Mathematics

(Chapter – 9) (Rational Numbers) (Class - VII)

Exercise 9.1

Question 1:

List five rational numbers between:

(i)	-1 and 0	(ii)	-2 and -1
(iii)	$\frac{-4}{-1}$ and $\frac{-2}{-1}$	(iv)	$^{-1}$ and 2
	5 3		2 3

Answer 1: (i)

-1 and 0

...

 \Rightarrow

-2 and -1

Let us write -1 and 0 as rational numbers with denominator 6. Δ

$$\Rightarrow -1 = \frac{-6}{6} \text{ and } 0 = \frac{0}{6}$$

$$\therefore \frac{-6}{6} < \frac{-5}{6} < \frac{-4}{6} < \frac{-3}{6} < \frac{-2}{6} < \frac{-1}{6} < 0$$

$$\Rightarrow -1 < \frac{-5}{6} < \frac{-2}{3} < \frac{-1}{2} < \frac{-1}{3} < \frac{-1}{6} < 0$$

Therefore, five rational numbers between -1 and 0 would be $\frac{-5}{6}, \frac{-2}{3}, \frac{-1}{2}, \frac{-1}{3}, \frac{-1}{6}$

(ii)

Let us write -2 and -1 as rational numbers with denominator 6.

$$\Rightarrow -2 = \frac{-12}{6} \text{ and } -1 = \frac{-6}{6}$$

$$\therefore \frac{-12}{6} < \frac{-11}{6} < \frac{-10}{6} < \frac{-9}{6} < \frac{-8}{6} < \frac{-7}{6} < \frac{-6}{6}$$

$$\Rightarrow -2 < \frac{-11}{6} < \frac{-5}{3} < \frac{-3}{2} < \frac{-4}{3} < \frac{-7}{6} < -1$$

Therefore, five rational numbers between -2 and -1 would be $\frac{-11}{6}, \frac{-5}{3}, \frac{-3}{2}, \frac{-4}{3}, \frac{-7}{6}$

1

1

Vidya Champ **Rational numbers** (iii) $\begin{pmatrix} -4 \\ 5 \end{pmatrix}$ and $\begin{pmatrix} -2 \\ 3 \end{pmatrix}$ Let us write $\frac{-4}{5}$ and $\frac{-2}{2}$ as rational numbers with the same denominators. $\Rightarrow \quad \frac{-4}{5} = \frac{-36}{45} \text{ and } \frac{-2}{2} = \frac{-30}{45}$ $\therefore \qquad \frac{-36}{45} < \frac{-35}{45} < \frac{-34}{45} < \frac{-33}{45} < \frac{-32}{45} < \frac{-31}{45} < \frac{-30}{45}$ $\Rightarrow \quad \frac{-4}{5} < \frac{-7}{9} < \frac{-34}{45} < \frac{-11}{15} < \frac{-32}{45} < \frac{-31}{45} < \frac{-2}{3}$ Therefore, five rational numbers between $\frac{-4}{5}$ and $\frac{-2}{3}$ would be $\frac{-7}{9}, \frac{-34}{45}, \frac{-11}{15}, \frac{-32}{45}, \frac{-31}{45}, \frac{-2}{3}$ $\frac{-1}{2}$ and $\frac{2}{3}$ (iv) Let us write $\frac{-1}{2}$ and $\frac{2}{-1}$ as rational numbers with the same denominators. $\Rightarrow \quad \frac{-1}{2} = \frac{-3}{6} \text{ and } \frac{2}{3} = \frac{4}{6}$ $\therefore \qquad \frac{-3}{6} < \frac{-2}{6} < \frac{-1}{6} < 0 < \frac{1}{6} < \frac{2}{6} < \frac{3}{6} < \frac{4}{6}$ $\Rightarrow \frac{-1}{2} < \frac{-1}{3} < \frac{-1}{6} < 0 < \frac{1}{6} < \frac{1}{3} < \frac{1}{2} < \frac{2}{3}$ Therefore, five rational numbers between $\frac{-1}{2}$ and $\frac{2}{3}$ would be $\frac{-1}{3}, \frac{-1}{6}, 0, \frac{1}{6}, \frac{1}{6}, \frac{1}{3}$

