Vidya Champ ¹ Simple equation

Mathematics

(Chapter – 4) (Simple Equations) (Class – VII)

Exercise 4.1

Question 1:

Complete the last column of the table:

S. No.	Equation	Value	Say, whether the Equation is
5. NO.	Lquation	Value	satisfied. (Yes / No)
(i)	x + 3 = 0	<i>x</i> = 3	
(ii)	x + 3 = 0	x = 0	
(iii)	x + 3 = 0	x = -3	
(iv)	<i>x</i> – 7 =1	<i>x</i> = 7	
(v)	<i>x</i> – 7 =1	<i>x</i> = 8	
(vi)	5x = 25	x = 0	
(vii)	5x = 25	<i>x</i> = 5	
(viii)	5x = 25	<i>x</i> = -5	
(viii)	$\frac{m}{3} = 2$	<i>m</i> = -6	
(ix)	m = 2	<i>m</i> = 0	
(x)	m = 2	<i>m</i> = 6	

Answer 1:

S. No.	Equation	Value	Say, whether the Equation is satisfied. (Yes / No)
(i)	x + 3 = 0	x=3	No
(ii)	x + 3 = 0	x = 0	No
(iii)	x + 3 = 0	x = -3	Yes
(iv)	<i>x</i> – 7 =1	<i>x</i> = 7	No
(v)	<i>x</i> – 7 =1	x = 8	Yes

(vi)	5x = 25	x = 0	No
(vii)	5x = 25	<i>x</i> = 5	Yes
(viii)	5x = 25	x = -5	No
(viii)	^m = 2	m = -6	No
	3		
(ix)	$\frac{m}{3} = 2$	m = 0	No
(x)	^m = 2	<i>m</i> = 6	Yes
	3		

Question 2:

Check whether the value given in the brackets is a solution to the given equation or not:

(b) 7n+5=19(n=-2)

(d) 4p - 3 = 13(p = 1)

(f) 4p - 3 = 13(p = 0)

- (a) n + 5 = 19 (n = 1)(c) 7n + 5 = 19 (n = 2)
- (e) 4p 3 = 13(p = -4)

Answer 2:

(a) n+5=19(n=1)

Putting n = 1 in L.H.S.,

- 1 + 5 = 6
- \therefore L.H.S. \neq R.H.S.,
- \therefore n = 1 is not the solution of given equation.

(b) 7n + 5 = 19(n = -2)

Putting n = -2 in L.H.S.,

- 7(-2)+5=-14+5=-9
- $\therefore \quad \text{L.H.S.} \neq \text{R.H.S.},$
- \therefore n = -2 is not the solution of given equation.

Vidya Champ ³ Simple equation

(c) 7n + 5 = 19 (n = 2)Putting n = 2 in L.H.S., 7 (2) + 5 = 14 + 5 = 19

- $\therefore \quad L.H.S. = R.H.S.,$
- \therefore n = 2 is the solution of given equation.

(a)
$$4p - 3 = 13(p = 1)$$

Putting p = 1 in L.H.S.,

$$4(1) - 3 = 4 - 3 = 1$$

 $\therefore L.H.S. \neq R.H.S.,$

 \therefore p = 1 is not the solution of given equation.

(b) 4p - 3 = 13(p = -4)

Putting p = -4 in L.H.S.,

$$4(-4) - 3 = -16 - 3 = -19$$

 $\therefore L.H.S. \neq R.H.S.,$

 \therefore p = -4 is not the solution of given equation.

c)
$$4p - 3 = 13(p = 0)$$

Putting $p = 0$ in L.H.S.,
 $4(0) - 3 = 0 - 3 = -3$

 $\therefore L.H.S. \neq R.H.S.,$

5p + 2 = 17

 \therefore p = 0 is not the solution of given equation.

Question 3:

Solve the following equations by trial and error method:

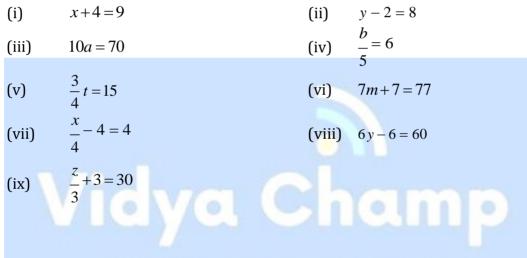
(i) 5p+2=17 (ii) 3m-14=4

Answer 3:

(i)

Putting p = -3 in L.H.S. 5(-3)+2 = -15+2 = -13 $\therefore -13 \neq 17$ Therefore, p = -3 is not the solution.

