Mathematics

Vidya Champ¹

FRACTION AND DECIMALS

(Chapter – 2) (Fractions and Decimals) (Class – VII)

Exercise 2.1

Vidya Champ² FRACTION AND DECIMALS²

Question 2:

Arrange the following in descending order:

(1) 2 2 8	()	1 3 7
(i) $\frac{2}{9}, \frac{2}{3}, \frac{8}{21}$	(ii)	$\overline{5}, \overline{7}, \overline{10}$

Vidya Champ ³ FRACTION AND DECIMALS

Question 3:

In a "magic square", the sum of the numbers in each row, in each column and along the diagonals is the same. Is this a magic square?

	0 - 1	
$\frac{4}{11}$	$\frac{9}{11}$	$\frac{2}{11}$
$\frac{3}{11}$	$\frac{5}{11}$	$\frac{7}{11}$
$\frac{8}{11}$	$\frac{1}{11}$	$\frac{6}{11}$
Along the first row 4 9 2	15	

 $\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1$

Answer 3:

Sum of first row

 $=\frac{4}{11} + \frac{9}{11} + \frac{2}{11} = \frac{15}{11}$ [Given]

Vidya Champ FRACTION AND DECIMALS

Sum of second row	$=\frac{3}{+}, \frac{5}{+}, \frac{7}{-}, \frac{3+5+7}{-}, \frac{15}{-}$
	11 11 11 11 11
Sum of third row	$= \frac{8}{4} + \frac{1}{4} = \frac{8}{4} + \frac{1}{6} = \frac{8}{4} + \frac{1}{6} = \frac{15}{15}$
	11 11 11 11 11
Sum of first column	$=\frac{4}{4},\frac{3}{4},\frac{8}{4},\frac{3}{4},\frac{8}{4},\frac{3}{4},3$
	11 11 11 11 11
Sum of second column	= 9 + 5 + 1 = 9 + 5 + 1 = 15
	11 11 11 11 11
Sum of third column	$=\frac{2}{4}, \frac{7}{4}, \frac{6}{4}, \frac{2}{4}, \frac{2}{4}, \frac{7}{4}, \frac{6}{4}, \frac{15}{4}, $
	11 11 11 11 11
Sum of first diagonal (left to right)	$= \frac{4}{4} + \frac{5}{4} + \frac{6}{4} = \frac{4+5+6}{15}$
	11 11 11 11 11
Sum of second diagonal (left to right)	$=\frac{2}{4}, \frac{5}{4}, \frac{8}{4}, \frac{2}{4}, \frac{2}{4}, \frac{5}{4}, \frac{8}{4}, \frac{15}{4}, $
	11 11 11 11 11

Since the sum of fractions in each row, in each column and along the diagonals are same, therefore it is a magic square.

Question 4:

A rectangular sheet of paper is $12\frac{1}{2}$ cm long and $10\frac{2}{3}$ cm wide. Find its perimeter.

Answer 4:

Given: The sheet of paper is in rectangular form. Length of sheet = $12\frac{1}{2}$ cm and Breadth of sheet = $10\frac{2}{3}$ cm Perimeter of rectangle = 2 (length + breadth)

$$= 2\left(12\frac{1}{2}+10\frac{2}{5}\right) = 2\left(\frac{25}{2}+\frac{32}{5}\right)$$
$$= 2\left(\frac{25\times3+32\times2}{6}\right) = 2\left(\frac{75+64}{6}\right)$$
$$= 2\times\frac{139}{6} = \frac{139}{3} = 46\frac{1}{3} \text{ cm.}$$

Thus, the perimeter of the rectangular sheet is $46 \frac{1}{3}$ cm.

Question 5:

Find the perimeter of (i) $\triangle ABE$, (ii) the rectangle BCDE in this figure. Whose perimeter is greater?

Answer 5:

(i) In
$$\triangle ABE$$
, $AB = \frac{5}{2}$ cm, $BE = 2\frac{3}{4}$ cm, $AE = 3\frac{3}{5}$ cm
The perimeter of $\triangle ABE = AB + BE + AE$
 $= \frac{5}{2} + 2\frac{3}{4} + 3\frac{3}{5} = \frac{5}{2} + \frac{11}{4} + \frac{18}{5}$
 $= \frac{50 + 55 + 72}{20} = \frac{177}{20} = 8\frac{17}{20}$ cm
Thus, the perimeter of $\triangle ABE$ is $8\frac{17}{20}$ cm.

(ii) In rectangle BCDE, BE =
$$2\frac{3}{4}$$
 cm, ED = $\frac{7}{6}$ cm
Perimeter of rectangle = 2 (length + breadth)
= $2\left(2\frac{3}{4}+\frac{7}{6}\right) = 2\left(\frac{11}{4}+\frac{7}{6}\right)$
= $2\left(\frac{33+14}{12}\right) = \frac{47}{-6} = 7\frac{5}{6}$ cm
Thus, the perimeter of rectangle BCDE is $7\frac{5}{6}$ cm.

Comparing the perimeter of triangle and that of rectangle,

$$8\frac{17}{20}$$
 cm > $7\frac{5}{6}$ cm

Therefore, the perimeter of triangle ABE is greater than that of rectangle BCDE.

Vidya Champ FRACTION AND DECIMALS

Question 6:

Salil wants to put a picture in a frame. The picture is $7\frac{3}{5}$ cm wide. To fit in the frame the picture cannot be more than $7\frac{3}{10}$ cm wide. How much should the picture be trimmed?

