Science

(Chapter – 13) (Motion and Time) (Class – VII)

Exercises

Question 1:

Classify the following as motion along a straight line, circular or oscillatory motion:

- (i) Motion of your hands while running.
- (ii) Motion of a horse pulling a cart on a straight road.
- (iii) Motion of a child in a merry-go-round.
- (iv) Motion of a child on a see-saw.
- (v) Motion of the hammer of an electric bell.
- (vi) Motion of a train on a straight bridge.

Answer 1:

(i) Motion of your hands while running – *Oscillatory motion*.

- (ii) Motion of a horse pulling a cart on a straight road *Straight line motion*.
- (iii) Motion of a child in a merry-go-round *Circular motion*.

(iv) Motion of a child on a see-saw – Oscillatory motion.

- (v) Motion of the hammer of an electric bell *Oscillatory motion*.
- (vi) Motion of a train on a straight bridge *Straight line motion*.

Question 2:

Which of the following are not correct?

- (i) The basic unit of time is second.
- (ii) Every object moves with a constant speed.
- (iii) Distances between two cities are measured in kilometers.
- (iv) The time period of a given pendulum is not constant.
- (v) The speed of a train is expressed in m/h.

Answer 2:

- (i) The basic unit of time is second Correct
- (ii) Every object moves with a constant speed Not correct
- (iii) Distances between two cities are measured in kilometers Correct
- (iv) The time period of a given pendulum is not constant Not correct
- (v) The speed of a train is expressed in m/h Not correct

Question 3:

A simple pendulum takes 32 s to complete 20 oscillations. What is the time period of the pendulum?

Answer 3:

The time taken to complete one oscillation is known as time period of the pendulum.

Time period = $\frac{Total time taken}{Number of oscillations} = \frac{32}{20} = 1.6$ seconds

Question 4:

The distance between two stations is 240 km. A train takes 4 hours to cover this distance. Calculate the speed of the train.

Answer 4:

$$Speed = \frac{Distance\ covered}{Time\ taken} = \frac{240\ km}{4\ h} = 60\ km/h$$

Question 5:

The odometer of a car reads 57321.0 km when the clock shows the time 08:30 AM. What is the distance moved by the car, if at 08:50 AM, the odometer reading has changed to 57336.0 km? Calculate the speed of the car in km/min during this time. Express the speed in km/h also.

Answer 5:

Distance covered by car = 57336.0 km - 57321.0 km = 15.0 kmTime taken between 08:30 AM to 08:50 AM = 20 minutes = 20/60 hour = 1/3 hourSo, speed in km/min

$$Speed = \frac{Distance \ covered}{Time \ taken} = \frac{15 \ km}{20 \ min} = 0.75 \ km/min$$

15 km $15 \times 3 km$

 $= 45 \ km/h$

Speed in km/h

$$Speed = \frac{Distance \ covered}{Time \ taken}$$

Question 6:

Salma takes 15 minutes from her house to reach her school on a bicycle. If the bicycle has a speed of 2 m/s, calculate the distance between her house and the school.

Answer 6:

Speed = 2 m/s Time taken = 15 minutes = 15 × 60 seconds = 900 seconds

Now, distance = speed × time = $2 \times 900 = 1800 \text{ m} = 1.8 \text{ km}$

Question 7:

Show the shape of the distance-time graph for the motion in the following cases:

(i) A car moving with a constant speed.

(ii) A car parked on a side road.

Question 10:

A car moves with a speed of 40 km/h for 15 minutes and then with a speed of 60 km/h for the next 15 minutes. The total distance covered by the car is: (i) 100 km

Answer 10:	
(iii) 15 km	(iv) 10 km
	(II) 23 KIII

(ii) 25 km

Solution:

Case I: Speed = 40 km/h Time = 15 min = 15/60 hour Distance = Speed × Time = 40 × $\frac{15}{60}$ = 10 km Case II: Speed = 60 km/h Time = 15 min = 15/60 hour Distance = Speed × Time = 60 × $\frac{15}{60}$ = 15 km Total distance = 10 km + 15 km = 25 km

Question 11:

Suppose the two photographs, shown in Fig. 13.1 and Fig. 13.2, had been taken at an interval of 10 seconds. If a distance of 100 metres is shown by 1 cm in these photographs, calculate the speed of the blue car.

Answer 11:

From the figures 13.1 and 13.2, we conclude that the distance covered by blue car is 2 cm.

So, the distance covered = 2×100 m = 200 m Time taken = 10 seconds

Question 12:

Fig. 13.15 shows the distance-time graph for the motion of two vehicles A and B. Which one of them is moving faster?

Fig. 13.15 Distance-time graph for the motion of two cars

Answer 12:

Vehicle A is traveling longer distance in lesser time as compared to Vehicle B. So, vehicle A is moving faster.

Question 13:

Which of the following distance-time graphs shows a truck moving with speed which is not constant?

Answer 13:

(iii) Graph is not a straight line, so it shows a truck moving with speed which is not constant.