2

Question 2:

Write four more rational numbers in each of the following patterns:

(i)	$\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \dots$
(ii)	$\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \dots$
(iii)	$\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}, \dots$
(iv)	$\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}, \dots$

Answer 2:

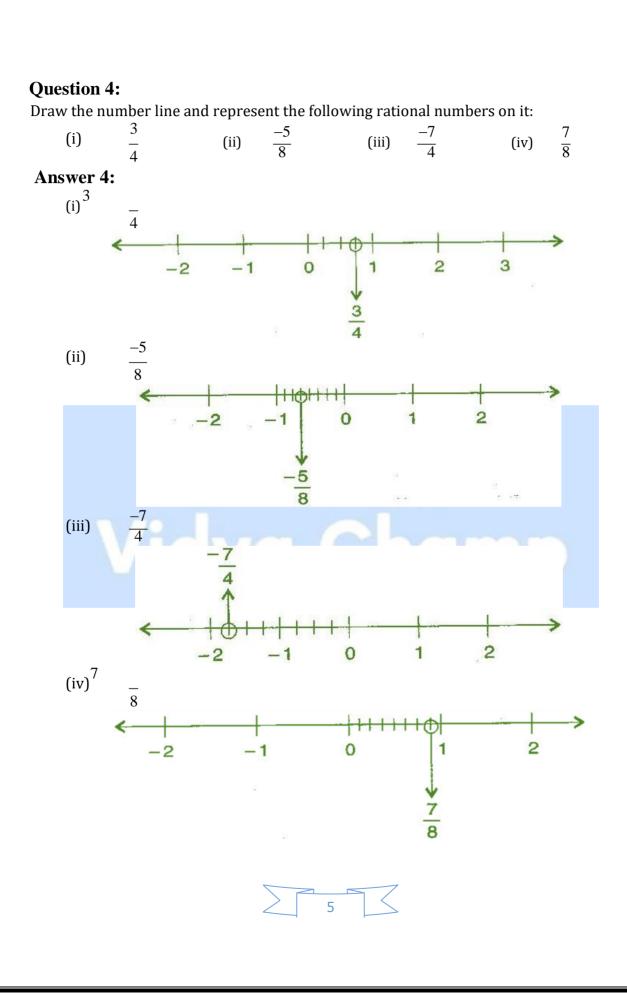
IC.	WUI 2.	
	(i)	$\frac{-3}{5}, \frac{-6}{10}, \frac{-9}{15}, \frac{-12}{20}, \dots$
	\Rightarrow	$\frac{-3\times1}{5\times1}, \frac{-3\times2}{5\times2}, \frac{-3\times3}{5\times3}, \frac{-3\times4}{5\times4}, \dots$
		Therefore, the next four rational numbers of this pattern would be $\frac{-3\times5}{5\times5}, \frac{-3\times6}{5\times6}, \frac{-3\times7}{5\times7}, \frac{-3\times8}{5\times8} = \frac{-15}{25}, \frac{-18}{30}, \frac{-21}{35}, \frac{-24}{40}$
	(ii) ⇒	$\frac{-1}{4}, \frac{-2}{8}, \frac{-3}{12}, \dots, \frac{-1\times 1}{4\times 1}, \frac{-1\times 2}{4\times 2}, \frac{-1\times 3}{4\times 3}, \dots, \frac{-1\times 1}{4\times 1}$ Therefore, the next four rational numbers of this pattern would be
		$\frac{-1 \times 4}{4 \times 4}, \frac{-1 \times 5}{4 \times 5}, \frac{-1 \times 6}{4 \times 6}, \frac{-1 \times 7}{4 \times 7} = \frac{-4}{16}, \frac{-5}{20}, \frac{-6}{24}, \frac{-7}{28}, \frac{-7}{28}$
	(iii) ⇒	$\frac{-1}{6}, \frac{2}{-12}, \frac{3}{-18}, \frac{4}{-24}, \dots, \frac{1}{6\times 1}, \frac{1\times 2}{-6\times 2}, \frac{1\times 3}{-6\times 3}, \frac{1\times 4}{-6\times 4}, \dots, \frac{1}{6\times 4}, \dots, \dots, \frac{1}{6\times 4}, \dots, \dots, \frac{1}{6\times 4}, \dots, \frac{1}{6\times 4$
		Therefore, the next four rational numbers of this pattern would be $\frac{1\times5}{-6\times5}, \frac{1\times6}{-6\times6}, \frac{1\times7}{-6\times7}, \frac{1\times8}{-6\times8} = \frac{5}{-30}, \frac{6}{-36}, \frac{7}{-42}, \frac{8}{-48}$