5(-2)+2 = -10 + 2 = -8Putting p = -2 in L.H.S. Therefore, p = -2 is not the solution. $\therefore -8 \neq 17$ 5(-1)+2 = -5+2 = -3Putting p = -1 in L.H.S. $\therefore -3 \neq 17$ Therefore, p = -1 is not the solution. 5(0) + 2 = 0 + 2 = 2Putting p = 0 in L.H.S. $\therefore 2 \neq 17$ Therefore, p = 0 is not the solution. Putting p = 1 in L.H.S. 5(1) + 2 = 5 + 2 = 7···7 ≠ 17 Therefore, p = 1 is not the solution. Putting p = 2 in L.H.S. 5(2) + 2 = 10 + 2 = 12: 12 ≠17 Therefore, p = 2 is not the solution. Putting p = 3 in L.H.S. 5(3) + 2 = 15 + 2 = 1717 = 17Therefore, p = 3 is the solution. (ii) 3m - 14 = 43(-2)-14 = -6 - 14 = -20Putting m = -2 in L.H.S. $\therefore -20 \neq 4$ Therefore, m = -2 is not the solution. Putting m = -1 in L.H.S. 3(-1) - 14 = -3 - 14 = -17 $\therefore -17 \neq 4$ Therefore, m = -1 is not the solution. 3(0) - 14 = 0 - 14 = -14Putting m = 0 in L.H.S. $\therefore -14 \neq 4$ Therefore, m = 0 is not the solution. Putting m = 1 in L.H.S. 3(1) - 14 = 3 - 14 = -11·: -11≠4 Therefore, m = 1 is not the solution. Putting m = 2 in L.H.S. 3(2) - 14 = 6 - 14 = -8 $\therefore -8 \neq 4$ Therefore, m = 2 is not the solution. Putting m = 3 in L.H.S. 3(3) - 14 = 9 - 14 = -5Therefore, m = 3 is not the solution. $\therefore -5 \neq 4$ 3(4) - 14 = 12 - 14 = -2Putting m = 4 in L.H.S. Therefore, m = 4 is not the solution. $\therefore -2 \neq 4$ Putting m = 5 in L.H.S. 3(5) - 14 = 15 - 14 = 1Therefore, m = 5 is not the solution. $\therefore 1 \neq 4$ Putting m = 6 in L.H.S. 3(6) - 14 = 18 - 14 = 4Therefore, m = 6 is the solution. :: 4 = 4



Question 4:

Write equations for the following statements:

- (i) The sum of numbers x and 4 is 9.
- (ii) 2 subtracted from y is 8.
- (iii) Ten times a is 70.
- (iv) The number b divided by 5 gives 6.
- (v) Three-fourth of t is 15.
- (vi) Seven times *m* plus 7 gets you 77.
- (vii) One-fourth of a number *x* minus 4 gives 4.
- (viii) If you take away 6 from 6 times *y*, you get 60.
- (ix) If you add 3 to one-third of *z*, you get 30.

Answer 4:

Question 5:

Write the following equations in statement form:

(i)	p + 4 = 15	(ii)	m - 7 = 3
(iii)	2 <i>m</i> =7	(iv)	$\frac{m}{5} = 3$
(v)	$\frac{3m}{5} = 6$	(vi)	3p + 4 = 25
(vii)	4p - 2 = 18	(viii)	$\frac{p}{2} + 2 = 8$

Vidya Champ

Answer 5:

- (i) The sum of numbers p and 4 is 15.
- (ii) 7 subtracted from m is 3.
- (iii) Two times m is 7.
- (iv) The number *m* is divided by 5 gives 3.
- (v) Three-fifth of the number m is 6.
- (vi) Three times *p* plus 4 gets 25.
- (vii) If you take away 2 from 4 times *p*, you get 18.
- (viii) If you added 2 to half is *p*, you get 8.

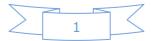
Question 6:

Set up an equation in the following cases:

- (i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. (Tale *m* to be the number of Parmit's marbles.)
- (ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age. (Take Laxmi's age to be *y* years.)
- (iii) The teacher tells the class that the highest marks obtained by a student in her class are twice the lowest marks plus 7. The highest score is 87. (Take the lowest score to be *l*.)
- (iv) In an isosceles triangle, the vertex angle is twice either base angle. (Let the base angle be b in degrees. Remember that the sum of angles of a triangle is 180° .)

