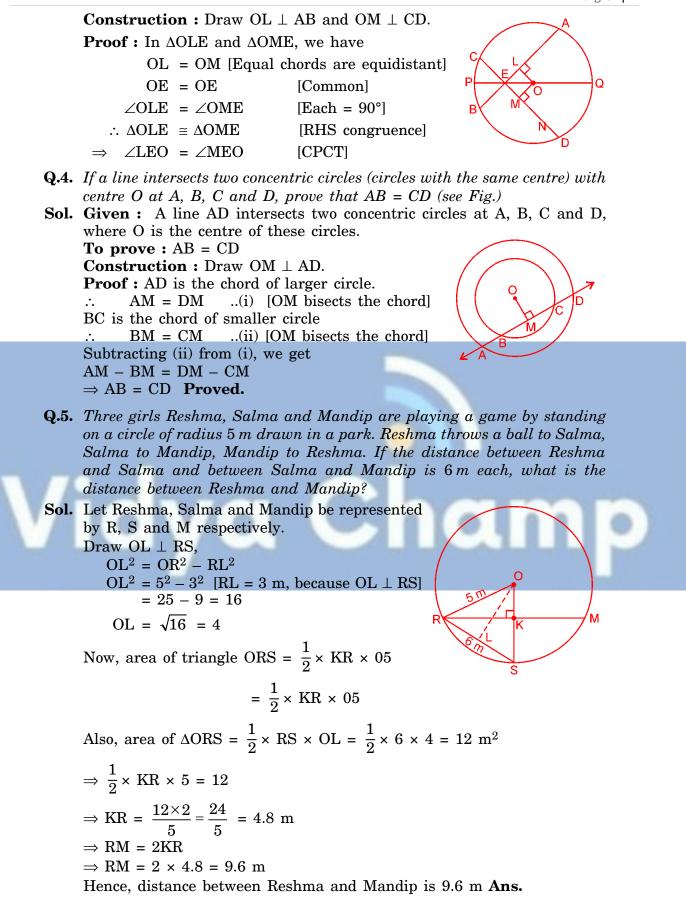
 $\begin{array}{ll} \therefore & \Delta AOC \cong \Delta BOC & (SAS \ congruency) \\ \Rightarrow & AC = BC \ and \ \angle ACO = \ \angle BCO & ...(i) \ (CPCT) \\ \Rightarrow \ \angle ACO + \ \angle BCO = 180^{\circ} & ...(ii) \ (Linear \ pair) \end{array}$

 $\Rightarrow \angle ACO = \angle BCO = 90^{\circ}$ (From (i) and (ii)) Hence, OO' lie on the perpendicular bisector of AB



Sol. Given : AB and CD are two equal chords of a circle which meet at E within the circle and a line PQ joining the point of intersection to the centre.

To Prove : $\angle AEQ = \angle DEQ$



Q.6. A circular park of radius 20 m is situated in a colony. Three boys Ankur, Syed and David are siting at equal distance on its boundary each having a toy telephone in his hands to talk each other. Find the length of the string of each phone.

Sol. Let Ankur, Syed and David be represented by A, S and D respectively. Let PD = SP = SQ = QA = AR = RD = xIn $\triangle OPD$, $OP^2 = 400 - x^2$ \Rightarrow OP = $\sqrt{400 - x^2}$ \Rightarrow AP = $2\sqrt{400-x^2} + \sqrt{400-x^2}$ [:: centroid divides the median in the ratio 2 : 1] $= 3\sqrt{400 - x^2}$ Now, in $\triangle APD$, $PD^2 = AD^2 - DP^2$ $x^2 = (2x)^2 - (3\sqrt{400 - x^2})^2$ \Rightarrow $x^2 = 4x^2 - 9(400 - x^2)$ \Rightarrow $x^2 = 4x^2 - 3600 + 9x^2$ \Rightarrow

$$\Rightarrow \quad x^2 = \frac{3600}{12} = 300$$
$$\Rightarrow \quad x = 10\sqrt{3}$$

 $\Rightarrow 12x^2 = 3600$

Now, SD = $2x = 2 \times 10\sqrt{3} = 20\sqrt{3}$ \therefore ASD is an equilateral triangle.

 \Rightarrow SD = AS = AD = $20\sqrt{3}$

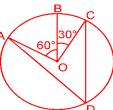
Hence, length of the string of each phone is 20 $\sqrt{3}$ m Ans.