Vidya Champ³

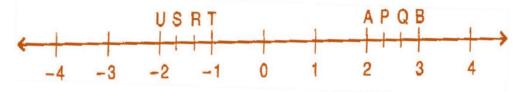
(iv)
$$\frac{-2}{3}, \frac{2}{-3}, \frac{4}{-6}, \frac{6}{-9}$$

 $\Rightarrow \frac{-2 \times 1}{3 \times 1}, \frac{2 \times 1}{-3 \times 1}, \frac{2 \times 2}{-3 \times 2}, \frac{2 \times 3}{-3 \times 3}$
Therefore, the next four rational numbers of this pattern would be
 $\frac{2 \times 4}{-3 \times 4}, \frac{2 \times 5}{-3 \times 5}, \frac{2 \times 6}{-3 \times 6}, \frac{2 \times 7}{-3 \times 7} = \frac{8}{-12}, \frac{10}{-15}, \frac{12}{-18}, \frac{14}{-21}$

Question 3:


Give four rational numbers equivalent to:

(i)
$$\frac{-2}{7}$$
 (ii) $\frac{5}{-3}$ (iii) $\frac{4}{9}$
Answer 3:
(i) $\frac{-2}{7}$
 $\frac{-2\times2}{7\times2} = \frac{-4}{14}, \frac{-2\times3}{7\times3} = \frac{-6}{21}, \frac{-2\times4}{7\times4} = \frac{-8}{28}, \frac{-2\times5}{7\times5} = \frac{-10}{35}$
Therefore, four equivalent rational numbers are $\frac{-4}{14}, \frac{-6}{21}, \frac{-8}{28}, \frac{-10}{35}$.
(ii) $\frac{5}{-3}, \frac{5\times2}{-3\times2} = \frac{10}{-6}, \frac{5\times3}{-3\times3} = \frac{15}{-9}, \frac{5\times4}{-3\times4} = \frac{20}{-12}, \frac{5\times5}{-3\times5} = \frac{25}{-15}$
Therefore, four equivalent rational numbers are $\frac{10}{-6}, \frac{15}{-9}, \frac{20}{-12}, \frac{25}{-15}$.
(iii) $\frac{4}{9}, \frac{4\times2}{9\times2} = \frac{8}{18}, \frac{4\times3}{9\times3} = \frac{12}{27}, \frac{4\times4}{9\times4} = \frac{16}{36}, \frac{4\times5}{9\times5} = \frac{20}{45}$
Therefore, four equivalent rational numbers are $\frac{8}{-12}, \frac{12}{16}, \frac{16}{29}, \frac{20}{18, 27, 36}, \frac{20}{45}$.


Vidya Champ ⁴

Vidya Champ 5

Question 5:

The points P, Q, R, S, T, U, A and B on the number line are such that, TR = RS = SU and AP = PQ = QB. Name the rational numbers represented by P, Q, R and S.

