MATHEMATICS

CHAPTER-10 MENSURATION

Exercise 10.1

Question 1:

Find the perimeter of each of the following figures:

(a)

(b)

(d)

Answer 1:

(a) Perimeter $=$ Sum of all the sides

$$
=4 \mathrm{~cm}+2 \mathrm{~cm}+1 \mathrm{~cm}+5 \mathrm{~cm}=12 \mathrm{~cm}
$$

(b) Perimeter $=$ Sum of all the sides
$=23 \mathrm{~cm}+35 \mathrm{~cm}+40 \mathrm{~cm}+35 \mathrm{~cm}=133 \mathrm{~cm}$
(a) Perimeter $=$ Sum of all the sides
$=15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}+15 \mathrm{~cm}=60 \mathrm{~cm}$
(b) Perimeter $=$ Sum of all the sides
$=4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}+4 \mathrm{~cm}=20 \mathrm{~cm}$
(c) Perimeter $=$ Sum of all the sides
$1 \mathrm{~cm}+4 \mathrm{~cm}+0.5 \mathrm{~cm}+2.5 \mathrm{~cm}+2.5 \mathrm{~cm}+0.5 \mathrm{~cm}+4 \mathrm{~cm}=15$
cm
(d) Perimeter $=$ Sum of all the sides
$=4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2$
$\mathrm{cm}+3$
$\mathrm{cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+2 \mathrm{~cm}+3 \mathrm{~cm}+4 \mathrm{~cm}+1 \mathrm{~cm}+3 \mathrm{~cm}+$ 2 cm
$+3 \mathrm{~cm}=52 \mathrm{~cm}$

Question 2:

The lid of a rectangular box of sides 40 cm by 10 cm is sealed all round with tape. What is the length of the tape required?

Answer 2:

Total length of tape required $=$ Perimeter of rectangle

$$
\begin{aligned}
& =2 \text { (length }+ \text { breadth }) \\
& =2(40+10) \\
& =2 \times 50 \\
& =100 \mathrm{~cm} \\
& =1 \mathrm{~m}
\end{aligned}
$$

Thus, the total length of tape required is 100 cm or 1 m .

Question 3:

A table-top measures 2 m 25 cm by 1 m 50 cm . What is the perimeter of the table-top?

Answer 3:

Length of table top $=2 \mathrm{~m} 25 \mathrm{~cm}=2.25 \mathrm{~m}$
Breadth of table top $=1 \mathrm{~m} 50 \mathrm{~cm}=1.50 \mathrm{~m}$
Perimeter of table top $=2 \times$ (length +
breadth)

$$
\begin{aligned}
& =2 \times(2.25+1.50) \\
& =2 \times 3.75 \\
& =7.50 \mathrm{~m}
\end{aligned}
$$

Thus, the perimeter of table top is 7.5 m .

Question 4:

What is the length of the wooden strip required to frame a photograph of length and breadth 32 cm and 21 cm respectively?

Answer 4:

$$
\begin{aligned}
\text { Length of wooden strip } & =\text { Perimeter of photograph } \\
\text { Perimeter of photograph } & =2 \times \text { (length + breadth) } \\
& =2(32+21) \\
& =2 \times 53 \mathrm{~cm} \\
& =106 \mathrm{~cm}
\end{aligned}
$$

Thus, the length of the wooden strip required is equal to 106 cm .

Question 5:

A rectangular piece of land measures 0.7 km by 0.5 km . Each side is to be fenced with 4 rows of wires. What is the length of the wire needed?

Answer 5:

Since the 4 rows of wires are needed.
Therefore the total length of wires is equal to 4 times the perimeter of rectangle.
Perimeter of field

$$
\begin{aligned}
& =2 \times(\text { length }+ \text { breadth }) \\
& =2 \times(0.7+0.5) \\
& =2 \times 1.2 \\
& =2.4 \mathrm{~km} \\
& =2.4 \times 1000 \mathrm{~m} \\
& =2400 \mathrm{~m}
\end{aligned}
$$

Thus, the length of wire $=4 \times 2400=9600 \mathrm{~m}=9.6 \mathrm{~km}$

Question 6:

Find the perimeter of each of the following shapes:
(a) A triangle of sides $3 \mathrm{~cm}, 4 \mathrm{~cm}$ and 5 cm .
(b) An equilateral triangle of side 9 cm .
(c) An isosceles triangle with equal sides 8 cm each and third side 6 cm

Answer 6:

(a) Perimeter of $\square A B C=A B+B C+C A$

$$
\begin{aligned}
& =3 \mathrm{~cm}+5 \mathrm{~cm}+4 \mathrm{~cm} \\
& =12 \mathrm{~cm}
\end{aligned}
$$

(b) Perimeter of equilateral $A B C=3 \times$ side

$$
\begin{aligned}
& =3 \times 9 \mathrm{~cm} \\
& =27 \mathrm{~cm}
\end{aligned}
$$

(c) Perimeter of

$$
\begin{aligned}
\square A B C & =A B+B C+C A \\
& =8 \mathrm{~cm}+6 \mathrm{~cm}+8 \mathrm{~cm} \\
& =22 \mathrm{~cm}
\end{aligned}
$$

Question 7:

Find the perimeter of a triangle with sides measuring $10 \mathrm{~cm}, 14 \mathrm{~cm}$ and 15 cm .

Answer 7:

Perimeter of triangle = Sum of all three sides

$$
\begin{aligned}
& =10 \mathrm{~cm}+14 \mathrm{~cm}+15 \mathrm{~cm} \\
& =39 \mathrm{~cm}
\end{aligned}
$$

Thus, the perimeter of triangle is 39 cm .

Question 8:

Find the perimeter of a regular hexagon with each side measuring 8 cm .

Answer 8:

Perimeter of Hexagon $=6 \times$ length of one side

$$
\begin{aligned}
& =6 \times 8 \mathrm{~m} \\
& =48 \mathrm{~m}
\end{aligned}
$$

Thus, the perimeter of hexagon is 48 m .

Question 9:

Find the side of the square whose perimeter is 20 m .

Answer 9:

Perimeter of square $=4 x$ side

$$
\begin{aligned}
& \square \quad 20=4 \times \text { side } \\
& \square \quad \text { Side } \overline{\overline{2}}=5 \mathrm{~cm} \\
& 0 \\
& \\
& \\
& \\
& \\
& \\
& 4
\end{aligned}
$$

Thus, the side of square is 5 cm .

Question 10:

The perimeter of a regular pentagon is 100 cm . How long is its each side?

Answer 10:

Perimeter of regular pentagon $=100 \mathrm{~cm}$
$\square \quad 5 \times$ side $=100 \mathrm{~cm}$Side $=$
$1-=20 \mathrm{~cm}$
0
0
5
Thus, the side of regular pentagon is 20 cm .

Question 11:

A piece of string is 30 cm long. What will be the length of each side if the string is used to form:
(a) a square
(b) an equilateral triangle
(c) a regular hexagon?

Answer 11:

Length of string $=$ Perimeter of each figure
(a) Perimeter of square $=30 \mathrm{~cm}$
$\square \quad 4 \times$ side $=30 \mathrm{~cm}$
$\square \quad$ Side $=$ \qquad - $=7.5 \mathrm{~cm}$

30
4
Thus, the length of each side of square is 7.5 cm .
(b) Perimeter of equilateral triangle $=30 \mathrm{~cm}$$3 \times$ side $=30 \mathrm{~cm}$
$\square \quad$ Side $=$ \qquad
30
3
Thus, the length of each side of equilateral triangle is 10 cm .
(c) Perimeter of hexagon $=30 \mathrm{~cm}$
$\square \quad 6 \times$ side $=30 \mathrm{~cm}$
$\square \quad$ Side $=-=5 \mathrm{~cm}$
6
Thus, the side of each side of hexagon is 5 cm .

Question 12:

Two sides of a triangle are 12 cm and 14 cm . The perimeter of the triangle is 36 cm . What is the third side?

Answer 12:

Let the length of third side be $x \mathrm{~cm}$.
Length of other two side are 12 cm and 14
cm . Now, Perimeter of triangle $=36 \mathrm{~cm}$

Question 13:

Find the cost of fencing a square park of side 250 m at the rate of ₹ 20 per meter.

$$
\begin{array}{ll}
\text { Answer 13: } \\
\begin{array}{ll}
\text { Side of square } & =250 \mathrm{~m} \\
\text { Perimeter of square } & =4 \mathrm{x} \\
\text { side }
\end{array} & \\
& =4 \times 250 \\
& =1000 \mathrm{~m}
\end{array}
$$

Since, cost of fencing of per meter

$$
\begin{aligned}
& =₹ 20 \\
& =20 \times 1000=₹ 20,000
\end{aligned}
$$

Therefore, the cost of fencing of 1000 meters

Question 14:

Find the cost of fencing a rectangular park of length 175 m and breadth 125 m at the rate of ₹ 12 per meter.