10 CIRCLES

EXERCISE 10.5

Q.1. In the figure, A, B and C are three points on a circle with centre O such that ∠ BOC = 30° and ∠ AOB = 60°. If D is a point on the circle other than the arc ABC, find ∠ ADC.
Sol. We have, ∠BOC = 30° and ∠AOB = 60°

$$\angle AOC = \angle AOB + \angle BOC = 60^\circ + 30^\circ = 90^\circ$$



We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$\therefore 2 \angle ADC = \angle AOC$$

 $\Rightarrow \angle ADC = \frac{1}{2} \angle AO\underline{C} = \frac{1}{2} \times 90^{\circ} \Rightarrow \angle ADC = 45^{\circ} \text{ Ans.}$

Q.2. A chord of a circle is equal to the radius of the circle. Find the angle subtended by the chord at a point on the minor arc and also at a point on the major arc.

Sol. We have, OA = OB = AB

Therefore, $\triangle OAB$ is a equilateral triangle.

 $\Rightarrow \angle AOB = 60^{\circ}$

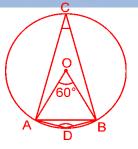
 $\angle AOB = 2 \angle ACB$

We know that angle subtended by an arc at the centre of a circle is double the angle subtended by the same arc on the remaining part of the circle.

$$\Rightarrow \angle ACB = \frac{1}{2} \angle AOB = \frac{1}{2} \times 60^{\circ}$$

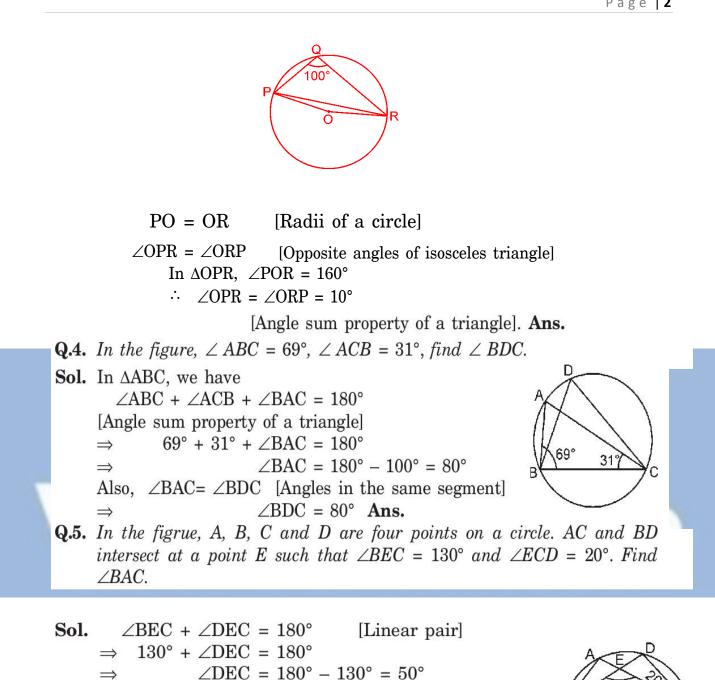
$$\Rightarrow \angle ACB = 30^{\circ}$$

Also, $\angle ADB = \frac{1}{2}$ reflex $\angle AOB$
$$= \frac{1}{2} (360^{\circ} - 60^{\circ}) = \frac{1}{2} \times 300^{\circ} = 150^{\circ}$$



Hence, angle subtended by the chord at a point on the minor arc is 150° and at a point on the major arc is 30° Ans.

Q.3. In the figure, $\angle PQR = 100^\circ$, where P, Q and R are points on a circle with centre O. Find $\angle OPR$.



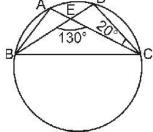
Now, in $\triangle DEC$,

 \Rightarrow

 $\Rightarrow \angle \text{DEC} + \angle \text{DCE} + \angle \text{CDE} = 180^{\circ}$