Answer 5:

Each part which is between the two numbers is divided into 3 parts. Therefore, $A = \frac{6}{3}, P = \frac{7}{3}, Q = \frac{8}{3}$ and $B = \frac{9}{3}$

 $T = \frac{-3}{3}$, $R = \frac{-4}{3}$, $S = \frac{-5}{3}$ and $U = \frac{-6}{3}$

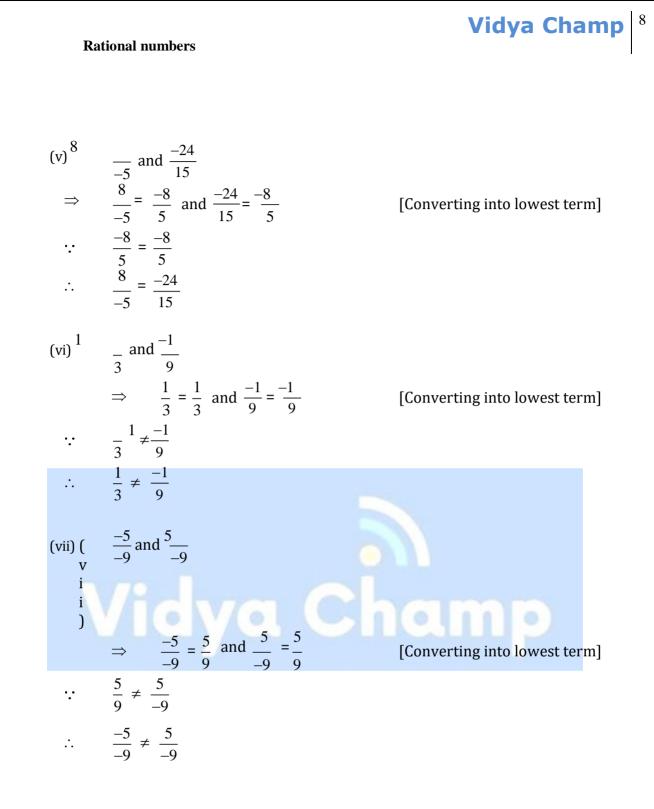
6

Similarly

Thus, the rational numbers represented P, Q, R and S are $\frac{78-4}{3}$ and $\frac{-5}{3}$

3

respectively.


Question 6:

Which of the following pairs represent the same rational numbers:

 $\frac{-7}{21}$ and $\frac{3}{9}$ (i) $\frac{-16}{20}$ and $\frac{20}{-25}$ (ii) $\frac{-2}{-3} \text{ and } \frac{2}{3} \\ \frac{-3}{5} \text{ and } \frac{-12}{20}$ (iii) (iv) $\frac{-24}{-5}$ and $\frac{-24}{15}$ (v)⁸ (vi)¹ $\frac{-3}{3}$ and $\frac{-1}{9}$ (vii) $(\frac{-5}{-9} \text{ and } \frac{5}{-9})$ i i)

Vidya Champ ⁷

⇒ ∵	$\frac{-7}{21} \text{ and } \frac{3}{9}$ $\frac{-7}{21} = \frac{-1}{3} \text{ and } \frac{3}{9} = \frac{1}{3}$ $\frac{-1}{3} \neq \frac{1}{3}$ $\frac{-1}{3} \neq \frac{1}{3}$ $\frac{-7}{21} \neq \frac{3}{9}$	[Converting into lowest term]
\Rightarrow	$\frac{-16}{20} \text{ and } \frac{20}{-25}$ $\frac{-16}{20} = \frac{-4}{5} \text{ and } \frac{20}{-25} = \frac{4}{-5} - \frac{4}{5}$ $\frac{-4}{5} = \frac{-4}{5}$	[Converting into lowest term]
∴ (iii) ⇒ ∵	$\frac{-16}{20} = \frac{20}{-25}$ $\frac{-2}{-3} \text{ and } \frac{2}{3}$ $\frac{-2}{-3} = \frac{2}{3} \text{ and } \frac{2}{3} = \frac{2}{3}$ $\frac{2}{3} = \frac{2}{3}$ $\frac{-2}{-3} = \frac{2}{3}$ $\frac{-2}{-3} = \frac{2}{3}$	[Converting into lowest term]
(iv) 	$\begin{array}{rcl} -3 & 3 \\ \hline -3 & 3 \\ \hline -3 & 5 \\ \hline -3$	[Converting into lowest term]
	7	

