

- (i) Supplement of $105 = 180 105^{\circ} = 75^{\circ}$
- (ii) Supplement of $87 = 180 \circ -87 \circ = 93^{\circ}$
- (iii) Supplement of $154^{\circ} = 180^{\circ} 154^{\circ} = 26^{\circ}$

1

Question 3:

Identify which of the following pairs of angles are complementary and which are supplementary:

(i)	65°,115°	(ii)	63°, 27°	(iii)	112°,68°
(iv)	130°, 50°	(v)	45°, 45°	(vi)	80°,10°

Answer 3:

If sum of two angles is 180°, then they are called supplementary angles. If sum of two angles is 90° , then they are called complementary angles.

(i)	65°+115° =180°	These are supplementary angles.
(ii)	$63^{\circ} + 27^{\circ} = 90^{\circ}$	These are complementary angles.
(iii)	112°+68° =180°	These are supplementary angles.
(iv)	$130^{\circ} + 50^{\circ} = 180^{\circ}$	These are supplementary angles.
(v)	$45^{\circ} + 45^{\circ} = 90^{\circ}$	These are complementary angles.
(vi)	$80^{\circ} + 10^{\circ} = 90^{\circ}$	These are complementary angles.

Question 4:

Find the angle which is equal to its complement.

Answer 4:

Let one of the two equal complementary angles be *x*.

 $x + x = 90^{\circ}$ ÷. $2x = 90^{\circ}$ \Rightarrow $x = \frac{90^{\circ}}{2} = 45^{\circ}$ \Rightarrow

Thus, 45° is equal to its complement.

Question 5:

Find the angle which is equal to its supplement.

Answer 5:

Let *x* be two equal angles of its supplement.

Therefore,
$$x + x = 180^{\circ}$$

 $\Rightarrow 2x = 180^{\circ}$
 $\Rightarrow x = \frac{180^{\circ}}{2} = 90^{\circ}$

[Supplementary angles]

Thus, 90 is equal to its supplement.

Question 6:

In the given figure, $\angle 1$ and $\angle 2$ are supplementary angles. If $\angle 1$ is decreased, what changes should take place in $\angle 2$ so that both the angles still remain supplementary?

Answer 6:

If \angle 1 is decreased then, \angle 2 will increase with the same measure, so that both the angles still remain supplementary.

Question 7:

Can two angles be supplementary if both of them are:

(i) acute	(ii) obtuse	(iii) right?
-----------	-------------	--------------

Answer 7:

- (i) No, because sum of two acute angles is less than 180°.
- (ii) No, because sum of two obtuse angles is more than 180°.
- (iii) Yes, because sum of two right angles is 180°.

Question 8:

An angle is greater than 45°. Is its complementary angle greater than 45 ° equal to 45 ° or less than 45 ?

Answer 8:

Let the complementary angles be *x* and *y*, i.e., $x + y = 90^{\circ}$

It is given that $x > 45^{\circ}$

Adding *y* both sides, $x + y > 45^{\circ} + y$

$$\Rightarrow$$
 90° > 45° + y

$$\Rightarrow$$
 90° - 45° > y

 $\Rightarrow y < 45^{\circ}$

Thus, its complementary angle is less than 45 [°].

Question 9:

In the adjoining figure:

- Is $\angle 1$ adjacent to $\angle 2$? (i)
- (ii) Is \angle AOC adjacent to \angle AOE?
- (iii) Do \angle COE and \angle EOD form a linear pair?
- Are \angle BOD and \angle DOA supplementary? (iv)
- Is $\angle 1$ vertically opposite to $\angle 4$? (v)
- (vi) What is the vertically opposite angle of $\angle 5$?

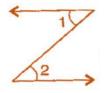
Answer 9:

- (i) Yes, in \angle AOE, OC is common arm.
- (ii) No, they have no non-common arms on opposite side of common arm.
- Yes, they form linear pair. (iii)
- (iv) Yes, they are supplementary.
- Yes, they are vertically opposite angles. (v)
- Vertically opposite angles of \angle 5 is \angle COB. (vi)

Ouestion 10:

Indicate which pairs of angles are:

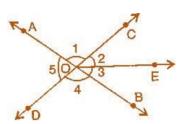
- Vertically opposite angles? (i)
- (ii) Linear pairs?

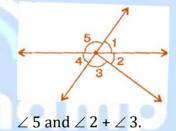

Answer 10:

(ii)

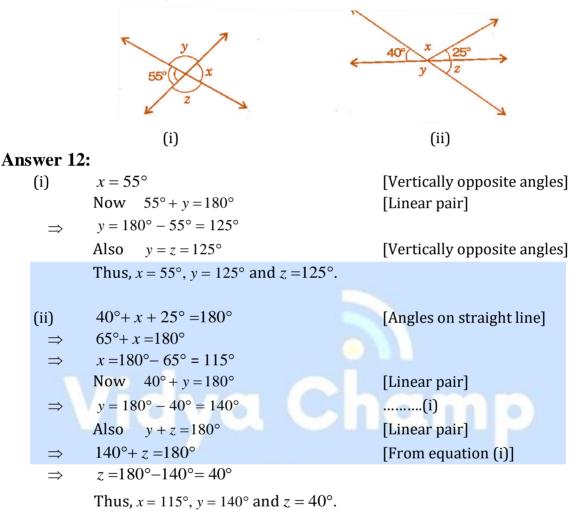
- (i)
 - Vertically opposite angles, $\angle 1$ and $\angle 4$; Linear pairs $\angle 1$ and $\angle 5$; $\angle 5$ and $\angle 4$.