Answer 6:

- (i) Let *m* be the number of Parmit's marbles.
 - \therefore 5*m*+7=37
- (ii) Let the age of Laxmi be *y* years.
 - $\therefore \qquad 3y+4=49$
- (iii) Let the lowest score be l.
 - $\therefore \qquad 2l+7=87$
- (iv) Let the base angle of the isosceles triangle be b, so vertex angle = 2b.
 - $\therefore \qquad 2b + b + b = 180^{\circ}$
 - \Rightarrow 4*b*=180° [Angle sum property of a Δ]

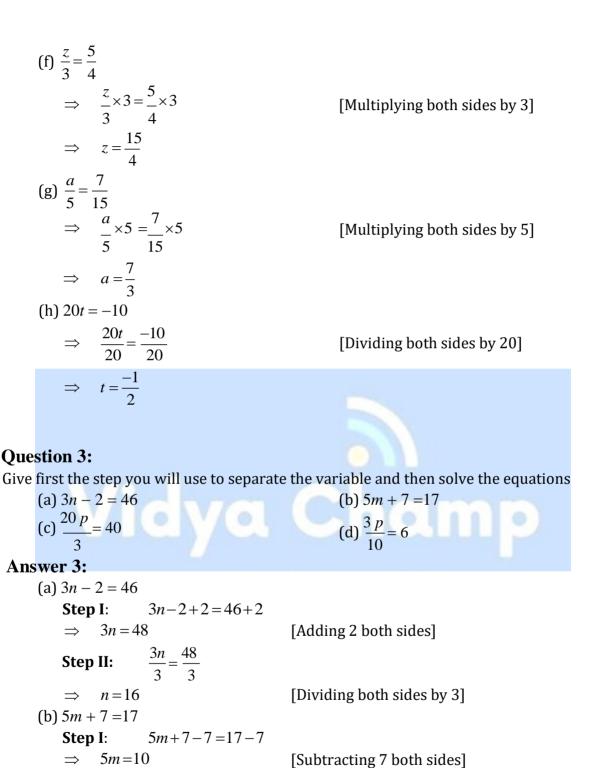

Vidya Champ ⁷ Simple equation

Exercise 4.2

Question 1:

Give first the step you will use to separate the variable and then solve the equations:

Give mist i	the step you will use to separate	e the variable and then solve the equations		
(a) <i>x</i>	x - 1 = 0	(b) $x + 1 = 0$		
(c) <i>x</i>	z - 1 = 5	(d) $x + 6 = 2$		
(e) y	v - 4 = -7	(f) $y - 4 = 4$		
(g) <i>y</i>	y + 4 = 4	(h) $y + 4 = -4$		
Answer	1:			
(a) <i>x</i>	-1 = 0			
=	$\Rightarrow x-1+1=0+1$	[Adding 1 both sides]		
=	$\Rightarrow x = 1$			
(b) <i>x</i>	+1 = 0			
=	$\Rightarrow x+1-1=0-1$	[Subtracting 1 both sides]		
	$\Rightarrow x = -1$			
	-1 = 5			
	$\Rightarrow x-1+1=5+1$	[Adding 1 both sides]		
	$\Rightarrow x = 6$			
	x + 6 = 2			
	$\Rightarrow x+6-6=2-6$	[Subtracting 6 both sides]		
=	$\Rightarrow x = -4$			
	-4 = -7			
=	$\Rightarrow y-4+4=-7+4$	[Adding 4 both sides]		
=	$\Rightarrow y = -3$			
(f) y	-4 = 4			
=	$\Rightarrow y-4+4=4+4$	[Adding 4 both sides]		
=	$\Rightarrow y = 8$			
(g) y	2 + 4 = 4			
=	\Rightarrow $y+4-4=4-4$	[Subtracting 4 both sides]		
=	$\Rightarrow y = 0$			
	y + 4 = -4			
	\Rightarrow y+4-4=-4-4	[Subtracting 4 both sides]		
	$\Rightarrow y = -8$			
-	$\rightarrow y = 0$			



Question 2:

Give first the step you will use to separate the variable and then solve the equations

(a) $3l = 42$	(b) $\frac{b}{2} = 6$	(c) $\frac{p}{7} = 4$
(d) $4x = 25$	(e) 8 <i>y</i> = 36	(f) $\frac{z}{3} = \frac{5}{4}$
(g) $\frac{a}{5} = \frac{7}{15}$	(h) $20t = -10$	
Answer 2:		
(a) $3l = 42$		
$\Rightarrow \frac{3l}{3} = \frac{42}{3}$	[Divid	ling both sides by 3]
(b) $\frac{\Rightarrow}{2} = 6$ (b) $\frac{b}{2} = 6$		
$\Rightarrow \frac{b}{2} \times 2 = 6 \times 2$	[Mult	iplying both sides by 2]
$\Rightarrow b = 12$		
(a) p = 4		
$(c) = \frac{1}{7}$		
(c) $\frac{p}{7} = 4$ $\Rightarrow \frac{p}{7} \times 7 = 4 \times 7$	[Mult	iplying both sides by 7]
$\Rightarrow p = 28$		
(d) $4x = 25$		
$\Rightarrow \frac{4x}{4} = \frac{25}{4}$	[Divid	ling both sides by 4]
$\Rightarrow x = \frac{25}{4}$		
(e) 8 $y = 36$		
$\Rightarrow \frac{8y}{8} = \frac{36}{8}$	[Divid	ling both sides by 8]
$\Rightarrow y = \frac{9}{2}$		