Question 7:

Rewrite the following rational numbers in the simplest form:

(i)
$$\frac{-8}{6}$$
 (ii) $\frac{25}{45}$ (iii) $\frac{-44}{72}$ (iv) $\frac{-8}{10}$
Answer 7:
(i) $\frac{-8}{6} = \frac{-8 \div 2}{6 \div 2} = \frac{-4}{3}$ [H.C.F. of 8 and 6 is 2]

Vidya Champ

 Rational numbers

 (ii)

$$\frac{25}{45} = \frac{25 \div 5}{45 \div 5} = \frac{5}{9}$$
 [H.C.F. of 25 and 45 is 5]

 (iii)
 $\frac{-44}{72} = \frac{-44 \div 4}{72 \div 4} = \frac{-11}{18}$
 [H.C.F. of 44 and 72 is 4]

 (iv)
 $\frac{-8}{10} = \frac{-8 \div 2}{10 \div 2} = \frac{-4}{5}$
 [H.C.F. of 8 and 10 is 2]

 Question 8:

 Fill in the boxes with the correct symbol out of <, > and =:

 (i)
 $\frac{-5}{7}$
 $\frac{-4}{5}$
 $\frac{-5}{7}$
 (iii)
 $\frac{-7}{8}$
 $\frac{-7}{-16}$

 (i)
 $\frac{-5}{7}$
 $\frac{-3}{10}$
 $\frac{-4}{-1}$
 $\frac{-5}{7}$
 (iii)
 $\frac{-7}{-6}$

 Answer 8:

 (i)
 $\frac{-5}{7}$
 $\frac{-28}{35}$
 $\frac{-28}{35}$
 $\frac{-4}{5}$
 $\frac{-5}{7}$

 (iii)
 $\frac{-4 \times 7}{5 \times 7}$
 $\frac{-5 \times 5}{7 \times 5}$
 $\frac{-28}{35}$
 $\frac{-2}{3}$
 $\frac{-4}{5}$
 $\frac{-5}{7}$

 (iii)
 $\frac{-4 \times 7}{5 \times 7}$
 $\frac{-5 \times 5}{7 \times 5}$
 $\frac{-28}{35}$
 $\frac{-27}{35}$
 $\frac{-4}{5}$
 $\frac{-5}{7}$

 (iii)
 $\frac{-7 \times 2}{5 \times 7}$
 $\frac{-14}{16}$
 $\frac{-14}{16}$
 $\frac{-7}{8}$
 $\frac{-4}{16}$

9

(iv)
$$\frac{-8\times4}{5\times4} \square \frac{-7\times5}{4\times5} \implies \frac{-32}{20} \implies \frac{-35}{20} \implies \frac{-8}{5} \implies \frac{-7}{4}$$

(v)
$$\frac{1}{-3} \square \frac{-1}{4} \implies \frac{1}{-3} \square \frac{-1}{4}$$

(vi)
$$\frac{5}{-11} \square \frac{-5}{11} \implies \frac{5}{-11} \square \frac{-5}{11}$$

> $\frac{-7}{6}$ Since, 0 is greater than every negative number.