Question 11:


In the following figure, is $\angle 1$ adjacent to $\angle 2$? Give reasons.


Answer 11:

 $\angle 1$ and $\angle 2$ are not adjacent angles because their vertex is not common.



Question 12:

Find the values of the angles *x*, *y* and *z* in each of the following:

Question 13:

Fill in the blanks:

- (i) If two angles are complementary, then the sum of their measures is
- (ii) If two angles are supplementary, then the sum of their measures is
- (iii) Two angles forming a linear pair are_____
- (iv) If two adjacent angles are supplementary, they form a_____

5

- (v) If two lines intersect a point, then the vertically opposite angles are always
- (vi) If two lines intersect at a point and if one pair of vertically opposite angles are acute angles, then the other pair of vertically opposite angles are

Answer 13:

(i)	90°	(ii)	180°	(iii)	supplementary
(iv)	linear pair	(v)	equal	(vi)	obtuse angles

Question 14:

In the adjoining figure, name the following pairs of angles:

- (i) Obtuse vertically opposite angles.
- (ii) Adjacent complementary angles.
- (iii) Equal supplementary angles.
- (iv) Unequal supplementary angles.
- (v) Adjacent angles that do not form a linear pair.

Answer 14:

(i) Obtuse vertically opposite angles means greater than 90 and equal $\angle AOD = \angle BOC$.

B

- (ii) Adjacent complementary angles means angles have common vertex, common arm, non-common arms are on either side of common arm and sum of angles is 90.°
- (iii) Equal supplementary angles means sum of angles is 180° and supplement angles are equal.
- (iv) Unequal supplementary angles means sum of angles is 180° and supplement angles are unequal.

i.e., $\angle AOE$, $\angle EOC$; $\angle AOD$, $\angle DOC$ and $\angle AOB$, $\angle BOC$

(v) Adjacent angles that do not form a linear pair mean, angles have common ray but the angles in a linear pair are not supplementary.

i.e., $\angle AOB$, $\angle AOE$; $\angle AOE$, $\angle EOD$ and $\angle EOD$, $\angle COD$

Exercise 5.2

Question 1:

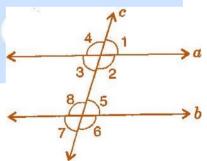
State the property that is used in each of the following statements:

- (i) If a || b, then $\angle 1 = \angle 5$.
- (ii) If $\angle 4 = \angle 6$, then a || b.
- (iii) If $\angle 4 + \angle 5 + 180^\circ$, then a || b.

Answer 1:

- (i) Given, a || b, then $\angle 1 = \angle 5$ [Corresponding angles] If two parallel lines are cut by a transversal, each pair of corresponding angles are equal in measure.
- (ii) Given, $\angle 4 = \angle 6$, then a || b [Alternate interior angles] When a transversal cuts two lines such that pairs of alternate interior angles are equal, the lines have to be parallel.
- (iii) Given, $\angle 4 + \angle 5 = 180^\circ$, then a || b [Co-interior Angles] When a transversal cuts two lines, such that pairs of interior angles on the same side of transversal are supplementary, the lines have to be parallel.

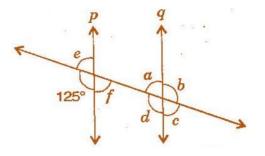
Question 2:


In the adjoining figure, identify:

- (i) the pairs of corresponding angles.
- (ii) the pairs of alternate interior angles.
- (iii) the pairs of interior angles on the same side of the transversal.
- (iv) the vertically opposite angles.

Answer 2:

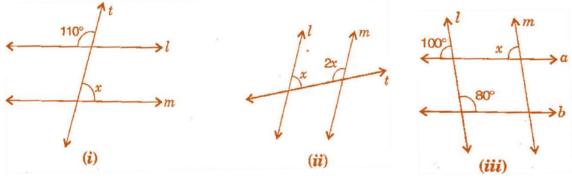
- (i) The pairs of corresponding angles:
 - $\angle 1$, $\angle 5$; $\angle 2$, $\angle 6$; $\angle 4$, $\angle 8$ and $\angle 3$, $\angle 7$
- (ii) The pairs of alternate interior angles are: $\angle 3$, $\angle 5$ and $\angle 2$, $\angle 8$
- (iii) The pair of interior angles on the same side of the transversal: $\angle 3$, $\angle 8$ and $\angle 2$, $\angle 5$
- (iv) The vertically opposite angles are: $\angle 1, \angle 3; \angle 2, \angle 4; \angle 6, \angle 8 \text{ and } \angle 5, \angle 7$



Vidya Champ ⁸ Lines and angles

Question 3:

In the adjoining figure, p || q. Find the unknown angles.



