В

MATHEMATICS

CHAPTER-5 UNDERSTANDING ELEMENTARY SHAPES (Class - VI)

Exercise 5.1

Question 1:

What is the disadvantage in comparing line segments by mere observation? **Answer 1:**

There may be chance of error due to improper viewing.

Question 2:

Why is it better to use a divider than a ruler, while measuring the length of a line segment? **Answer 2:**

It is better to use a divider than a ruler, because the thickness of the ruler may cause difficulties in reading off her length. However divider gives up accurate measurement.

Question 3:

Draw any line segment, say AB. Take any point C lying in between A and B. Measure the lengths of AB, BC and AC. Is AB = AC + CB?

[Note: If A, B, C are any three points on a line, such that AC + CB = AB, then we can be sure that C lies between A and B.]

Answer 3:

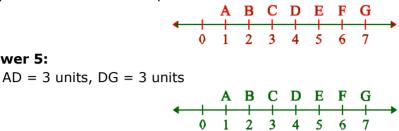
Yes.

A C AB = 6.5 cm, AC = 3cm, CB = 3.5 cm AC + CB = 3 cm + 3.5 cm = 6.5 cm = AB

Question 4:

If A, B, C are three points on a line such that AB = 5 cm, BC = 3 cm and AC = 8 cm, which one of them lies between the other two?

Answer 4:


AC is the longest line segment, thus B is the point between A and C.

Question 5:

Answer 5:

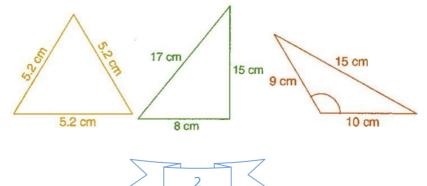
Verify whether D is the mid-point of \overline{AG} .

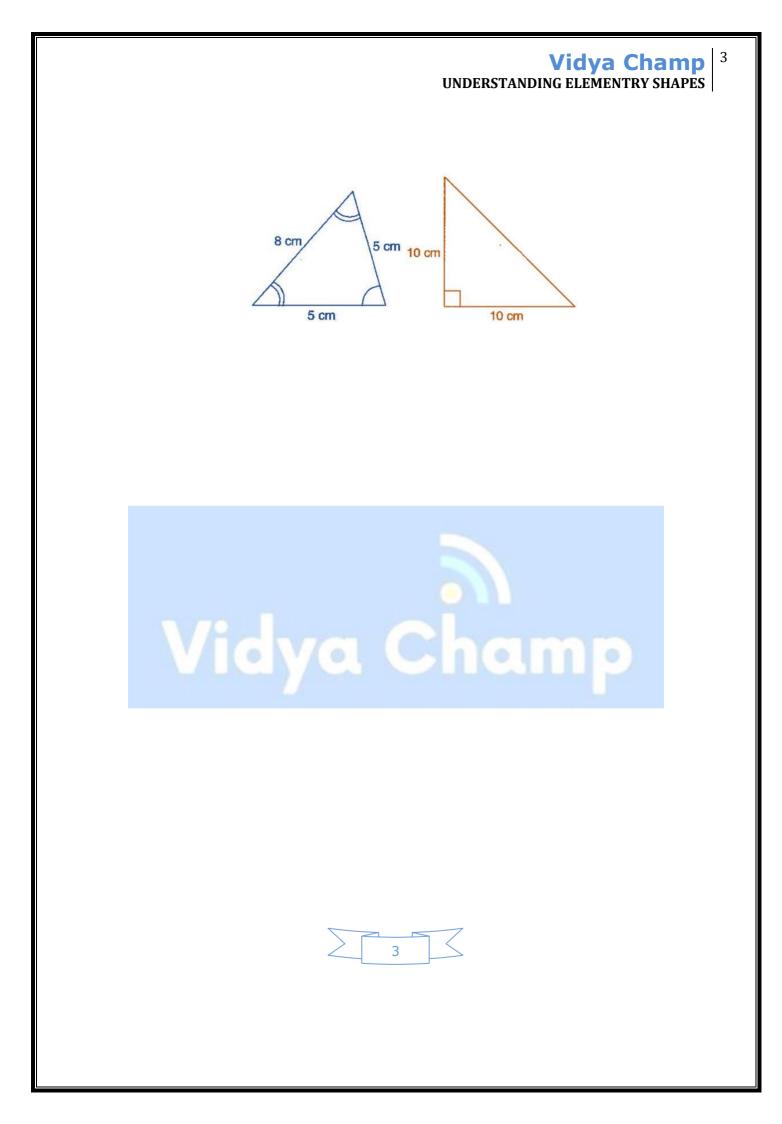
AD = DG. Thus, D is the mid-point.