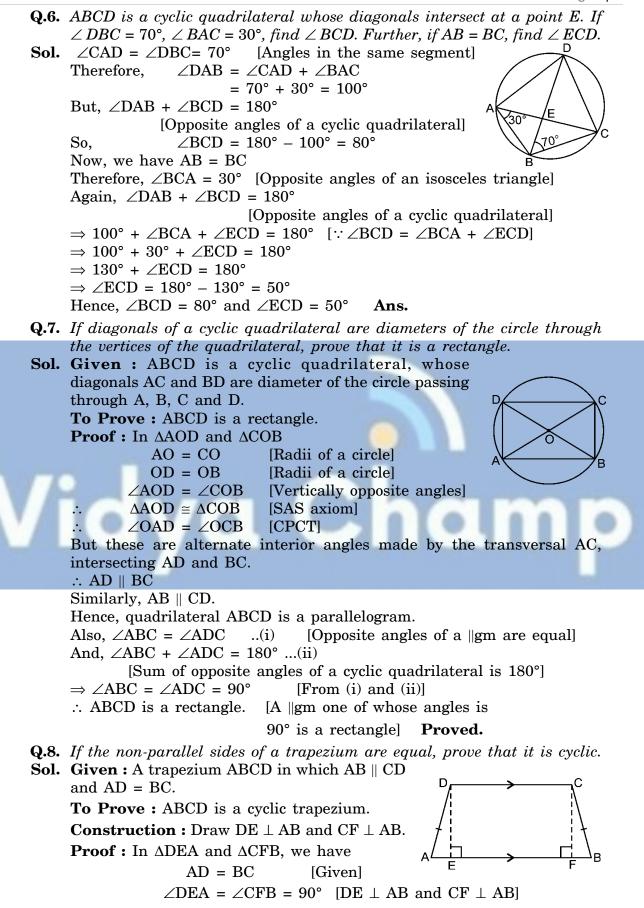
[Angle sum property of a triangle] $\Rightarrow 50^{\circ} + 20^{\circ} + \angle \text{CDE} = 180^{\circ}$

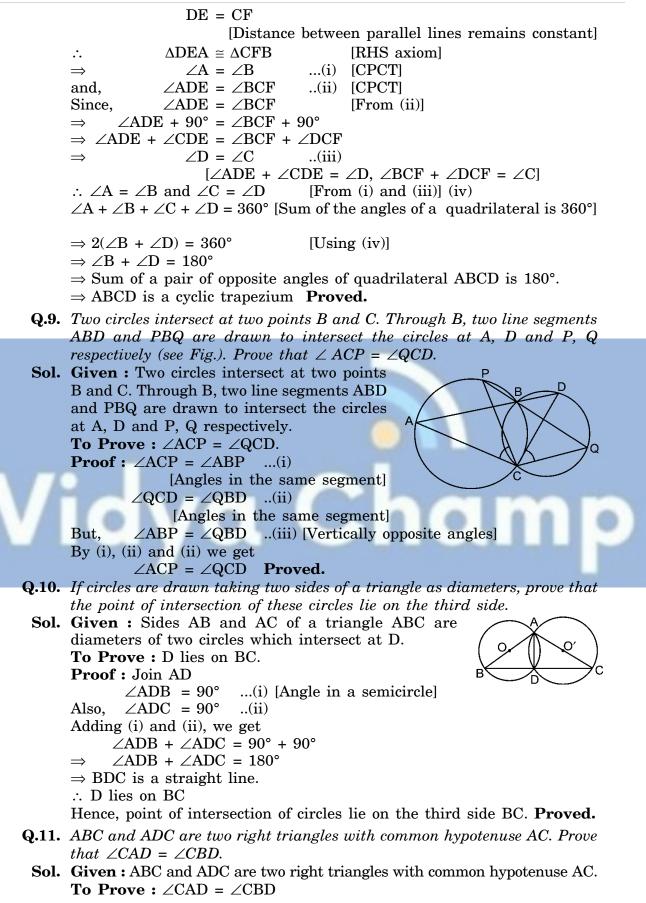
 $\angle CDE = 180^{\circ} - 70^{\circ} = 110^{\circ}$

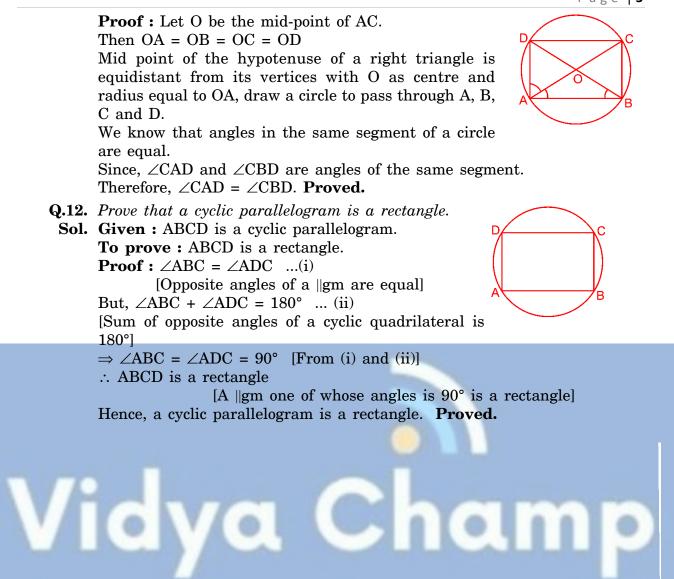


 $\angle CDE = \angle BAC$ [Angles in same segment] Also, $\angle BAC = 110^{\circ}$ Ans. \Rightarrow