Answer 6:

 $= 7 \frac{3}{5} \text{ cm}$ = $7 \frac{3}{10} \text{ cm}$ The width of the picture Given: and the width of picture frame Therefore, the picture should be trimmed = $7\frac{\frac{3}{5}}{5} - 7\frac{3}{10} = \frac{38}{5} - \frac{73}{10}$ $=\frac{76-73}{10}=\frac{3}{10}$ Thus, the picture sh cm.

Question 7:

Ritu ate $\frac{3}{5}$ part of an apple and the remaining apple was eaten by her brother Somu. How much part of the apple did Somu eat? Who had the larger share? By how much?

Answer 7:

The part of an apple eaten by Ritu = $\frac{3}{5}$ The part of an apple eaten by Somu = $1 - \frac{3}{5} = \frac{5-3}{5} = \frac{2}{5}$ $\frac{3}{5} > \frac{2}{5}$ Comparing the parts of apple eaten by both Ritu and Somu Larger share will be more by $\frac{3}{5} - \frac{2}{5} = \frac{1}{5}$ part. Thus, Ritu's part is $\frac{1}{5}$ more than Somu's part.

Vidya Champ FRACTION AND DECIMALS

Question 8:

Michael finished colouring a picture in $\frac{7}{12}$ hour. Vaibhav finished colouring the same picture in $\frac{3}{4}$ hour. Who worked longer? By what fraction was it longer? Answer 8: Time taken by Michael to colour the picture = $\frac{1}{12}$ hour Time taken by Vaibhav to colour the picture = $\frac{3}{4}$ hour $\frac{7}{12}$ and $\frac{3\times3}{4\times3} = \frac{9}{12}$ Converting both fractions in like fractions, Here, $\frac{7}{12} < \frac{9}{12}$ \Rightarrow $\frac{7}{12} < \frac{3}{4}$ Thus, Vaibhav worked longer time. Vaibhav worked longer time by $\frac{3}{4} - \frac{7}{12} = \frac{9-7}{12} = \frac{2}{12} = \frac{1}{6}$ hour. Thus, Vaibhav took $\frac{1}{6}$ hour more than Michael. Vidya Champ

Vidya Champ8FRACTION AND DECIMALS8

Exercise 2.2

Question 1: Which of the drawings (a) to (d) show:

Answer 1:

- (i) (d) Since $2 \times \frac{1}{5} = \frac{1}{5} + \frac{1}{5}$
- (ii) (b) Since $2 \times \frac{1}{2} = \frac{1}{2} + \frac{1}{2}$
- (iii) (a) Since $3 \times \frac{2}{3} = \frac{2}{3} + \frac{2}{3} + \frac{2}{3}$
- (iv) (c) Since $3 \times \frac{1}{4} = \frac{1}{4} + \frac{1}{4} + \frac{1}{4}$

Vidya Champ10FRACTION AND DECIMALS10

Question 2:

Some pictures (a) to (c) are given below. Tell which of them show:

Question 3:

Multiply and reduce to lowest form and convert into a mixed fraction:

(i)
$$7 \times \frac{3}{5}$$
 (ii) $4 \times \frac{1}{3}$ (iii) $2 \times \frac{6}{7}$ (iv) $5 \times \frac{2}{9}$
(v) $\frac{2}{3} \times 4$ (vi) $\frac{5}{2} \times 6$ (vii) $11 \times \frac{4}{7}$ (viii) $20 \times \frac{4}{5}$
(ix) $13 \times \frac{1}{3}$ (x) $15 \times \frac{3}{5}$

Vidya Champ11FRACTION AND DECIMALS11

Answer 3:

Answer 4:

(i)¹
$$= of 12 circles$$

 $= \frac{1}{2} \times 12 = 6 circles$
(ii)² $= of 9 triangles$
 $= \frac{2}{3} \times 9 = 2 \times 3 = 6 triangles$
(iii)³ $= of 15 squares$
 $= \frac{3}{5} \times 15 3 \times 3 = 9 squares$
(iii)³ $= of (15 squares)$
 $= \frac{3}{5} \times 15 3 \times 3 = 9 squares$
Find:
(a) $\frac{1}{2} of (i) 24$ (ii) 46
(b) $\frac{2}{3} of (i) 18$ (ii) 27
(c) $\frac{3}{4} of (i) 16$ (ii) 36
(d) $\frac{4}{5} of (i) 20$ (ii) 35
Answer 5:
(a) (i) $\frac{1}{2} of 24 = 12$
(b) (i) $\frac{2}{3} of 18 = \frac{2}{3} \times 18 = 2 \times 6 = 12$
(ii) $\frac{1}{2} of 27 = \frac{2}{3} \times 27 = 2 \times 9 = 18$
(c) (i) $\frac{3}{4} of 18 = \frac{3}{4} \times 16 = 3 \times 4 = 12$
(ii) $\frac{3}{4} of 36 = \frac{3}{4} \times 36 = 3 \times 9 = 27$
(d) (i) $\frac{4}{5} of 20 = \frac{4}{5} \times 20 = 4 \times 4 = 16$
(ii) $\frac{4}{5} of 35 = \frac{4}{5} \times 35 = 4 \times 7 = 28$

Vidya Champ ¹² FRACTION AND DECIMALS

Vidya Champ ¹³ FRACTION AND DECIMALS

Question 6:

Multiply and express as a mixed fraction: 1

Multiply and express as a mixed fraction:	
(a) $3 \times 5^{1}_{-}$ (b) $5 \times 6^{3}_{-}$	(c) 7×2^{1}
$(a) 5 \times 5_{-}$ (b) $5 \times 0_{-}$	(c) $7 \times 2\frac{1}{4}$ (f) $3\frac{2}{5} \times 8$
1 1	2 4
(d) $4 \times 6\frac{1}{2}$ (e) $3\frac{1}{4} \times 6$	(f) 3 ± 8
3 4	5
Answer 6:	
(a) 2×5^{1} 2×26 3×26 78 15^{3}	
(a) $3 \times 5 = 5 \times = = = = = 15$	
3 3 5 3 3 3 3 3 3 3 3 3 3	
(b) $5 \times 6_{-}^{-} = 5 \times \frac{27}{-} = \frac{5 \times 27}{-} = \frac{135}{-} = 33_{-}^{-}$	
4 4 4 4 4	
(c) $7 \times 2^{1} = 7 \times 9 = 7 \times 9 = 63 = 15^{3}$	
(1) (1)	
Answer 0: (a) $3 \times 5\frac{1}{5} = 3 \times \frac{26}{5} = \frac{3 \times 26}{5} = \frac{78}{5} = 15\frac{3}{5}$ (b) $5 \times 6\frac{3}{4} = 5 \times \frac{27}{4} = \frac{5 \times 27}{4} = \frac{135}{4} = 33\frac{3}{4}$ (c) $7 \times 2\frac{1}{4} = 7 \times \frac{9}{4} = \frac{7 \times 9}{4} = \frac{63}{4} = 15\frac{3}{4}$ (d) $4 \times 6\frac{1}{3} = 4 \times \frac{19}{3} = \frac{4 \times 19}{3} = \frac{76}{3} = 25\frac{1}{3}$	
5 5 5 5 5 5 5 1 13 13×3 30 1	
(e) $3\frac{1}{4} \times 6 = \frac{13}{4} \times 6 = \frac{13 \times 3}{2} = \frac{39}{2} = 19\frac{1}{2}$	
4 4 2 2 2	
$(0, 2^2, 0, 17, 0, 17 \times 8, 136, 27^1)$	
(f) $3\frac{2}{5} \times 8 = \frac{17}{5} \times 8 = \frac{17 \times 8}{5} = \frac{136}{5} = 27\frac{1}{5}$	
5 5 5 5 5	
Question 7:	
Find:	
	$5 (1) 2^{5} (1) 2^{5} (1) 2^{2}$
(a) $\frac{1}{2}$ of (i) $2\frac{3}{4}$ (ii) $4\frac{2}{9}$	(b) $\frac{5}{8}$ of (i) $3\frac{5}{6}$ (ii) $9\frac{2}{3}$
2 4 9	8 6 3
Answer 7:	

(a)	(i)	$\frac{1}{2} \text{ of } 2\frac{3}{4} = \frac{1}{2} \times 2\frac{3}{4} = \frac{1}{2} \times \frac{11}{4} = \frac{11}{8} = \frac{1}{8}$
	(ii)	$\frac{1}{2} \text{ of } 4\frac{2}{9} = \frac{1}{2} \times 4\frac{2}{9} = \frac{1}{2} \times \frac{38}{9} = \frac{19}{9} = 2\frac{1}{9}$
(b)	(i)	$\frac{5}{8} \text{ of } 3\frac{5}{6} = \frac{5}{8} \times 3\frac{5}{6} = \frac{5}{8} \times \frac{23}{6} = \frac{115}{48} = 2\frac{19}{48}$
	(ii) ⁵	$\frac{1}{8} \text{ of } 9\frac{2}{3} = \frac{5}{8} \times 9\frac{2}{3} = \frac{5}{8} \times \frac{29}{3} = \frac{145}{24} = \frac{1}{24}$

Vidya Champ ¹ FRACTION AND DECIMALS

Question 8:

Vidya and Pratap went for a picnic. Their mother gave them a water bottle that contained 5 litres of water. Vidya consumed $\frac{2}{5}$ of the water. Pratap consumed the remaining water.

- (i) How much water did Vidya drink?
- (ii) What fraction of the total quantity of water did Pratap drink?

Answer 8:

Given: Total quantity of water in bottle = 5 litres

(i) Vidya consumed = $\frac{2}{5}$ of 5 litres = $\frac{2}{5} \times 5 = 2$ litres Thus, Vidya drank 2 litres water from the bottle. (ii) Pratap consumed = $\begin{pmatrix} 1-\frac{2}{5} \end{pmatrix}$ part of bottle = $\frac{5-2}{5} = \frac{3}{5}$ part of bottle Pratap consumed $\frac{3}{5}$ of 5 litres water = $\frac{3}{5} \times 5 = 3$ litres Thus, Pratap drank $\frac{3}{5}$ part of the total quantity of water.

Vidya Champ

Vidya Champ ¹⁵ FRACTION AND DECIMALS

Exercise 2.3

Question 1:

Find:

(i) ¹	$\frac{1}{4}$ of $\frac{1}{7}$ of	(a) $\frac{1}{4}$ (a) $\frac{2}{9}$	(b) $\frac{3}{5}$ (b) $\frac{6}{5}$	(c) $\frac{4}{3}$ (c) $\frac{3}{10}$	
(ii) ¹	_ of 7	(a) $\frac{2}{9}$	(b) $\frac{6}{5}$	(c) $\frac{3}{10}$	
Answer	r 1:				
(i)	(a)	$\frac{1}{4}$ of $\frac{1}{4} = \frac{1}{4} \times \frac{1}{4} =$	$=\frac{1\times 1}{4\times 4}=\frac{1}{16}$		
	(b)	$\frac{1}{4} \text{ of } \frac{3}{5} = \frac{1}{4} \times \frac{3}{4} =$	$=\frac{1\times3}{4\times4}=\frac{3}{16}$		
	(c) ¹	$\frac{1}{4} \text{ of } \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{5} = \frac{1}{4} \times \frac{3}{4} = \frac{1}{4} \times \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} = \frac{1}{4} \times \frac{1}{4} $	$=\frac{1\times4}{4\times3}=\frac{1}{3}$		
(ii)	(a)	$\frac{1}{7} \text{ of } \frac{2}{9} = \frac{1}{7} \times \frac{2}{9} = \frac{1}{7} \times \frac{2}{9} = \frac{1}{7} \times \frac{6}{7} = \frac{1}{7} \times \frac{6}{5} = \frac{1}{7} \times \frac{6}{9} = \frac{1}{7} \times \frac{6}{7} = \frac{1}{7} \times \frac{6}{7} = \frac{1}{7} \times \frac{3}{7} = \frac{1}{7} \times \frac{3}{7} = \frac{1}{7} \times \frac{3}{7} = \frac{1}{7} \times \frac{3}{10} = \frac{1}{7} \times $	$=\frac{1\times2}{7\times9}=\frac{2}{63}$		
	(b)	$\frac{1}{2}$ of $\frac{2}{2} = \frac{1}{2} \times \frac{6}{2} = \frac{1}{2}$	$\frac{1 \times 6}{1 \times 6} = \frac{6}{1 \times 10^{-10}}$		
	(b) (c) ¹	$7 9 7 5 \\ 2 1 3 \\ 3 3 3 3 3 3 3 3 3$	7×5 35		
	(c) ¹	$- of _{-} = - \times =$	$\frac{1 \times 3}{1 \times 3} = \frac{3}{10}$		
		7 9 7 10	7×10 70		

Question 2:

Multiply and reduce to lowest form (if possible):

Vidya Champ ¹⁶ FRACTION AND DECIMALS

(iii)
$$\frac{3}{8} \times \frac{6}{4} = \frac{3 \times 6}{8 \times 4} = \frac{3 \times 3}{8 \times 2} = \frac{9}{16}$$

(iv) $\frac{9}{5} \times \frac{3}{5} = \frac{9 \times 3}{5 \times 5} = \frac{27}{25} = 1\frac{2}{25}$
(v) $\frac{1}{3} \times \frac{15}{8} = \frac{1 \times 15}{3 \times 8} = \frac{1 \times 5}{1 \times 8} = \frac{5}{8}$
(vi) $\frac{11}{2} \times \frac{3}{10} = \frac{11 \times 3}{2 \times 10} = \frac{33}{20} = 1\frac{3}{20}$
(vii) $\frac{4}{5} \times \frac{12}{7} = \frac{4 \times 12}{5 \times 7} = \frac{48}{35} = 1\frac{13}{35}$

Question 3:

Multiply the following fractions:

Mulup	-	_	, fractions:					
(i)	$\frac{2}{5} \times 5\frac{1}{4}$	(ii)	$6\frac{2}{5} \times \frac{7}{9}$ $2\frac{3}{5} \times 3$	(iii)	$\frac{3}{2} \times 5\frac{1}{3}$	(iv)	$\frac{5}{6} \times 2\frac{3}{7}$
(V) (V	7)	$3\frac{2}{5} \times \frac{4}{7}$	(vi)	$2\frac{3}{5} \times 3$	(vii)	$3\frac{4}{7}\times\frac{3}{5}$		
Answ	ver 3:							
(i	i)	$\frac{2}{5} \times 5\frac{1}{4} =$	$=\frac{2}{5}\times\frac{21}{4}=\frac{2\times}{5}$	$\frac{21}{\times 4} = \frac{1 \times 21}{5 \times 2}$	$=\frac{21}{10}=2\frac{1}{10}$			
(i	i)	$6\frac{2}{5}\times\frac{7}{9}=$	$=\frac{32}{5}\times\frac{7}{9}=\frac{32}{5}$	$\frac{2 \times 7}{\times 9} = \frac{224}{45} =$	$=4\frac{44}{45}$			
(i	ii)	$\frac{3}{2} \times 5\frac{1}{3} =$	$= \frac{32}{5} \times \frac{7}{9} = \frac{32}{5}$ $= \frac{3}{5} \times \frac{16}{9} = \frac{48}{6}$ $= \frac{3}{5} \times \frac{16}{3} = \frac{48}{6}$ $= \frac{5}{5} \times \frac{17}{5} = \frac{85}{5}$	=8				
(i	iv)	$\frac{5}{6} \times 2\frac{3}{7} =$	$=\frac{5}{6}\times\frac{17}{7}=\frac{85}{42}$	$\frac{1}{2} = 2\frac{1}{42}$				
(1	v)	$3\frac{2}{5} \times \frac{4}{7} =$	$=\frac{17}{7}\times\frac{4}{7}=\frac{68}{35}$	$=1\frac{33}{35}$				
<i>(</i> 1	vi)	$2\frac{3}{5} \times 3 =$	$\frac{13}{5} \times \frac{3}{1} = \frac{13}{5} \times \frac{3}{5}$	$\frac{3}{1} = \frac{39}{5} = 7$	$\frac{4}{5}$			
(\	/ii)	$3\frac{4}{7} \times \frac{3}{5} =$	$=\frac{25}{7}\times\frac{3}{5}=\frac{5\times}{7\times}$	$\frac{3}{1} = \frac{15}{7} = 2$	<u>1</u> 7			

Vidya Champ

Question 5:

Saili plants 4 saplings in a row in her garden. The distance between two adjacent saplings is $\frac{3}{4}$ m. Find the distance between the first and the last sapling.