Question 6:

If B is the mid-point of \overline{AC} and C is the mid-point of \overline{BD} , where A, B, C, D lie on a straight line, say why AB = CD?

Answer 6:



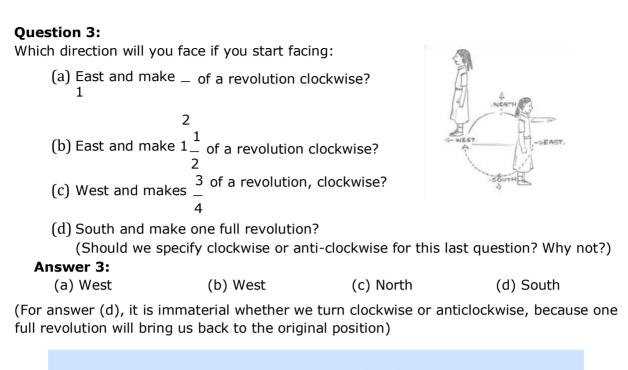

Question 7:

Draw five triangles and measure their sides. Check in each case, of the sum of the lengths of any two sides is always less than the third side.

Answer 7:

Yes, sum of two sides of a triangle is always greater than the third side.

Vidya Champ ⁴ UNDERSTANDING ELEMENTRY SHAPES


Exercise 5.2

Question

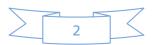
What fraction of a clockwise revolution does the hour hand of a clock turn through, when it goes from

it goes nom		
(a) 3 to 9	(b) 4 to 7	(c) 7 to 10
(d) 12 to 9	(e) 1 to 10	(f) 6 to 3
Answer 1:		
(a) $\frac{1}{2}$ or two right angle	25	
(b) $\frac{1}{4}$ or one right angle	2	
(c) $\frac{1}{-}$ or one right angle	2	
4 or three r (d) $\frac{3}{-}$ angles. or three r	right	
4	ight	
(e) $\frac{3}{-}$ angles. or three r	right	
⁴ angles.		
(f) $\frac{3}{-}$		
(1) =		
4		
Question 2:		
	k stop if it:	
Where will the hand of a clock		amp
Where will the hand of a clock (a) starts at 12 and male	k stop if it: ^{ke} – of a revolution, clock	wise?
Where will the hand of a clock	ke – of a revolution, clock	
Where will the hand of a clock (a) starts at 12 and male		
Where will the hand of a clock (a) starts at 12 and male	ke – of a revolution, clock 2 of a revolution, clock	xwise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make	ke – of a revolution, clock 2 of a revolution, clock ^{es –} of a revolution, clock	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make 1	ke – of a revolution, clock 2 of a revolution, clock ^{es –} of a revolution, clock ² of a revolution, clocky	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make	ke – of a revolution, clock 2 of a revolution, clock ^{es –} of a revolution, clock ² of a revolution, clocky	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make 1 (c) starts at 5 and make	ke – of a revolution, clock 2 of a revolution, clock ^{es –} of a revolution, clock ² of a revolution, clocky	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make 1 (c) starts at 5 and make	ke – of a revolution, clock 2 of a revolution, clock es – of a revolution, clock 2 of a revolution, clock es – 4	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make 1 (c) starts at 5 and make 1 (d) starts at 5 and make	ke – of a revolution, clock 2 of a revolution, clock es – of a revolution, clock 2 of a revolution, clock es – 4	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make 1 (c) starts at 5 and make 1 (d) starts at 5 and make	ke – of a revolution, clock 2 of a revolution, clock es – of a revolution, clock 2 of a revolution, clock es – 4 es –	wise?
Where will the hand of a clock (a) starts at 12 and make (b) starts at 2 and make 1 (c) starts at 5 and make 1 (d) starts at 5 and make 3 Answer 2:	ke – of a revolution, clock 2 of a revolution, clock es – of a revolution, clock 2 of a revolution, clock es – 4 es – 4	wise?
Where will the hand of a clock (a) starts at 12 and main (b) starts at 2 and make 1 (c) starts at 5 and make 1 (d) starts at 5 and make 3 Answer 2: (a) At 6	 ke – of a revolution, clock 2 of a revolution, clock es – of a revolution, clock 2 of a revolution, clock es – 4 (b) At 8 	wise?
Where will the hand of a clock (a) starts at 12 and make (b) starts at 2 and make 1 (c) starts at 5 and make 1 (d) starts at 5 and make 3 Answer 2:	ke – of a revolution, clock 2 of a revolution, clock es – of a revolution, clock 2 of a revolution, clock es – 4 es – 4	wise?