Question 9:

Which is greater in each of the following:

(i)
$$\frac{2}{3}, \frac{5}{2^2}, \frac{5}{6}$$
 (ii) $\frac{-5}{6}, \frac{-4}{3}$ (iii) $\frac{-3}{4}, \frac{2}{-3}$ (iv) $\frac{-1}{4}, \frac{1}{4}, \frac{1}{4}$
(v) $\frac{-3}{3}, \frac{2}{7}, \frac{1}{5}$

Answer 9:

(i)	$\frac{2 \times 2}{3 \times 2} = \frac{4}{6}$ and $\frac{5 \times 3}{2 \times 3} = \frac{15}{6}$
	Since $\frac{4}{6} \le \frac{15}{6}$ Therefore $\frac{2}{3} \le \frac{5}{2}$
(ii)	$\frac{-5\times1}{6\times1} = \frac{-5}{6}$ and $\frac{-4\times2}{3\times2} = \frac{-8}{6}$
	Since $\frac{-5}{6} \ge \frac{8}{6}$ Therefore $\frac{-5}{6} \ge \frac{4}{3}$
(iii)	$\frac{-3\times3}{4\times3} = \frac{-9}{12}$ and $\frac{2\times(-4)}{-3\times(-4)} = \frac{-8}{12}$
	Since $\frac{-9}{12} \le \frac{8}{12}$ Therefore $\frac{-3}{4} \le \frac{2}{-3}$
(iv)	$\frac{-1}{4} \leq \frac{1}{4}$ Since positive number is always greater than negative
	number.
(v)	$-3\frac{2}{7} = \frac{-23}{7} = \frac{-23 \times 5}{7 \times 5} = \frac{-115}{35} \text{ and } -3\frac{4}{5} = \frac{-19}{5} = \frac{-19 \times 7}{5 \times 7} = \frac{-133}{35}$
	Since $\frac{-115}{35} \ge \frac{-133}{35}$ Therefore $-3\frac{2}{7} \ge -3\frac{4}{5}$

Question 10:

Write the following rational numbers in ascending order:

(i)
$$\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$$

(ii) $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3}$
(iii) $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$

Vidya Champ¹⁰

Answer 10: $\frac{-3}{5}, \frac{-2}{5}, \frac{-1}{5}$ (i) $\Rightarrow \quad \frac{-3}{5} < \frac{-2}{5} < \frac{-1}{5}$ $\frac{1}{3}, \frac{-2}{9}, \frac{-4}{3} \implies \frac{3}{9}, \frac{-2}{9}, \frac{-12}{9}$ [Converting into same denominator] (ii) Now $\frac{-12}{9} < \frac{-2}{9} < \frac{3}{9} \implies$ $\frac{-3}{7}, \frac{-3}{2}, \frac{-3}{4}$ (iii) $\Rightarrow \quad \frac{-3}{2} < \frac{-3}{4} < \frac{-3}{7}$

$$\frac{-4}{3} < \frac{-2}{9} < \frac{1}{3}$$

Vidya Champ ¹¹

Exercise 9.2

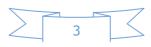
Question 1: Find the sum: (i)	$ \begin{array}{c} \begin{array}{c} 5\\ 4 \\ \hline \end{array} \begin{array}{c} -11\\ 4 \end{array} \end{array} $ (ii)	
		$\frac{-3}{-11} + \frac{5}{9}$ $\frac{-2}{3} + 0$
(v) (vii)	$\frac{-8}{19} + \frac{(-2)}{57}$ (vi) $-2\frac{1}{3} + 4\frac{3}{5}$	3
Answer 1:	5 (-41) 5-11 -6 -3	
(i)	$\frac{4}{2} + \left(\frac{4}{2}\right)^{-1} = \frac{5}{2} + \frac{1}{2} = \frac{-4}{2} = \frac{-5}{2}$	
(ii)	$\frac{5}{3} + \left(\frac{-41}{5}\right) = \frac{5}{-411} = \frac{-6}{4} = \frac{-32}{-2}$ $\frac{5}{3} + \frac{3}{5} = \frac{5 \times 5}{3 \times 5} + \frac{3 \times 3}{5 \times 3} = \frac{25}{15} + \frac{9}{15}$	[L.C.M. of 3 and 5 is 15]
(iii)	$= \frac{25+9}{15} = \frac{34}{15} = 2\frac{4}{15}$ $\frac{-9}{10} + \frac{22}{15} = \frac{-9\times3}{10\times3} + \frac{22\times2}{15\times2} = \frac{-27}{30} + \frac{44}{30}$ $= \frac{-27+44}{30} = \frac{17}{30}$	[L.C.M. of 10 and 15 is 30]
(iv)	$\frac{-3}{-11} + \frac{5}{9} = \frac{-3 \times 9}{-11 \times 9} + \frac{5 \times 11}{9 \times 11} = \frac{27}{99} + \frac{55}{99}$	[L.C.M. of 11 and 9 is 99]
(v) (vi)	$=\frac{27+55}{99} = \frac{82}{99}$ $=\frac{27+55}{99} = \frac{82}{99}$ $=\frac{-8}{19} + \frac{(-2)}{57} = \frac{-8 \times 3}{19 \times 3} + \frac{(-2) \times 1}{57 \times 1} = \frac{-24}{57} + \frac{(-2)}{57}$ $= \frac{-24-2}{57} = \frac{-26}{57}$ $=\frac{-2}{3} + 0 = \frac{-2}{3}$	[L.C.M. of 19 and 57 is 57]