Answer 5:

The distance between two adjacent saplings = $\frac{3}{4}$ m

Saili planted 4 saplings in a row, then number of gap in saplings = 3

Therefore,

The distance between the first and the last saplings = $3 \times \frac{3}{4} = \frac{9}{4}$ m = $2\frac{1}{4}$ m Thus the distance between the first and the last saplings is $2\frac{1}{4}$ m.

Question 6:

Lipika reads a book for $1\frac{3}{4}$ hours everyday. She reads the entire book in 6 days. How many hours in all were required by her to read the book?

Answer 6:

Time taken by Lipika to read a book = $1\frac{3}{4}$ hours.

She reads entire book in 6 days.

Now, total hours taken by her to read the entire book = $1 \stackrel{3}{-} \times 6$

 $=\frac{7}{4} \times 6 = \frac{21}{2} = 10\frac{1}{2}$ hours

Thus, 10 hours were required by her to read the book.

Question 7:

A car runs 16 km using 1 litre of petrol. How much distance will it cover using 2^{-3}_{-1} litres

of petrol?

Answer 7:

In 1 litre of pertrol, car covers the distance = 16 km In 2 $\frac{3}{4}$ litres of petrol, car covers the distance = 2 $\frac{3}{4}$ of 16 km = $\frac{11}{4} \times 16 = 44$ km

Thus, the car will cover 44 km distance.

18

Vidya Champ FRACTION AND DECIMALS

Vidya Champ ¹ FRACTION AND DECIMALS

Vidya Champ

Exercise 2.4

Question	1:
Zucono	± •

Find:					
(i)	$12 \div \frac{3}{4}$	(ii)	$14 \div \frac{5}{6}$	(iii)	$8 \div \frac{7}{3}$
(iv)	$4 \div \frac{8}{3}$	(v)	$3\div 2\frac{1}{3}$	(vi)	$5 \div 3\frac{4}{7}$
Answer 1:					

(i)	$12 \div \frac{3}{4} = 12 \times \frac{4}{3} = 16$	(ii)	$14 \div \frac{5}{6} = 14 \times \frac{6}{5} = \frac{84}{5} = 16\frac{4}{5}$
(iii)	$8 \div \frac{7}{3} = 8 \times \frac{3}{7} = \frac{24}{7} = 3\frac{3}{7}$		$4 \div \frac{8}{3} = 4 \times \frac{3}{8} = \frac{3}{2} = 1\frac{1}{2}$
(v)	$3 \div 2\frac{1}{3} = 3 \div \frac{7}{3} = 3 \times \frac{3}{7} = \frac{9}{7} = 1\frac{2}{7}$	(vi)	$5 \div 3\frac{4}{7} = 5 \div \frac{25}{7} = 5 \times \frac{7}{25} = \frac{7}{5} = 1\frac{2}{5}$

Question 2:

Find the reciprocal of each of the following fractions. Classify the reciprocals as proper fraction, improper fractions and whole numbers.

20

Vidya Champ21FRACTION AND DECIMALS21

Question 3:

Question 4:

Find:

Vidya Champ 23 FRACTION AND DECIMALS

Answer 4:

)

(i)
$$\frac{2}{5} \div \frac{1}{2} = \frac{2}{5} \times \frac{2}{1} = \frac{2 \times 2}{5 \times 1} = \frac{4}{5}$$

(ii) $\frac{4}{9} \div \frac{2}{3} = \frac{4}{9} \times \frac{3}{2} = \frac{2}{3}$
(iii) $\frac{3}{7} \div \frac{8}{7} = \frac{3}{7} \times \frac{7}{8} = \frac{3}{8}$
(iv) $2\frac{1}{3} \div \frac{3}{5} = \frac{7}{3} \div \frac{3}{5} = \frac{7}{3} \times \frac{5}{3} = \frac{35}{9} = 3\frac{8}{9}$
(v) $3\frac{1}{2} \div \frac{8}{3} = \frac{7}{2} \div \frac{8}{3} = \frac{7}{2} \times \frac{3}{2 \times 8} = \frac{21}{16} = \frac{1}{16}$
(vi) $\frac{2}{5} \div \frac{11}{2} = \frac{2}{5} \div \frac{3}{2} = \frac{2 \times 2}{5 \times 3} = \frac{4}{15}$
(vii) $(\frac{3}{5} \div 1\frac{2}{3} = \frac{16}{5} \div \frac{5}{3} = \frac{16}{5} \times \frac{3}{5} = \frac{16 \times 3}{5 \times 5} = \frac{48}{25} = 1\frac{23}{25}$
(viii) $(\frac{2}{5} \div 1\frac{1}{5} = \frac{11}{5} \div \frac{6}{5} = \frac{11}{5} \times \frac{5}{6} = \frac{11}{6} = 1\frac{5}{6}$
(viii) $(\frac{1}{5} \div 1\frac{1}{5} = \frac{11}{5} \div \frac{6}{5} = \frac{11}{5} \times \frac{5}{6} = \frac{11}{6} = 1\frac{5}{6}$

Vidya Champ ²⁵ FRACTION AND DECIMALS

Exercise 2.5

Question 1:

Which is greater:

(i) (iv)	0.5 or 0.05 1.37 or 1.49	 0.7 or 0.5 2.03 or 2.30		7 or 0.7 0.8 or 0.88
Answer 1:				
(i) (iv)	0.5 > 0.05 1.37 < 1.49	0.7 > 0.5 2.03 < 2.30	7 > 0.7 0.8 < 0	