Question 4:

What part of a revolution have you turned through if you stand facing:

- (a) East and turn clockwise to face north?
- (b) South and turn clockwise to face east?
- (c) West and turn clockwise to face east?


Answer 4:

Question 5:

Find the number of right angles turned through by the hour hand of a clock when it goes from:

(a) 3 to 6
(b) 2 to 8
(c) 5 to 11
(d) 10 to 1
(e) 12 to 9
(f) 12 to 6

Vidya Champ ⁶ UNDERSTANDING ELEMENTRY SHAPES

Answer 5:

- (a) One right angle
- (c) Two right angles
- (e) Three right angles

- (b) Two right angles
- (d) One right angle
- (f) Two right angles

Question 6:

How many right angles do you make if you start facing:

- (a) South and turn clockwise to west?
- (b) North and turn anti-clockwise to east?
- (c) West and turn to west?
- (d) South and turn to north?

Answer 6:

- (a) One right angle
- (c) Four right angles

- (b) Three right angles
- (d) Two right angles

Question 7:

Where will the hour hand of a clock stop if it starts:

- (a) from 6 and turns through 1 right angle?
- (b) from 8 and turns through 2 right angles?
- (c) from 10 and turns through 3 right angles?
- (d) from 7 and turns through 2 straight angles?

Answer 7:

- (a) At 9
- (c) At 7

(b) At 2 (d) At 7

Exercise 5.3

Question 1:

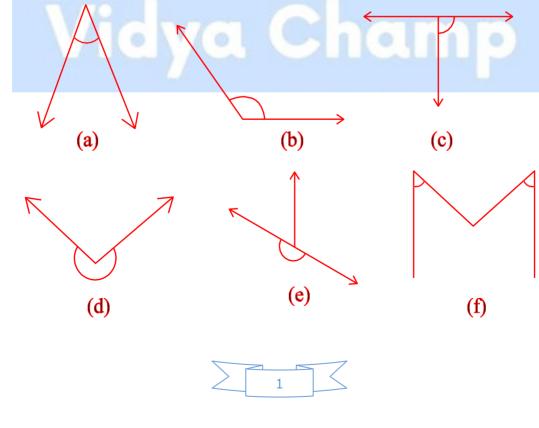
Match the following:

- (i) Straight angle
- (ii) Right angle
- (iii) Acute angle
- (iv) Obtuse angle
- (v) Reflex angle

(a) less than one-fourth a revolution

- (b) more than half a revolution
- (c) half of a revolution
- (d) one-fourth a revolution

(f) one complete revolution


(e) between $\frac{1}{4}$ and $\frac{1}{2}$ of a revolution

Answer 1:

(i)	\rightarrow	(c)
(ii)	\rightarrow	(d)
(iii)	\rightarrow	(a)
(iv)	\rightarrow	(e)
(v)	\rightarrow	(b)

Question 2:

Classify each one of the following angles as right, straight, acute, obtuse or reflex:

Vidya Champ⁸ UNDERSTANDING ELEMENTRY SHAPES⁸

Answer 2:

- (a) Acute angle
- (b) Obtuse angle
- (c) Right angle
- (d) Reflex angle
- (e) Straight angle
- (f) Acute angle

Vidya Champ ⁹ UNDERSTANDING ELEMENTRY SHAPES

Exercise 5.4

Question 1:

What is the measure of (i) a right angle? (ii) a straight angle? **Answer 1:**

(i)

90°

180

Question 2:

(ii)

Say True or False:

(a) The measure of an acute angle < 90.