[Dividing both sides by 5]

 $\frac{5m}{5} = \frac{10}{5}$

Step II:

 \Rightarrow

m = 2

(c) $\frac{20 p}{3} = 40$ **Step I:** $\frac{20 p}{3} \times 3 = 40 \times 3$ 20p = 120 \Rightarrow [Multiplying both sides by 3] $\frac{20 p}{20} = \frac{120}{20}$ Step II: [Dividing both sides by 20] $\Rightarrow p = 6$ (d) $\frac{3p}{10} = 6$ **Step I**: $\frac{3p}{10} \times 10 = 6 \times 10$ \Rightarrow 3 p = 60 [Multiplying both sides by 10] **Step II**: $\frac{3 p}{3} = \frac{60}{3}$ $\Rightarrow p = 20$ [Dividing both sides by 3] **Ouestion 4:** Solve the following equation: (b) 10p+10=100 (c) $\frac{p}{4}=5$ (a) 10 p = 100(e) $\frac{3 p}{4} = 6$ (d) $\frac{-p}{3} = 5$ (f) 3s = -9(g) 3s + 12 = 0(h) 3s = 0(i) 2q = 6(j) 2q - 6 = 0(k) 2q + 6 = 0(1) 2q + 6 = 12Answer 4: (a) 10 *p* = 100 $\Rightarrow \frac{10p}{10} = \frac{100}{10}$ [Dividing both sides by 10] p = 10 \Rightarrow (b) 10 p + 10 = 100 $\Rightarrow 10p+10-10=100-10$ [Subtracting both sides 10] \Rightarrow 10 p = 904

 $\Rightarrow \frac{10 p}{10} = \frac{90}{10}$ [Dividing both sides by 10] $\Rightarrow p = 9$ (c) $\frac{p}{4} = 5$ $\Rightarrow \frac{p}{4} \times 4 = 5 \times 4$ [Multiplying both sides by 4] $\Rightarrow p = 20$ (d) $\frac{-p}{3} = 5$ $\Rightarrow \quad \frac{-p}{3} \times (-3) = 5 \times (-3)$ [Multiplying both sides by – 3] $\Rightarrow p = -15$ (e) $\frac{3p}{4} = 6$ $\Rightarrow \quad \frac{3p}{4} \times 4 = 6 \times 4$ [Multiplying both sides by 4] \Rightarrow 3 p = 24 $\Rightarrow \frac{3p}{3} = \frac{24}{3}$ [Dividing both sides by 3] $\Rightarrow p = 8$ (f) 3s = -9 $\Rightarrow \frac{3s}{3} = \frac{-9}{3}$ [Dividing both sides by 3] $\Rightarrow s = -3$ (g) 3s + 12 = 0 \Rightarrow 3s+12-12=0-12 [Subtracting both sides 10] \Rightarrow 3s = -12 $\Rightarrow \frac{3s}{3} = \frac{-12}{3}$ [Dividing both sides by 3] \Rightarrow s = -4 (h) 3s = 0 $\Rightarrow \frac{3s}{3} = \frac{0}{3}$ [Dividing both sides by 3] $\Rightarrow s=0$

(i) 2q = 6 $\Rightarrow \frac{2q}{2} = \frac{6}{2}$ $\Rightarrow q = 3$ (j) 2q - 6 = 0 $\Rightarrow 2q-6+6=0+6$ $\Rightarrow 2q = 6$ $\Rightarrow \frac{2q}{2} = \frac{6}{2}$ $\Rightarrow q = 3$ (k) 2q + 6 = 0 $\Rightarrow 2q+6-6=0-6$ $\Rightarrow 2q = -6$ $\Rightarrow \frac{2q}{2} = \frac{-6}{2}$ $\Rightarrow q = -3$ (l) 2q + 6 = 12 $\Rightarrow 2q+6-6=12-6$ $\Rightarrow 2q = 6$ $\frac{2q}{2} = \frac{6}{2}$ q = 3 \Rightarrow

[Dividing both sides by 2]

[Adding both sides 6]

[Dividing both sides by 2]

[Subtracting both sides 6]

[Dividing both sides by 2]