Question	2:
Express as	rupees using decimals:
(i)	7 paise (ii) 7 rupees 7 paise
(iii)	77 rupees 77 paise (iv) 50 paise
(v)	235 paise
Answer 2	2:
•.•	100 paise = ₹1
	1 paisa = $\underbrace{1}$
	100
(i)	7 paise = $₹\frac{7}{100}$ = ₹ 0.07
	- 100
(ii)	7 rupees 7 paise = ₹ 7 + ₹ ⁷ = ₹ 7 + ₹ 0.07 = ₹ 7.07
	100
(iii)	77 rupees 77 paise = ₹ 77 + ₹ $\frac{77}{}$ = ₹ 77 + ₹ 0.77 = ₹ 77.77
	100
(iv)	50 paise = ₹ $\frac{50}{2}$ = ₹ 0.50
	100
(v)	235 paise = ₹ $\frac{235}{2.00}$ = ₹ 2.35
	100

Vidya Champ26FRACTION AND DECIMALS

Question 3: (i) Express 5 cm in metre and kilometer. (ii) Express 35 mm in cm, m and km. Answer 3: (i) Express 5 cm in meter and kilometer. .. 100 cm = 1 meter $1 \text{ cm} = \frac{1}{100} \text{ meter}$ $5 \text{ cm} = \frac{5}{100} = 0.05 \text{ meter.}$ ÷ \Rightarrow Now, 1000 meters = 1 kilometers ... 1 meter = $\frac{1}{1000}$ kilometer *.*. $\Rightarrow \qquad 0.05 \text{ meter} = \frac{0.05}{1000} = 0.00005 \text{ kilometer}$ (ii) Express 35 mm in cm, m and km. •.• 10 mm = 1 cm $1 \text{ mm} = \frac{1}{10} \text{ cm}$ $35 \text{ mm} = \frac{35}{10} = 3.5 \text{ cm}$ Champ $\therefore \quad 100 \text{ cm} = 1 \text{ meter}$ $1 \text{ cm} = \frac{1}{100} \text{ meter}$ Now, ∵ *.*.. $3.5 \text{ cm} = \frac{3.5}{100} = 0.035 \text{ meter}$ \Rightarrow Again, \cdot 1000 meters = 1 kilometers 1 meter = $\frac{1}{1000}$ kilometer *.*.. $0.035 \text{ meter} = \frac{0.035}{1000} = 0.000035 \text{ kilometer}$ \Rightarrow

Vidya Champ27FRACTION AND DECIMALS27

Question 4: Express in kg.: 200 g (ii) 3470 g (i) (iii) 4 kg 8 gAnswer 4: Let us consider. 1000 g = 1 kg \Rightarrow 1 g = $\frac{1}{kg}$ (i) $200 \text{ g} = \begin{bmatrix} 1000 \\ 200 \times 100 \text{ kg} \end{bmatrix} = 0.2 \text{ kg}$ (ii) $3470 \text{ g} = \int_{3470 \times 1000}^{1} \text{kg} = 3.470 \text{ kg}$ (iii) $4 \text{ kg } 8 \text{ g} = 4 \text{ kg} + \sqrt[6]{8 \times 1000} \text{ kg} = 4 \text{ kg} + 0.008 \text{ kg} = 4.008 \text{ kg}$ **Question 5:** Write the following decimal numbers in the expanded form: (i) 20.03 (ii) 2.03 (iii) 200.03 (iv) 2.034 Answer 5: $20.03 = 2 \times 10 + 0 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100}$ $2.03 = 2 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100}$ $200.03 = 2 \times 100 + 0 \times 10 + 0 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100}$ (i) (ii) (iii)

(iv)
$$2.034 = 2 \times 1 + 0 \times \frac{1}{10} + 3 \times \frac{1}{100} + 4 \times \frac{1}{1000}$$

Question 6:

Write the place value of 2 in the following decimal numbers:

(i)	2.56	(ii)	21.37	(iii)	10.25
(iv)	9.42	(v)	63.352		

Vidya Champ28FRACTION AND DECIMALS28

Answer 6:

- (i) Place value of 2 in $2.56 = 2 \times 1 = 2$ ones
- (ii) Place value of 2 in $21.37 = 2 \times 10 = 2$ tens
- (iii) Place value of 2 in 10.25 = $2 \times \frac{1}{10}$ = 2 tenths
- (iv) Place value of 2 in 9.42 = $2 \times \frac{1}{100}$ = 2 hundredth
- (v) Place value of 2 in 63.352 = $2 \times \frac{1}{1000}$ = 2 thousandth

Question 7:

Dinesh went from place A to place B and from there to place C. A is 7.5 km from B and B is 12.7 km from C. Ayub went from place A to place D and from there to place C. D is 9.3 km from A and C is 11.8 km from D. Who travelled more and by how much?

Answer 7:

Distance travelled by Dinesh when he went from place A to place B = 7.5 km and from place B to C = 12.7 km.

Total distance covered by Dinesh = AB + BC = 7.5 + 12.7 = 20.2 km Total distance covered by Ayub = AD + DC = 9.3 + 11.8 = 21.1 km On comparing the total distance of Ayub and Dinesh, 21.1 km > 20.2 km

Therefore, Ayub covered more distance by 21.1 - 20.2 = 0.9 km = 900 m

Vidya Champ29FRACTION AND DECIMALS

Question 8:

Shyam bought 5 kg 300 g apples and 3 kg 250 g mangoes. Sarala bought 4 kg 800 g oranges and 4 kg 150 g bananas. Who bought more fruits?

Answer 8:

Total weight of fruits bought by Shyam = 5 kg 300 g + 3 kg 250 g = 8 kg 550 g Total weight of fruits bought by Sarala = 4 kg 800 g + 4 kg 150 g = 8 kg 950 g

On comparing the quantity of fruits, 8 kg 550 g < 8 kg 950 g Therefore, Sarala bought more fruits.