(b) The measure of an obtuse angle < 90.

(c) The measure of a reflex angle > 180.

(d) The measure of on complete revolution = 360° .

(e) If $m\square$ A = 53 \square and $m\square$ B = 35 \square , then $m\square$ A > $m\square$ B.

Answer 2:

- (a) True
- (b) False
- (c) True
- (d) True
- (e) True

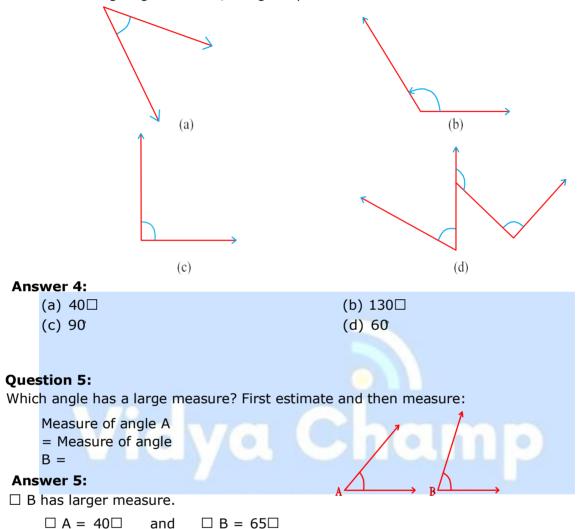
Question 3:

Write down the measure of:

(a) some acute angles

(give at least two examples of each)

Answer 3:


- (a) 350 , 200
- (b) 1100 ,1350

(b) some obtuse angles

Vidya Champ ¹⁰ UNDERSTANDING ELEMENTRY SHAPES

Measure the angles given below, using the protractor and write down the measure:

Question 6:

From these two angles which has larger measure? Estimate and then confirm by measuring them:

Answer 6:

Second angle has larger measure.

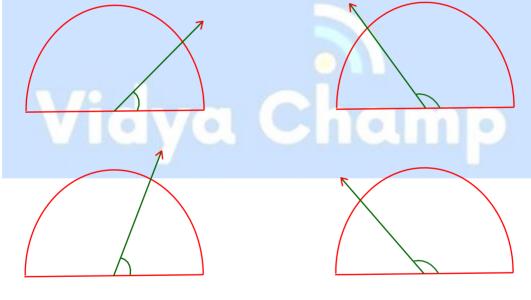
Vidya Champ ¹¹ UNDERSTANDING ELEMENTRY SHAPES

Question 7:

Fill in the blanks with acute, obtuse, right or straight:

- (a) An angle whose measure is less than that of a right angle is ______.
- (b) An angle whose measure is greater than that of a right angle is_____
- (c) An angle whose measure is the sum of the measures of two right angles is
- (d) When the sum of the measures of two angles is that of a right angle, then each one of them is_____.
- (e) When the sum of the measures of two angles is that of a straight angle and if one of them is acute then the other should be_____.

Answer 7:


(a) acute angle

- (b) obtuse angle
- (c) straight angle
- (e) obtuse angle

(d) acute angle

Question 8:

Find the measure of the angle shown in each figure. (First estimate with your eyes and then find the actual measure with a protractor).

Answer 8:

(i) 30° (iii) 60° (ii) 120 (iv) 150

Vidya Champ ¹² UNDERSTANDING ELEMENTRY SHAPES

30°

Question 9:

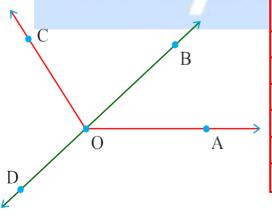
Find the angle measure between the hands of the clock in each figure:

Answer 9:

- (i) 90° (Right angle)
- (ii) 30° (Acute angle)
- (iii) 180° (Straight angle)

Question 10:

Investigate:


In the given figure, the angle measure 30°. Look at the same figure through a magnifying glass. Does the angle becomes larger? Does the size of the angle change?

Answer 10:

No, the measure of angle will be same.