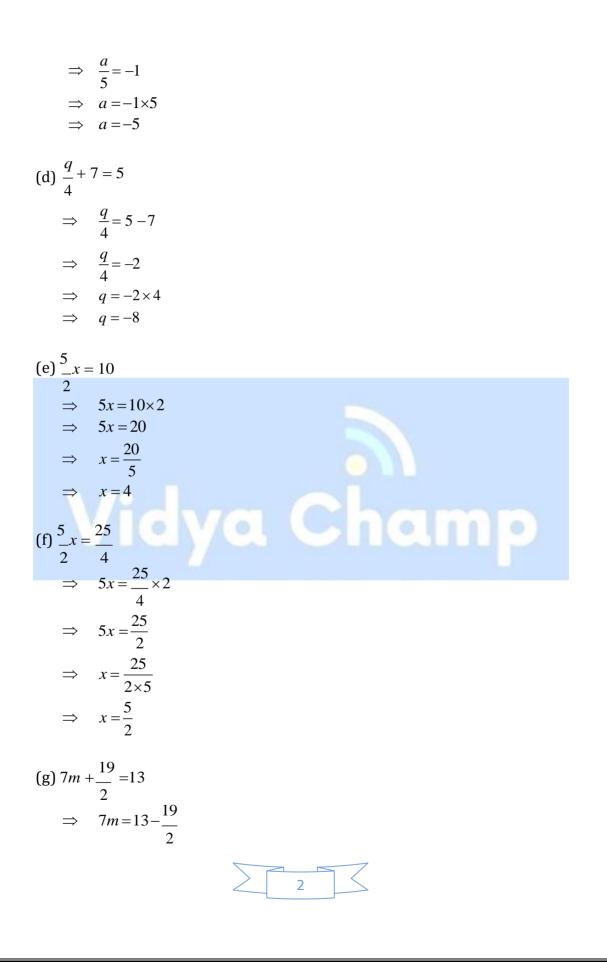
[Subtracting both sides 6]

[Dividing both sides by 2]

Exercise 4.3

Question 1: Solve the following equations: (a) $2y + \frac{5}{2} = \frac{37}{2}$ (c) $\frac{a}{5} + 3 = 2$ (b) 5t + 28 = 10(f) $\frac{5}{2}x = \frac{25}{4}$ (e) $\frac{5}{2}x = 10$ (d) $\frac{q}{4} + 7 = 5$ (i) $\frac{3l}{2} = \frac{2}{3}$ (g) $7m + \frac{19}{2} = 13$ (h) 6z + 10 = -2(j) $\frac{2b}{3} - 5 = 3$ Answer 1: (a) $2y + \frac{5}{2} = \frac{37}{2}$ $\Rightarrow 2y = \frac{37}{2} - \frac{5}{2}$ $\Rightarrow 2y = \frac{37-5}{2}$ $\Rightarrow 2y = \frac{32}{2}$ $\Rightarrow 2y = 16$ $\Rightarrow y = \frac{16}{2}$ y = 8 \Rightarrow (h) 5t + 28 = 10

$$\Rightarrow 5t = 10$$


$$\Rightarrow 5t = 10 - 28$$

$$\Rightarrow 5t = -18$$

$$\Rightarrow t = \frac{-18}{5}$$

(c) $\frac{a}{5} + 3 = 2$

$$\Rightarrow \frac{a}{5} = 2 - 3$$

14

 $\Rightarrow 7m = \frac{26-19}{2}$ $\Rightarrow 7m = \frac{7}{2}$ $\Rightarrow m = \frac{7}{2 \times 7}$ $\Rightarrow m = \frac{1}{2}$ (h) 6z + 10 = -2 $\Rightarrow 6z = -2 - 10$ $\Rightarrow 6z = -12$ $\Rightarrow z = \frac{-12}{6}$ $\Rightarrow z = -2$ (i) $\frac{3l}{2} = \frac{2}{3}$ $\Rightarrow 3l = \frac{2}{3} \times 2$ $\Rightarrow 3l = \frac{4}{3}$ $\Rightarrow l = \frac{4}{3 \times 3}$ $\Rightarrow l = \frac{4}{9}$ (j) $\frac{2b}{3} - 5 = 3$ $\Rightarrow \frac{2b}{3} = 3 + 5$ $\Rightarrow \frac{2b}{3} = 8$ $\Rightarrow 2b = 8 \times 3$ $\Rightarrow 2b = 24$ $\Rightarrow b = \frac{24}{2}$ $\Rightarrow b=12$ 3

15

Question 2:

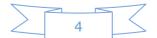
Solve the following equations:

(a)
$$2(x+4) = 12$$
(b) $3(n)$ (c) $3(n-5) = -21$ (d) $3-2$ (e) $-4(2-x) = 9$ (f) $4(2-x)$

(g)
$$4+5(p-1)=34$$

Answer 2:

(a) 2(x+4) = 12 $\Rightarrow x+4 = \frac{12}{2}$ $\Rightarrow x+4=6$ $\Rightarrow x=6-4$ $\Rightarrow x=2$


(b)
$$3(n-5)=21$$

 $\Rightarrow n-5=\frac{21}{3}$
 $\Rightarrow n-5=7$
 $\Rightarrow n=7+5$
 $\Rightarrow n=12$

(c)
$$3(n-5) = -21$$

 $\Rightarrow n-5 = \frac{-21}{3}$
 $\Rightarrow n-5 = -7$
 $\Rightarrow n = -7 + 5$

$$\Rightarrow$$
 $n = -2$

(d)
$$3-2(2-y) = 7$$

 $\Rightarrow -2(2-y) = 7-3$
 $\Rightarrow -2(2-y) = 4$
 $\Rightarrow 2-y = \frac{4}{-2}$

(b) 3(n-5) = 21(d) 3-2(2-y) = 7(f) 4(2-x) = 9(h) 34-5(p-1) = 4

2 - y = -2 \Rightarrow -y = -2 - 2 \Rightarrow - *y* =-4 \Rightarrow *y* = 4 \Rightarrow

(e)
$$-4(2-x) = 9$$

 $\Rightarrow -4 \times 2 - x \times (-4) = 9$
 $\Rightarrow -8 + 4x = 9$
 $\Rightarrow 4x = 9 + 8$
 $\Rightarrow 4x = 17$
 $\Rightarrow x = \frac{17}{4}$

(f)
$$4(2-x) = 9$$

 $\Rightarrow 4 \times 2 - x \times (4) = 9$
 $\Rightarrow 8 - 4x = 9$
 $\Rightarrow -4x = 9 - 8$
 $\Rightarrow -4x = 1$
 $\Rightarrow x = \frac{-1}{4}$
(g) $4 + 5(p-1) = 34$
 $\Rightarrow 5(p-1) = 34 - 4$
 $\Rightarrow 5(p-1) = 30$
 30

$$\Rightarrow p-1 = \frac{30}{5}$$
$$\Rightarrow p-1 = 6$$
$$\Rightarrow p = 6+1$$

$$\Rightarrow p = 6 - \frac{1}{2}$$
$$\Rightarrow p = 7$$

(h)
$$34 - 5(p-1) = 4$$

 $\Rightarrow -5(p-1) = 4 - 34$
 $\Rightarrow -5(p-1) = -30$

Ch

amp

$$\Rightarrow p-1 = \frac{-30}{-5}$$
$$\Rightarrow p-1 = 6$$
$$\Rightarrow p = 6+1$$
$$\Rightarrow p = 7$$

Question 3:

Solve the following equations:

(a)
$$4 = 5(p-2)$$

(b) $-4 = 5(p-2)$
(c) $-16 = -5(2-p)$
(d) $10 = 4+3(t+2)$
(e) $28 = 4+3(t+5)$
(f) $0 = 16+4(m-6)$
Answer 3:

(a)
$$4 = 5(p-2)$$

 $\Rightarrow 4 = 5 \times p - 5 \times 2$
 $\Rightarrow 4 = 5p - 10$
 $\Rightarrow 5p - 10 = 4$
 $\Rightarrow 5p = 4 + 10$
 $\Rightarrow 5p = 14$
 $\Rightarrow p = \frac{14}{5}$

(b)
$$-4 = 5(p-2)$$

 $\Rightarrow -4 = 5 \times p - 5 \times 2$
 $\Rightarrow -4 = 5p - 10$
 $\Rightarrow 5p - 10 = -4$
 $\Rightarrow 5p = -4 + 10$
 $\Rightarrow 5p = 6$
 $\Rightarrow p = \frac{6}{5}$