Answer 3:

Given,	p q and cut by a transversal line.	
•••	$125^{\circ}+e=180^{\circ}$	[Linear pair]
<i>.</i> .	$e = 180^{\circ} - 125^{\circ} = 55^{\circ} \square$ (i)	
Now	$e = f = 55^{\circ}$	[Vertically opposite angles]
Also	$a = f = 55^{\circ}$	[Alternate interior angles]
	$a+b=180^{\circ}$	[Linear pair]
\Rightarrow	55°+ <i>b</i> =180°	[From equation (i)]
\Rightarrow	<i>b</i> =180°- 55° =125°	
Now	$a = c = 55^{\circ}$ and $b = d = 125^{\circ}$	[Vertically opposite angles]
Thus,	$a = 55^{\circ}, b = 125^{\circ}, c = 55^{\circ}, d = 125^{\circ}, e = 55^{\circ}$	$55^{\circ} \text{ and } f = 55^{\circ}.$

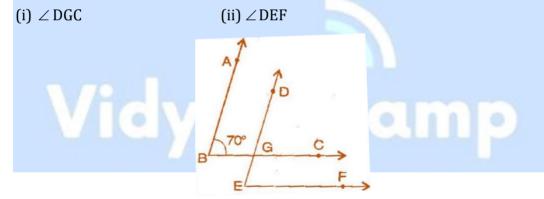
Question 4:

Find the values of *x* in each of the following figures if l||m|

Answer 4:

(i)

Given, $l \parallel m$ and t is transversal line.

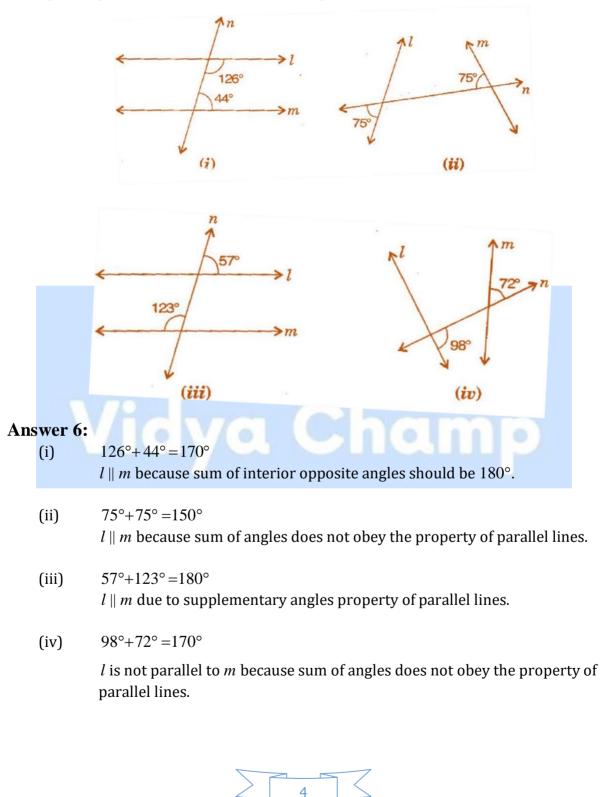

:. Interior vertically opposite angle between lines *l* and $t = 110^{\circ}$.

	$\therefore \qquad 110^{\circ} + x = 180^{\circ}$ $\implies \qquad x = 180^{\circ} - 110^{\circ} = 70^{\circ}$	[Supplementary angles]
(ii)	Given, $l m$ and t is transversal line. x + 2x = 180 $\Rightarrow 3x = 180^{\circ}$ $\Rightarrow x = \frac{180^{\circ}}{3} = 60^{\circ}$	[Interior opposite angles]
(iii)	3 Given, $l m$ and $a b$. $x = 100^{\circ}$	[Corresponding angles]

Question 5:


In the given figure, the arms of two angles are parallel. If $\triangle ABC = 70^\circ$, then find:

Answer 5:


(i) Given, AB || DE and BC is a transversal line and $\angle ABC = 70^{\circ}$ $\therefore \ \angle ABC = \angle DGC$ [Corresponding angles] $\therefore \ \angle DGC = 70^{\circ}$ (i)

(ii)	Given, BC EF and DE is a transversal line and $\angle DGC = 70^{\circ}$		
	$\therefore \qquad \angle \text{DGC} = \angle \text{DEF}$	[Corresponding angles]	
	$\therefore \qquad \angle \text{DEF} = 70^{\circ}$	[From equation (i)]	

Question 6:

In the given figures below, decide whether *l* is parallel to *m*.