Question 11:

Measure and classify each angle:

Angle	Measure	Туре
∠AOB		
∠AOC		
∠BOC		
∠DOC		
∠DOA		
∠DOB		

Vidya Champ ¹³ UNDERSTANDING ELEMENTRY SHAPES

Answer 11:						
Angle						
			BOC	DOC		
Measure	40 [°]	130 [°]	90 [°]	90 [°]	140 [°]	18Ů
Туре	Acute	Obtuse	Right	Right	Obtuse	Straight

Vidya Champ ¹⁴ UNDERSTANDING ELEMENTRY SHAPES

Exercise 5.5

Question 1:

Which of the following are models for perpendicular lines:

- (a) The adjacent edges of a table top.
- (b) The lines of a railway track.
- (c) The line segments forming the letter `L'.
- (d) The letter V.

Answer 1:

- (a) Perpendicular
- (b) Not perpendicular
- (c) Perpendicular
- (d) Not perpendicular

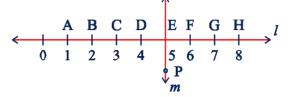
Question 2:

Let \overline{PQ} be the perpendicular to the line segment XY. Let \overline{PQ} and XY intersect in the point A. What is the measure of \Box PAY?

Answer 2:

Question 3:

There are two "set-squares" in your box. What are the measures of the angles that are formed at their corners? Do they have any angle measure that is common?


Answer 3:

One set-square has 45 ,90 , 45 and other set-square has 60 ,90 ,30 . They have 90 as common angle.

15

Question 4:

Study the diagram. The line *I* is perpendicular to line *m*.

(a) Is CE = EG?

(b) Does PE bisect CG?

(c) Identify any two line segments for which PE is the perpendicular bisector.

(d) Are these true? (i) AC > FG (ii) CD = GH (iii) BC < EH

Answer 4:

(a) Yes, both measure 2 units.

(b) Yes, because CE = EG

(c) DF and CG, BH

(d) (i) True, (ii) True, (iii) True

Vidya Champ ¹⁶ UNDERSTANDING ELEMENTRY SHAPES

Exercise 5.6

Question 1:

Name the types of following triangles:

- (a) Triangle with lengths of sides 7 cm, 8 cm and 9 cm.
- (b) \Box ABC with AB = 8.7 cm, AC = 7 cm and BC = 6 cm.
- (c) \Box PQR such that PQ = QR = PR = 5 cm.
- (d) \Box DEF with $m\Box$ D = 90°
- (e) \Box XYZ with $m\Box$ Y = 90 and XY = YZ
- (f) \Box LMN with $m\Box$ L = 30 , $m\Box$ M = 70 and $m\Box$ N = 80 .

Answer 1:

- (a) Scalene triangle
- (b) Scalene triangle
- (c) Equilateral triangle
- (d) Right-angled triangle
- (e) Isosceles right-angled triangle
- (f) Acute-angled triangle

Question 2:

Match the following:

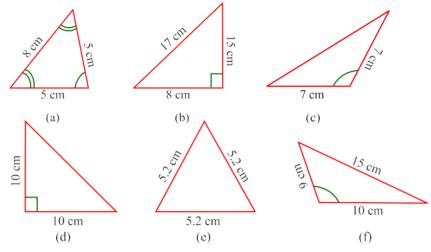
Measure of Triangle

- (i) 3 sides of equal length
- (ii) 2 sides of equal length
- (iii) All sides are of different length
- (iv) 3 acute angles
- (v) 1 right angle
- (vi) 1 obtuse angle
- (vii) 1 right angle with two sides of equal length

Answer 2:

- (i) □ (e),
- (iii) □ (a),
- (v) □ (d),
- (vii) 🗆 (b)

Types of Triangle


- (a) Scalene
- (b) Isosceles right angle
- (c) Obtuse angle
- (d) Right angle
- (e) Equilateral
- (f) Acute angle
- (g) Isosceles

(ii)	□ (g),
(iv)	□ (f),
(vi)	□ (c),

Vidya Champ ¹ UNDERSTANDING ELEMENTRY SHAPES

Question 3:

Name each of the following triangles in two different ways: (You may judge the nature of angle by observation)

Answer 3:

- (a) Acute angled triangle and Isosceles triangle
- (b) Right-angled triangle and scalene triangle
- (c) Obtuse-angled triangle and Isosceles triangle
- (d) Right-angled triangle and Isosceles triangle
- (e) Equilateral triangle and acute angled triangle
- (f) Obtuse-angled triangle and scalene triangle

Question 4:

Try to construct triangles using match sticks. Some are shown here.