Page 3







EXERCISE 10.6 (Optional)

- **Q.1.** Prove that the line of centres of two intersecting circles subtends equal angles at the two points of intersection.
- **Sol. Given :** Two intersecting circles, in which OO' is the line of centres and A and B are two points of intersection.

To prove : $\angle OAO' = \angle OBO'$

Construction : Join AO, BO, AO' and BO'.

Proof : In $\triangle AOO'$ and $\triangle BOO'$, we have

AO = BO [Radii of the same circle]

AO' = BO' [Radii of the same circle]

OO' = OO' [Common]

: $\Delta AOO' \cong \Delta BOO'$ [SSS axiom]

 $\Rightarrow \qquad \angle OAO' = \angle OBO' \quad [CPCT]$

Hence, the line of centres of two intersecting circles subtends equal angles at the two points of intersection. **Proved.**

Q.2. Two chords AB and CD of lengths 5 cm and 11 cm respectively of a circle are parallel to each other and are on opposite sides of its centre. If the distance between AB and CD is 6 cm, find the radius of the circle.

Sol. Let O be the centre of the circle and let its radius be r cm.

Draw OM \perp AB and OL \perp CD.

Then, AM =
$$-\frac{1}{2}$$
AB = $\frac{5}{2}$ cm

and, $CL = \frac{1}{2}CD = \frac{11}{2}$ cm

Since, AB \parallel CD, it follows that the points O, L, M are

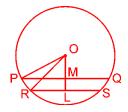
collinear and therefore, LM = 6 cm. Let OL = x cm. Then OM = (6 - x) cm Join OA and OC. Then OA = OC = r cm. Now, from right-angled $\triangle OMA$ and $\triangle OLC$, we have $OA^2 = OM^2 + AM^2$ and $OC^2 = OL^2 + CL^2$ [By Pythagoras Theorem] $\Rightarrow r^2 = (6 - x)^2 + \left(\frac{5}{2}\right)^2$...(i) and $r^2 = x^2 + \left(\frac{11}{2}\right)^2$... (ii)

Page | 2

 $\Rightarrow (6 - x)^{2} + \left(\frac{5}{2}\right)^{2} = x^{2} + \left(\frac{11}{2}\right)^{2} \text{ [From (i) and (ii)]}$ $\Rightarrow 36 + x^{2} - 12x + \frac{25}{4} = x^{2} + \frac{121}{4}$ $\Rightarrow -12x = \frac{121}{4} - \frac{25}{4} - 36$ $\Rightarrow -12x = 24 - 36$ $\Rightarrow -12x = -12$ $\Rightarrow x = 1$ Substituting x = 1 in (i), we get $r^{2} = (6 - x)^{2} + \left(\frac{5}{2}\right)^{2}$ $\Rightarrow r^{2} = (6 - 1)^{2} + \left(\frac{5}{2}\right)^{2}$ $\Rightarrow r^{2} = (5)^{2} + \left(\frac{5}{2}\right)^{2} = 25 + \frac{25}{4}$ $\Rightarrow r^{2} = \frac{125}{4}$ $\Rightarrow r = \frac{5\sqrt{5}}{2}$ Hence, radius $r = \frac{5\sqrt{5}}{2}$ cm. Ans.

- **Q.3.** The lengths of two parallel chords of a circle are 6 cm and 8 cm. If the smaller chord is at distance 4 cm from the centre, what is the distance of the other chord from the centre?
- Sol. Let PQ and RS be two parallel chords of a circle with centre O. We have, PQ = 8 cm and RS = 6 cm.
 Draw perpendicular bisector OL of RS which meets PQ in M. Since, PQ || RS, therefore, OM is also perpendicular bisector of PQ.