Question 9:

How much less is 28 km than 42.6 km?

Answer 9:

We have to find the difference of 42.6 km and 28 km. Difference = 42.6 – 28.0 = 14.6 km Therefore 14.6 km less is 28 km than 42.6 km.

Vidya Champ

Vidya Champ FRACTION AND DECIMALS 30

Exercise 2.6

Question 1:

Find:	
-------	--

rinu.				
(i)	0.2 x 6	(ii)	8 x 4.6	(iii) 2.71 x 5
(iv)	20.1 x 4	(v)	0.05 x 7	(vi) 211.02 x 4
(vii)	2 x 0.86			
Answer 1:				
(i)	0.2 x 6 = 1.2		(ii)	8 x 4.6 = 36.8
(iii)	2.71 x 5 = 13.55		(iv)	20.1 x 4 = 80.4
(v)	0.05 x 7 = 0.35		(vi)	211.02 x 4 = 844.08
(vii)	2 x 0.86 = 1.72			

Question 2:

Find the area of rectangle whose length is 5.7 cm and breadth is 3 cm.

Answer 2:

(Given:	Length of rectangle = 5.7 cm and
		Breadth of rectangle = 3 cm
		Area of rectangle = Length x Breadth = $5.7 \times 3 = 17.1 \text{ cm}^2$

Thus, the area of rectangle is 17.1 cm².

Question 3:

Find:

(i) (iv)	1.3 x 10 168.07 x 10	(ii) (v)	36.8 x 1 31.1 x 1
(vii)	3.62 x 100	(viii)	43.07 x
(x)	0.08 x 10	(xi)	0.9 x 10

10 100 100 00

153.7 x 10 (iii) 156.1 x 100 (vi) (ix) 0.5 x 10 0.03 x 1000 (xii)

Answer 3:

(i)	1.3 x 10 = 13.0
(iii)	153.7 x 10 = 1537.0

- (v) 31.1 x 100 = 3110.0
- 3.62 x 100 = 362.0 (vii)
- (ix) $0.5 \ge 10 = 5.0$
- 0.9 x 100 = 90.0 (xi)

36.8 x 10 = 368.0 (ii) (iv) 168.07 x 10 = 1680.7 (vi) 156.1 x 100 = 15610.0 (viii) 43.07 x 100 = 4307.0 $0.08 \ge 10 = 0.80$ (x)

Champ

(xii) 0.03 x 1000 = 30.0

Vidya Champ31FRACTION AND DECIMALS31

Question 4:

A two-wheeler covers a distance of 55.3 km in one litre of petrol. How much distance will it cover in 10 litres of petrol?

Answer 4:

- : In one litre, a two-wheeler covers a distance = 55.3 km
- \therefore In 10 litres, a two- wheeler covers a distance = 55.3 x 10 = 553.0 km

Thus, 553 km distance will be covered by it in 10 litres of petrol.

Question 5:

Find:

FINU:					
(i)	2.5 x 0.3	(ii)	0.1 x 51.7	(iii)	0.2 x 316.8
(iv)	1.3 x 3.1	(v)	0.5 x 0.05	(vi)	11.2 x 0.15
(vii)	1.07 x 0.02	(viii)	10.05 x 1.05	(ix)	101.01 x 0.01
(x)	100.01 x 1.1				
Answer 5:					
(i)	2.5 x 0.3 = 0.75		(ii)	0.1 x 51.7 = 5	.17
(iii)	0.2 x 316.8 = 63.36		(iv)	$1.3 \ge 3.1 = 4.0$)3
(v)	0.5 x 0.05 = 0.025		(vi)	11.2 x 0.15 =	1.680
(vii)	1.07 x 0.02 = 0.0214		(viii)	10.05 x 1.05 =	= 10.5525
(ix)	101.01 x 0.01 = 1.01	01	(x)	100.01 x 1.1	= 110.11

Vidya Champ ³² FRACTION AND DECIMALS

Exercise 2.7

Question 1: Find:					
(i)	0.4 ÷ 2	(ii)	0.35 ÷ 5	(iii)	2.48 ÷ 4
• •	65.4 ÷ 6	(v)	651.2 ÷ 4	(v)	$14.49 \div 7$
	3.96 ÷ 4	(viii)	0.80 ÷ 5		
Answer 1:	4 1 2				
(i)	$0.4 \div 2 = \frac{4}{10} \frac{1}{2} = \frac{2}{10} \frac{1}{2} = \frac{1}{10}$	0.2)			
(ii)	$0.35 \div 5 = \frac{\frac{10}{10}}{\frac{2}{10}} = \frac{7}{100}$ $2.48 \div 4 = \frac{248}{100} \times \frac{1}{2} = \frac{7}{100}$	$\frac{1}{100} =$	0.07		
(iii)	100 4	100			
(iv)	$65.4 \div 6 = \frac{654}{10} \times \frac{1}{6} =$	$=\frac{109}{10} =$	10.9		
(v)	$651.2 \div 4 = \frac{6512}{10} \times \frac{1}{10}$	$=\frac{1628}{4}$			
(vi)	$14.49 \div 7 = \frac{1449}{1001} \times \frac{1}{7}$	$\frac{1}{7} = \frac{207}{100}$	= 2.07		
(vii)	$3.96 \div 4 = \frac{\frac{100}{396} \times 1}{\frac{100}{100} \times \frac{1}{4}} =$	100			
(viii)	$0.80 \div 5 = \frac{80}{100} \times \frac{1}{5} = \frac{10}{5}$	$\frac{5}{100} =$	0.16		

Question 2:

Find:

(i)	4.8 ÷ 10	(ii)	52.5 ÷ 10	(iii)	0.7 ÷ 10
(iv)	33.1 ÷ 10	(v)	272.23 ÷ 10	(vi)	$0.56 \div 10$
(vii)	3.97 ÷ 10				
Answer 2:					
(i)	$4.8 \div 10 = \frac{4.8}{10} =$	0.48	(ii)	$52.5 \div 10 = \frac{52.5}{10} =$	5.25
(iii)	$0.7 \div 10 = \frac{10}{10} = \frac{10}{10}$	0.07	(iv)	$33.1 \div 10 = \frac{33.1}{10} = 3$.31

Vidya Champ ³³ FRACTION AND DECIMALS

(v)
$$272.23 \div 10 = \frac{272.23}{10} = 27.223$$
 (vi) $0.56 \div 10 = \frac{0.56}{10} = 0.056$
(vii) $3.97 \div 10 = \frac{3.97}{10} = 0.397$

Question 3:

Find:

(i)	2.7 ÷ 100	(ii)	0.3 ÷ 100	(iii)	$0.78 \div 100$
(iv)	432.6 ÷ 100	(v)	23.6 ÷ 100	(vi)	98.53 ÷ 100
Answer 3:	27 1	~=			
(i)	$2.7 \div 100 = \frac{27}{10} \times \frac{1}{10}$	$\frac{27}{100}$	_ = 0.027		
(ii)	$0.3 \div 100 = \frac{10}{10} \times \frac{100}{100}$				
(iii)	$0.78 \div 100 = \frac{78}{2} \times 100$	1	⁷⁸ = 0.0 <mark>078</mark>		
(iv)	$432.6 \div 100 = \frac{4326}{2}$		26 = 4.326		
(v)	$23.6 \div 100 = \frac{236}{10} \times \frac{1}{10}$	100 - 10	$\frac{36}{000} = 0.236$		
(vi)	$98.53 \div 100 = \frac{9853}{100} \times \frac{100}{100}$	$\frac{1}{100} =$			

Question 4: Find:

(i)	$7.9 \div 1000$	(ii)	26.3 ÷ 1000	(iii)	$38.53 \div 1000$
(iv)	$128.9 \div 1000$	(v)	$0.5 \div 1000$		

Answer 4:

(i)
$$7.9 \div 1000 = \frac{79}{10} \times \frac{1}{1000} = \frac{79}{10000} = 0.0079$$

(ii) $26.2 \div 1000 = \frac{263}{10000} = \frac{263}{10000} = 0.0079$

(ii) $26.3 \div 1000 = \frac{263}{10} \times \frac{1}{1000} = \frac{263}{10000} = 0.0263$

(iii) $38.53 \div 1000 = \frac{3853}{100} \times \frac{1}{1000} = \frac{3853}{100000} = 0.03853$ (iv) $128.9 \div 1000 = \frac{1289}{10} \times \frac{1}{1000} = \frac{1289}{10000} = 0.1289$ (v) $0.5 \div 1000 = \frac{5}{10} \times \frac{1}{1000} = \frac{5}{10000} = 0.0005$

Question 5:

Find:

	7 ÷ 3.5		36 ÷ 0.2		3.25 ÷ 0.5
	$30.94 \div 0.7$		$0.5 \div 0.25$. ,	$7.75 \div 0.25$
(vii)	76.5 ÷ 0.15	(viii)	37.8 ÷ 1.4	(ix)	$2.73 \div 1.3$
STROP 5.					

Answer 5:

(i)
$$7 \div 3.5 = 7 \div \frac{35}{10} = 7 \times \frac{10}{35} = \frac{10}{5} = 2$$

(ii) $36 \div 0.2 = 36 \div \frac{2}{=} = 36 \times \frac{10}{2} = 18 \times 10 = 180$
(iii) $3.25 \div 0.5 = \frac{325}{100} \div \frac{5}{10} = \frac{325}{100} \times \frac{10}{5} = \frac{65}{10} = 6.5$
(iv) $30.94 \div 0.7 = \frac{3094}{100} \div \frac{7}{10} = \frac{3094}{100} \times \frac{10}{7} = \frac{442}{10} = 44.2$
(v) $0.5 \div 0.25 = \frac{5}{2} \div \frac{25}{10} = \frac{5}{100} \times \frac{100}{25} = \frac{10}{5} = 2$
(vi) $7.75 \div 0.25 = \frac{775}{100} \div \frac{25}{100} = \frac{775}{100} \times \frac{100}{25} = 31$
(vii) $76.5 \div 0.15 = \frac{765}{10} \div \frac{15}{100} = \frac{765}{10} \times \frac{100}{15} = 51 \times 10 = 510$
(viii) $37.8 \div 1.4 = \frac{378}{10} \div \frac{14}{10} = \frac{378}{100} \times \frac{10}{13} = 27$
(ix) $2.73 \div 1.3 = \frac{273}{100} \div \frac{13}{10} = \frac{273}{100} \times \frac{10}{13} = \frac{21}{10} = 2.1$

Vidya Champ 34 FRACTION AND DECIMALS **Question 6:**

A vehicle covers a distance of 43.2 km in 2.4 litres of petrol. How much distance will it cover in one litre petrol?

Answer 6:

- : In 2.4 litres of petrol, distance covered by the vehicle = 43.2 km
- \therefore In 1 litre of petrol, distance covered by the vehicle = 43.2 \div 2.4
 - $= \frac{432}{10} \div \frac{24}{10} = \frac{432}{10} \times \frac{24}{10}$ = 18 km

Vidya Champ FRACTION AND DECIMALS 35

Thus, it covered 18 km distance in one litre of petrol.