Can you make a triangle with:

- (a) 3 matchsticks?
- (b) 4 matchsticks?
- (c) 5 matchsticks?
- (d) 6 matchsticks?

(Remember you have to use all the available matchsticks in each case) If you cannot make a triangle, think of

reasons for it.

Answer 4:

(a) 3 matchsticks

This is an acute angle triangle and it is possible with 3 matchsticks to make a triangle because sum of two sides is greater than third side.

(b) 4 matchsticks

This is a square, hence with four matchsticks we cannot make triangle.

(c) 5 matchsticks

This is an acute angle triangle and it is possible to make triangle with five matchsticks, in this case sum of two sides is greater than third side.

(d) 6 matchsticks

This is an acute angle triangle and it is possible to make a triangle with the help of 6 matchsticks because sum of two sides is greater than third side.

Vidya Champ

Vidya Champ ¹⁹ UNDERSTANDING ELEMENTRY SHAPES

Exercise 5.7

Question 1:

Say true or false:

- (a) Each angle of a rectangle is a right angle.
- (b) The opposite sides of a rectangle are equal in length.
- (c) The diagonals of a square are perpendicular to one another.

(d) All the sides of a rhombus are of equal length.

- (e) All the sides of a parallelogram are of equal length.
- (f) The opposite sides of a trapezium are parallel.

Answer 1:

(a) True	(b) True
(c) True	(d) True
(e) False	(f) False

Question 2:

Give reasons for the following:

- (a) A square can be thought of as a special rectangle.
- (b) A rectangle can be thought of as a special parallelogram.
- (c) A square can be thought of as a special rhombus.
- (d) Squares, rectangles, parallelograms are all quadrilateral.
- (e) Square is also a parallelogram.

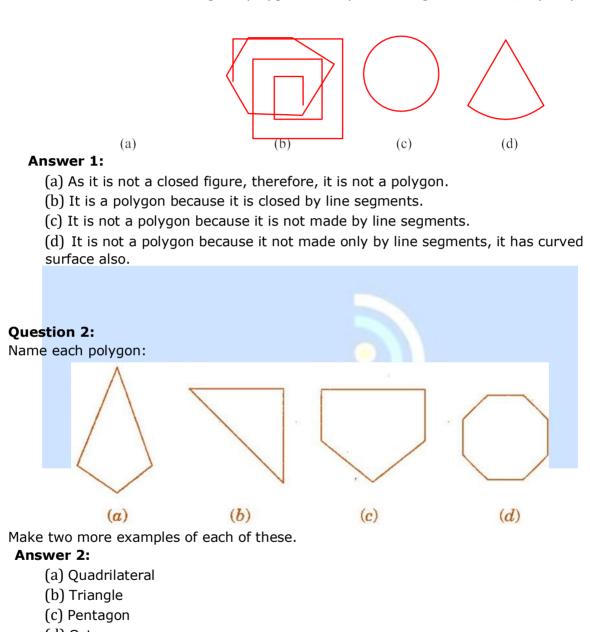
Answer 2:

- (a) Because its all angles are right angle and opposite sides are equal.
- (b) Because its opposite sides are equal and parallel.
- (c) Because its four sides are equal and diagonals are perpendicular to each other.
- (d) Because all of them have four sides.
- (e) Because its opposite sides are equal and parallel.

Question 3:

A figure is said to be regular if its sides are equal in length and angles are equal in measure. Can you identify the regular quadrilateral?

Answer 3:


A square is a regular quadrilateral.

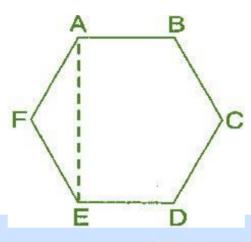
Vidya Champ ²⁰ UNDERSTANDING ELEMENTRY SHAPES

Exercise 5.8

Question 1:

Examine whether the following are polygons. If anyone among these is not, say why?