Vidya Champ ¹²

(vii)
$$-2\frac{1}{3} + 4\frac{3}{5} = \frac{-7}{3} + \frac{23}{5} = \frac{-7 \times 5}{3 \times 5} + \frac{23 \times 3}{5 \times 3} = \frac{-35}{15} + \frac{69}{15}$$
 [L.C.M. of 3 and 5 is 15]
 $= \frac{-35 + 69}{15} = \frac{34}{15} = 2\frac{4}{15}$

Question 2:
Find:
(i)
$$7$$

 $\frac{7}{24} - \frac{17}{36}$
(ii) 5
 $\frac{-6}{13} - \frac{(-7)}{15}$
(iv) $-2\frac{1}{9} - 6$
Answer 2:
(i) $\frac{7}{24} - \frac{17}{36} = \frac{7 \times 3}{24 \times 3} - \frac{17 \times 2}{36 \times 2} = \frac{21}{72} - \frac{34}{72}$
(ii) $\frac{7}{24} - \frac{17}{36} = \frac{7 \times 3}{24 \times 3} - \frac{17 \times 2}{36 \times 2} = \frac{21}{72} - \frac{34}{72}$
(ii) $\frac{21 - 34}{63} = \frac{-13}{72}$
(ii) $\frac{5}{63} - \frac{(-6)}{(21)} = \frac{5 \times 1}{63 \times 1} - \frac{(-6 \times 3)}{(21 \times 3)} = \frac{5}{63} - \frac{-18}{63}$
(iii) $\frac{-6}{63} - \frac{(-7)}{(15)} = \frac{-5 \times 15}{13 \times 15} - \frac{(-7 \times 13)}{(15 \times 13)} = \frac{-90}{195} - \frac{(-91)}{(195)}$
(iv) $\frac{-3}{13} - \frac{7}{11} = \frac{-3 \times 11}{8 \times 11} - \frac{7 \times 8}{11 \times 8} = \frac{-33}{88} - \frac{56}{88}$
(iv) $\frac{-3}{8} - \frac{7}{11} = \frac{-3 \times 11}{8 \times 11} - \frac{7 \times 8}{11 \times 8} = \frac{-33}{88} - \frac{56}{88}$
(iv) $-\frac{2}{9} - 6 = \frac{-19}{9} - \frac{6}{1} = \frac{-19 \times 1}{9 \times 1} - \frac{6 \times 9}{1 \times 9}$
(v) $-2\frac{1}{9} - 6 = \frac{-19}{9} - \frac{6}{1} = \frac{-19 \times 1}{9} - \frac{6 \times 9}{1 \times 9}$
(L.C.M. of 9 and 1 is 9]
 $= \frac{-19}{9} - \frac{54}{9} = \frac{-19 - 54}{9} = \frac{-73}{9} = -8\frac{1}{9}$