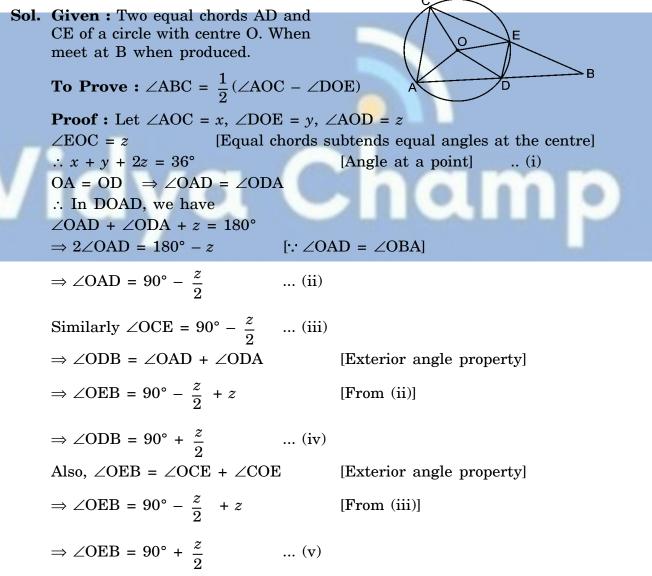
Also,
$$OL = 4$$
 cm and $RL = \frac{1}{2}RS \Rightarrow RL = 3$ cm
and $PM = \frac{1}{2}PQ \Rightarrow PM = 4$ cm
In $\triangle ORL$, we have
 $OR^2 = RL^2 + OL^2$ [Pythagoras theorem]



 $\Rightarrow OR^{2} = 3^{2} + 4^{2} = 9 + 16$ $\Rightarrow OR^{2} = 25 \Rightarrow OR = \sqrt{25}$ $\Rightarrow OR = 5 \text{ cm}$ $\therefore OR = OP \qquad [Radii of the circle]$ $\Rightarrow OP = 5 \text{ cm}$ Now, in $\triangle OPM$ $OM^{2} = OP^{2} - PM^{2} \qquad [Pythagoras theorem]$ $\Rightarrow OM^{2} = 5^{2} - 4^{2} = 25 - 16 = 9$ $OM = \sqrt{9} = 3 \text{ cm}$

Hence, the distance of the other chord from the centre is 3 cm. Ans.

Q.4. Let the vertex of an angle ABC be located outside a circle and let the sides of the angle intersect equal chords AD and CE with the circle. Prove that \angle ABC is equal to half the difference of the angles subtended by the chords AC and DE at the centre.



R

Also, $\angle OED = \angle ODE = 90^{\circ} - \frac{y}{2}$... (vi) O from (iv), (v) and (vi), we have $\angle BDE = \angle BED = 90^{\circ} + \frac{z}{2} - \left(90^{\circ} - \frac{y}{2}\right)$ $\Rightarrow \angle BDE = \angle BED = \frac{y+z}{2}$ $\Rightarrow \angle BDE = \angle BED = y+z$... (vii) $\therefore \angle BDE = 180^{\circ} - (y+z)$... (viii) Now, $\frac{y-z}{2} = \frac{360^{\circ} - y - 2z - y}{2} = 180^{\circ} - (y+z)$... (ix)

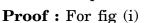
From (viii) and (ix), we have

$$\angle ABC = \frac{x-y}{2}$$
 Proved.

- **Q.5.** Prove that the circle drawn with any side of a rhombus as diameter, passes through the point of intersection of its diagonals.
- Sol. Given : A rhombus ABCD whose diagonals intersect each other at O.
 To prove : A circle with AB as diameter passes through O.
 Proof : ∠AOB = 90°
 [Diagonals of a rhombus bisect each other at 90°]
 ⇒ ΔAOB is a right triangle right angled at O.
 ⇒ AB is the hypotenuse of A B right ΔAOB.
 ⇒ If we draw a circle with AB as diameter, then it will pass through O. because angle is a semicircle
 - is 90° and $\angle AOB = 90^\circ$ Proved.
- **Q.6.** ABCD is a parallelogram. The circle through A, B and C intersect CD (produced if necessary) at E. Prove that AE = AD.
- Sol. Given : ABCD is a parallelogram.

To Prove : AE = AD.

Construction : Draw a circle which passes through ABC and intersect CD (or CD produced) at E.