$$(c) -16 = -5(2 - p)$$

$$\Rightarrow -16 = -5 \times 2 - (-5) \times p$$

$$\Rightarrow -16 = -10 + 5p$$

$$\Rightarrow -10 + 5p = -16$$

$$\Rightarrow 5p = -16 + 10$$

$$\Rightarrow 5p = -6$$

$$\Rightarrow p = \frac{-6}{5}$$

$$(d) 10 = 4 + 3(t + 2)$$

$$\Rightarrow 10 - 4 = 3(t + 2)$$

$$\Rightarrow 6 = 3(t + 2)$$

$$\Rightarrow \frac{6}{3} = t + 2$$

$$\Rightarrow 2 = t + 2$$

$$\Rightarrow 2 - 2 = t$$

$$\Rightarrow 0 = t$$

$$\Rightarrow t = 0$$

(e)
$$28 = 4 + 3(t+5)$$

 $\Rightarrow 28 - 4 = 3(t+5)$
 $\Rightarrow 24 = 3(t+5)$

$$\Rightarrow \frac{24}{3} = t + 5$$
$$\Rightarrow 8 = t + 5$$

$$\Rightarrow 8-5=t$$
$$\Rightarrow 3=t$$
$$\Rightarrow t=3$$

$$\Rightarrow t = 3$$

(f)
$$0 = 16 + 4 (m - 6)$$

 $\Rightarrow 0 - 16 = 4 (m - 6)$
 $\Rightarrow -16 = 4 (m - 6)$

 $\Rightarrow \frac{-16}{4} = m - 6$ $\Rightarrow -4 = m - 6$ $\Rightarrow -4 + 6 = m$ $\Rightarrow 2 = m$ $\Rightarrow m = 2$

Question 4:

(a) Construct 3 equations starting with x = 2.
(b) Construct 3 equations starting with x =-2.

Answer 4:

(a) 3 equations starting with x = 2.

(i) x = 2Multiplying both sides by 10, 10x = 20Adding 2 both sides 10x + 2 = 20 + 2 = 10x + 2 = 22(ii) (ii) x = 2Multiplying both sides by 5

5x = 10Subtracting 3 from both sides 5x - 3 = 10 - 3 = 5x - 3 = 7

- (iii) (iii) x = 2Dividing both sides by 5 $\frac{x}{5} = \frac{2}{5}$
- (b) 3 equations starting with x = -2.
 - (i) x = -2Multiplying both sides by 3 3x = -6
 - (ii) x = -2Multiplying both sides by 3 3x = -6Adding 7 to both sides 3x + 7 = -6 + 7 = 3x + 7 = 1

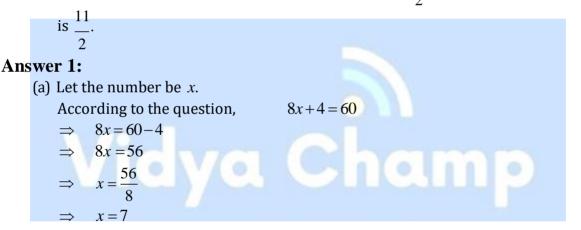
20

Vidya Champ

19

Simple equation

(iii) x = -2Multiplying both sides by 3 3x = -6Adding 10 to both sides 3x + 10 = -6 + 10 = 3x + 10 = 4


Vidya Champ ²² Simple equation

Exercise 4.4

Question 1:

Set up equations and solve them to find the unknown numbers in the following cases:

- (a) Add 4 to eight times a number; you get 60.
- (b) One-fifth of a number minus 4 gives 3.
- (c) If I take three-fourth of a number and add 3 to it, I get 21.
- (d) When I subtracted 11 from twice a number, the result was 15.
- (e) Munna subtracts thrice the number of notebooks he has from 50, he finds the result to be 8.
- (f) Ibenhal thinks of a number. If she adds 19 to it divides the sum by 5, she will get8.
- (g) Answer thinks of a number. If he takes away 7 from $\frac{5}{2}$ of the number, the result

(b) Let the number be *y*.

According to the question,

$$\frac{y}{5} - 4 = 3$$

 $\Rightarrow \frac{y}{5} = 3 + 4$ $\Rightarrow \frac{y}{5} = 7$ $\Rightarrow y = 7 \times 5$ $\Rightarrow y = 35$

(c) Let the number be *z*. $\frac{3}{4}z + 3 = 21$ According to the question, $\Rightarrow \quad \frac{3}{4}z = 21 - 3$ $\Rightarrow \frac{3}{4}z = 18$ $\Rightarrow 3z = 18 \times 4$ $\Rightarrow 3z = 72$ $\Rightarrow z = \frac{72}{3}$ z = 24 \Rightarrow (d) Let the number be *x*. According to the question, 2x - 11 = 15 $\Rightarrow 2x = 15 + 11$ $\Rightarrow 2x = 26$ $\Rightarrow x = \frac{26}{2}$ x = 13 \Rightarrow (e) Let the number be *m*. 50 - 3m = 8According to the question, $\Rightarrow -3m = 8 - 50$ \Rightarrow -3m = -42 $\Rightarrow m = \frac{-42}{-3}$ m = 14 \Rightarrow (f) Let the number be *n*. $\frac{n+19}{5} = 8$ According to the question, $n+19 = 8 \times 5$ \Rightarrow \Rightarrow n+19=40 \Rightarrow n = 40 - 19 \Rightarrow n=21

(g) Let the number be *x*.