Vidya Champ ¹³

Vidya Champ¹⁴ **Rational numbers Question 3:** Find the product: (ii) $\frac{3}{10} \times (-9)$ $9 \times \left(-7 \atop 4\right)$ (i) (iv) $3 \times \begin{pmatrix} -2 \\ 7 + 5 \end{pmatrix}$ (vi) $3 \times 5 \\ -5 3$ (iii) $\begin{array}{c} -6 & 9 \\ -5 & \times 11 \end{array}$ (v) $\frac{3}{11} \times \frac{2}{5}$ Answer 3: $\frac{9}{2} \times \left(\frac{-7}{4}\right) = \frac{9 \times (-7)}{2 \times 4} = \frac{-63}{8} = -7\frac{7}{8}$ (i) $\frac{3}{10} \times (-9) = \frac{3 \times (-9)}{10} = \frac{-27}{10} = -2\frac{7}{10}$ (ii) (iii) $\frac{-6}{5} \times \frac{9}{11} = \frac{(-6) \times 9}{5 \times 11} = \frac{-54}{55}$ (iv) $\frac{3}{7} \not\models \left(\frac{-2}{5}\right) = \frac{3 \times (-2)}{7 \times 5} = \frac{-6}{35}$ (v) $\frac{3}{11} \times \frac{2}{5} = \frac{3 \times 2}{11 \times 5} = \frac{6}{55}$ $\frac{3}{-5} \times \begin{pmatrix} -5 \\ -5 \\ -5 \end{pmatrix} = \frac{3 \times (-5)}{-5 \times 3} = 1$ (vi) 110

Question 4:

Find the value of:

(ii) $\frac{-3}{5} \div 2$ $(-4)\div\frac{2}{3}$ (i) (iv) $\frac{-1}{8} \div \frac{3}{4}$ (vi) $\frac{-7}{12} \div \binom{2}{13}$ $\frac{-4}{5} \div (-3)$ (iii) $\begin{array}{c}
\frac{-2}{13} \div 1 \\
\frac{-2}{3} \div (-4) \\
\frac{-3}{13} \div (-65)
\end{array}$ (v) (vii)

Vidya Champ ¹⁵

Answer 4:

(i)
$$(-4) \div \frac{2}{3} = (-4) \times \frac{3}{2} = (-2) \times 3 = -6$$

(ii) $\frac{-3}{5} \div 2 = \frac{-3}{5} \times \frac{1}{2} = \frac{(-3) \times 1}{5 \times 2} = \frac{-3}{10}$
(iii) $\frac{-4}{5} \div (-3) = \frac{(-4)}{5} \times \frac{1}{5} = \frac{(-4) \times 1}{5} = \frac{4}{5}$

$$5 + (-3) = -5 \times = -5 \times = -5 \times (-3) = 15$$

(iv) $\frac{-1}{8} \div \frac{3}{4} = \frac{-1}{8} \times \frac{4}{3} = \frac{(-1) \times 1}{2 \times 3} = \frac{-1}{6}$

(v)
$$\frac{-2}{13} \div \frac{1}{7} = \frac{-2}{13} \times \frac{7}{1} = \frac{(-2) \times 7}{13 \times 1} = \frac{-14}{13} = -1\frac{1}{13}$$

(vi)
$$\frac{-7}{12} \div \left(\frac{-2}{13}\right) = \frac{-7}{12} \times \frac{13}{(-2)} = \frac{(-7) \times 13}{12 \times (-2)} = \frac{-91}{24} = 3^{\frac{19}{24}} = 3^{\frac{19}{2$$

4

(vii)
$$\frac{3}{13} \div \left(\frac{-4}{65}\right) = \frac{3}{13} \times \frac{65}{65} = \frac{3 \times (-5)}{13} = \frac{-15}{-13} = -3^{\frac{3}{2}}$$

Vidya Champ