 $\angle AED + \angle ABC = 180^{\circ}$

[Linear pair] ... (ii)

But $\angle ACD = \angle ADC = \angle ABC + \angle ADE$

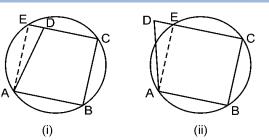
$$\Rightarrow \angle ABC + \angle ADE = 180^{\circ}$$
 [From (ii)] ... (iii)

From (i) and (iii)

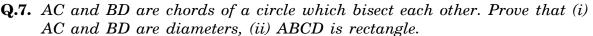
 $\angle AED + \angle ABC = \angle ABC + \angle ADE$

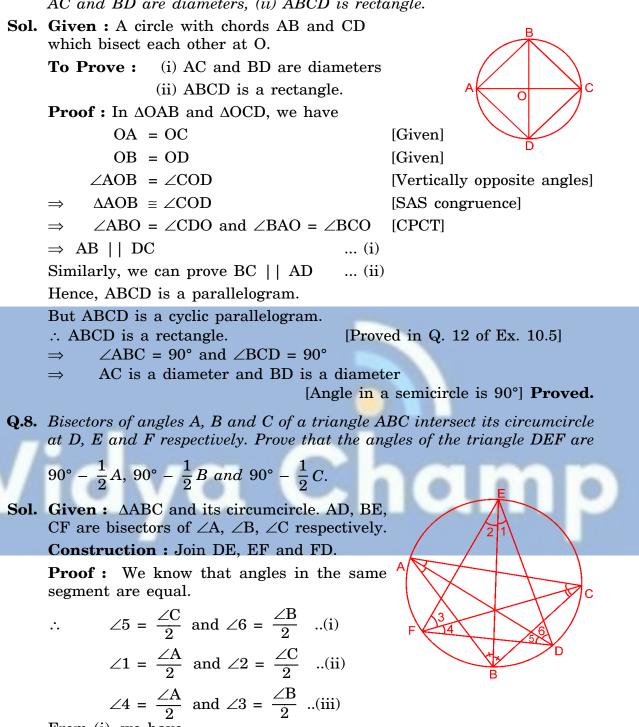
 $\Rightarrow \qquad \angle AED = \angle ADE$

 $\Rightarrow \qquad \angle AD = \angle AE \qquad [Sides opposite to equal angles are equal]$ Similarly we can prove for Fig (ii) **Proved.**



Page 5





From (i), we have

$$\angle 5 + \angle 6 = \frac{\angle C}{2} + \frac{\angle B}{2}$$
$$\Rightarrow \qquad \angle D = \frac{\angle C}{2} + \frac{\angle B}{2} \qquad \dots (iv)$$

But $\angle A + \angle B + \angle C = 180^{\circ}$ $\Rightarrow \qquad \angle B + \angle C = 180^{\circ} - \angle A$ $[\because \angle 5 + \angle 6 = \angle D]$

 $\frac{\angle B}{2} + \frac{\angle C}{2} = 90^\circ - \frac{\angle A}{2}$ \Rightarrow \therefore (iv) becomes. $\angle D = 90^\circ - \frac{\angle A}{2}.$ Similarly, from (ii) and (iii), we can prove that $\angle E = 90^\circ - \frac{\angle B}{2}$ and $\angle F = 90^\circ - \frac{\angle C}{2}$ **Proved.** Q.9. Two congruent circles intersect each other at points A and B. Through A any line segment PAQ is drawn so that P, Q lie on the two circles. Prove that BP = BQ. Sol. Given : Two congruent circles which intersect at A and B. PAB is a line through A. To Prove : BP = BQ. **Construction :** Join AB. **Proof** : AB is a common chord of both the circles. But the circles are congruent — \Rightarrow arc ADB = arc AEB $\angle APB = \angle AQB$ Angles subtended \Rightarrow BP = BQ[Sides opposite to equal angles are equal] Proved. \Rightarrow **Q.10.** In any triangle ABC, if the angle bisector of $\angle A$ and perpendicular bisector of BC intersect, prove that they intersect on the circumcircle of the triangle ABC. **Sol.** Let angle bisector of $\angle A$ intersect circumcircle of $\triangle ABC$ at D. Join DC and DB. $\angle BCD = \angle BAD$ [Angles in the same segment] $\Rightarrow \angle BCD = \angle BAD \frac{1}{2} \angle A$ [AD is bisector of $\angle A$] ...(i)

Similarly $\angle DBC = \angle DAC \frac{1}{2} \angle A \qquad \dots (ii)$

From (i) and (ii) $\angle DBC = \angle BCD$

 \Rightarrow BD = DC [sides opposite to equal angles are equal]

 \Rightarrow D lies on the perpendicular bisector of BC.

Hence, angle bisector of $\angle A$ and perpendicular bisector of BC intersect on the circumcircle of $\triangle ABC$ **Proved.**