According to the question,

$$\frac{5}{2}x - 7 = \frac{11}{2}$$

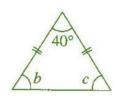
 $\Rightarrow \frac{5}{2}x = \frac{11}{2} + 7$ $\Rightarrow \frac{5}{2}x = \frac{11+14}{2}$ $\Rightarrow \frac{5}{2}x = \frac{25}{2}$ $\Rightarrow 5x = \frac{25 \times 2}{2}$ $\Rightarrow 5x = 25$ $\Rightarrow x = \frac{25}{5}$ $\Rightarrow x = 5$

Question 2:


Solve the following:

- (a) The teacher tells the class that the highest marks obtained by a student in her class are twice the lowest marks plus 7. The highest score is 87. What is the lowest score?
- (b) In an isosceles triangle, the base angles are equal. The vertex angle is 40°. What are the base angles of the triangle? (Remember, the sum of three angles of a triangle is 180°.)
- (c) Sachin scored twice as many runs as Rahul. Together, their runs fell two short of a double century. How many runs did each one score?

Answer 2:


(a) Let the lowest marks be *y*.

According to the question, 2y+7=87 $\Rightarrow 2y=87-7$ $\Rightarrow 2y=80$ $\Rightarrow y = \frac{80}{2}$ $\Rightarrow y = 40$ Thus, the lowest score is 40.

Vidya Champ ²⁵ Simple equation

(b) Let the base angle of the triangle be *b*. Given, $a = 40^\circ$, b = c

Since, $a+b+c=180^{\circ}$

[Angle sum property of a triangle]

 $\Rightarrow 40^{\circ}+b+b=180^{\circ}$

 $\Rightarrow 40^{\circ} + 2b = 180^{\circ}$

$$\Rightarrow 2b = 180^{\circ} - 40^{\circ}$$

$$\Rightarrow 2b = 140^{\circ}$$

$$\Rightarrow b = \frac{140^{\circ}}{2}$$

 $\Rightarrow b = 70^{\circ}$

Thus, the base angles of the isosceles triangle are 70° each.

(c) Let the score of Rahul be *x* runs and Sachin's score is 2*x*.

According to the question, x + 2x = 198 $\Rightarrow 3x - 108$

$$\rightarrow 3x = 198$$

 $\rightarrow r = 198$

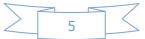
$$\Rightarrow x = \frac{1}{3}$$

x = 66

Thus, Rahul's score = 66 runs And Sachin's score = 2 x 66 = 132 runs.

Question 3:

Solve the following:


 \Rightarrow

- (i) Irfan says that he has 7 marbles more than five times the marbles Parmit has. Irfan has 37 marbles. How many marbles does Parmit have?
- (ii) Laxmi's father is 49 years old. He is 4 years older than three times Laxmi's age. What is Laxmi's age?
- (iii) People of Sundergram planted a total of 102 trees in the village garden. Some of the trees were fruit trees. The number of non-fruit trees were two more than three times the number of fruit trees. What was the number of fruit trees planted?

Answer 3:

AIR	SWEL J.				
	(i) Let the number of marbles Parmit has be <i>m</i> .			has be <i>m</i> .	
		Accord	ling to the question,	5m + 7 = 37	
		\Rightarrow	5m = 37 - 7		
		\Rightarrow	5m = 30		
		\Rightarrow	$m = \frac{30}{5}$		
		\Rightarrow	<i>m</i> =6		
		Thus, Parmit has 6 marbles.			
	(ii)	Let the	e age of Laxmi be y years.		
		Then ł	her father's age = $(3y + 4)$ ye	ears	
		Accord	ling to question,	3y + 4 = 49	
		\Rightarrow	3y = 49 - 4		
		\Rightarrow	3y = 45		
		⇒	$y = \frac{45}{3}$		
		\Rightarrow	y=15		
	(;;;)		the age of Laxmi is 15 years.		
	(iii)	Let the number of fruit trees be <i>t</i> . Then the number of non-fruits tree = $3t + 2$			
				t = 3t + 2 t + 3t + 2 = 102	
			ding to the question, 4t + 2 = 102	l + 3l + 2 - 102	
		\rightarrow	4t + 2 = 102 4t = 102 - 2		
		\rightarrow	4t = 100		
		\Rightarrow	$t = \frac{100}{4}$		
		\Rightarrow	<i>t</i> = 25		
		Thus, †	the number of fruit trees are	25.	

Question 4: Solve the following riddle: I am a number. Tell my identity! Take me seven times over, And add a fifty! To reach a triple century, You still need forty! Answer 4: Let the number be *n*. 7n + 50 + 40 = 300According to the question, \Rightarrow 7n + 90 = 3007n = 300 - 90 \Rightarrow 7n = 210 \Rightarrow $n = \frac{210}{10}$ \Rightarrow 7 n = 30 \Rightarrow Thus, the required number is 30. Vidya Champ