(d) Octagon

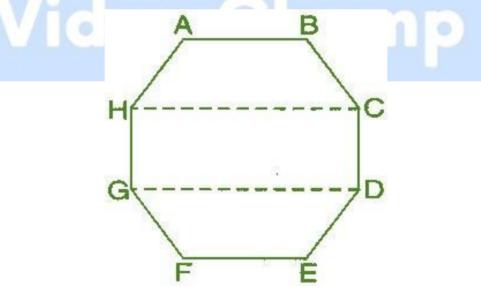

Vidya Champ ²¹ UNDERSTANDING ELEMENTRY SHAPES

Question 3:

Draw a rough sketch of a regular hexagon. Connecting any three of its vertices, draw a triangle. Identify the type of the triangle you have drawn.

Answer 3:

ABCDEF is a regular hexagon and triangle thus formed by joining AEF is an isosceles triangle.

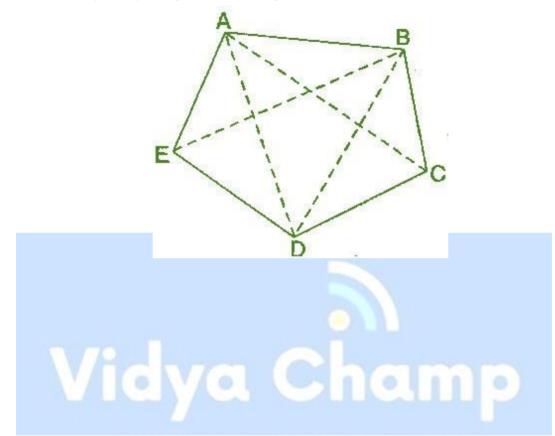


Question 4:

Draw a rough sketch of a regular hexagon. Connecting any three of its vertices, draw a triangle. Identify the type of the triangle you have drawn.

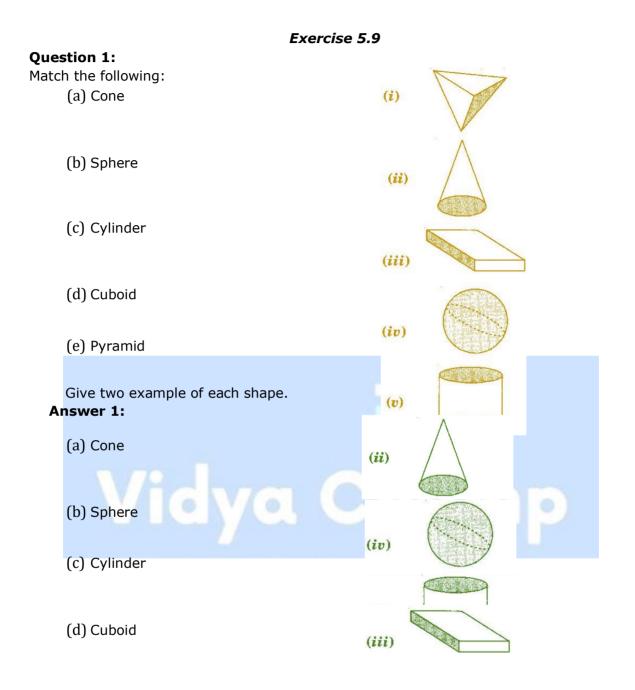
Answer 4:

ABCDEFGH is a regular octagon and CDGH is a rectangle.


Vidya Champ ²² UNDERSTANDING ELEMENTRY SHAPES

Question 5:

A diagonal is a line segment that joins any two vertices of the polygon and is not a side of the polygon. Draw a rough sketch of a pentagon and draw its diagonals.


Answer 5:

ABCDE is the required pentagon and its diagonals are AD, AC, BE and BD.

23

Vidya Champ UNDERSTANDING ELEMENTRY SHAPES

Vidya Champ ²⁴ UNDERSTANDING ELEMENTRY SHAPES

(e) Pyramid

Question 2:

What shape is:

- (a) Your instrument box?
- (b) A brick?
- (c) A match box?
- (d) A road-roller?
- (e) A sweet laddu?

Answer 2:

- (a) Cuboid
- (b) Cuboid
- (c) Cuboid
- (d) Cylinder
- (e) Sphere