Answer 14:

$$
\begin{aligned}
& \text { Length of rectangular park } \\
& \begin{array}{l}
\mathrm{m} \text { Breadth of rectangular park }
\end{array}=175 \\
& \begin{array}{ll}
\mathrm{m} \\
\text { Perimeter of park } & =2 \times(\text { length }+ \text { breadth }) \\
& =2 \times(175+125) \\
& =2 \times 300=600 \mathrm{~m}
\end{array}
\end{aligned}
$$

Since, the cost of fencing park per meter $=₹ 12$
Therefore, the cost of fencing park of $600 \mathrm{~m}=12 \times 600=₹ 7,200$

Question 15:

Sweety runs around a square park of side 75 m . Bulbul runs around a rectangular park with length of 60 m and breadth 45 m . Who covers less distance?

Answer 15:

Distance covered by Sweety = Perimeter of square park
Perimeter of square

$$
=4 x \text { side }
$$

$$
=4 \times 75=300 \mathrm{~m}
$$

Thus, distance covered by Sweety is 300 m .
Now, distance covered by Bulbul = Perimeter of rectangular park
Perimeter of rectangular park $=2 \times$ (length + breadth $)$
$=2 \times(60+45)$
$=2 \times 105=210 \mathrm{~m}$
Thus, Bulbul covers the distance of 210 m and Bulbul covers less distance.

Question 16:

What is the perimeter of each of the following figures? What do you infer from the answer?

Answer 16:

(a) Perimeter of square

$$
\begin{aligned}
& =4 \times \text { side } \\
& =4 \times 25=100 \mathrm{~cm}
\end{aligned}
$$

(b) Perimeter of rectangle
$=2 \times($ length + breadth $)$
$=2 \times(40+10)$
$=2 \times 50$
$=100 \mathrm{~cm}$
(c) Perimeter of rectangle

$$
\begin{aligned}
& =2 \times(\text { length }+ \text { breadth }) \\
& =2 \times(30+20) \\
& =2 \times 50 \\
& =100 \mathrm{~cm}
\end{aligned}
$$

(d) Perimeter of triangle
= Sum of all sides
$=30 \mathrm{~cm}+30 \mathrm{~cm}+40 \mathrm{~cm}$
$=100 \mathrm{~cm}$

Thus, all the figures have same
perimeter.

Question 17:

Avneet buys 9 square paving slabs, each with a side $\frac{1}{2} \mathrm{~m}$. He lays them in the form of a square

(a) What is the perimeter of his arrangement?
(b) Shari does not like his arrangement. She gets him to lay them out like a cross. What is the perimeter of her arrangement?
(c) Which has greater perimeter?
(d) Avneet wonders, if there is a way of getting an even greater perimeter. Can you find a way of doing this? (The paving slabs must meet along complete edges, i.e., they cannot be broken.)

Answer 17:

(a) 6 m
(b) 10 m
(c) Second arrangement has greater perimeter.
(d) Yes, if all the squares are arranged in row, the perimeter be 10 cm .

Exercise 10.2

Question 1:

Find the areas of the following figures by counting squares:

Answer 1:

(a) Number of filled square $=9$
\square Area covered by squares $=9 \times 1=9$ sq. units
(b) Number of filled squares $=5$
\square Area covered by filled squares $=5 \times 1=5$ sq. units
(c) Number of full filled squares $=2$

Number of half-filled squares $=4$
\square Area covered by full filled squares $=2 \times 1=2$ sq. units
And Area covered by half-filled squares $=4 \not x^{1} \overline{\not x}=2$ sq. units
\square Total area $=2+2=4$ sq. units

(d) Number of filled squares $=8$
\square Area covered by filled squares
(a) Number of filled squares $=10$
\square Area covered by filled squares $=10 \times 1=10$ sq. units
(b) Number of full filled squares =

2 Number of half-filled squares = 4
\square Area covered by full filled squares $=2 \times 1=2$ sq. units
And Area covered by half-filled squares $=4 \not x^{1} \frac{\not x}{\not 2}=2$ sq. units
\square Total area $=2+2=4$ sq. units
(c) Number of full filled squares =

4 Number of half-filled squares =
4
\square Area covered by full filled squares $=4 \times 1=4$ sq. units
And Area covered by half-filled squares $=4 \not \chi^{1} \frac{\not{22}}{}=2$ sq. units
\square Total area $=4+2=6$ sq. units
(d) Number of filled squares $=5$
\square Area covered by filled squares $=5 \times 1=5$ sq. units
(e) Number of filled squares $=9$
\square Area covered by filled squares $=9 \times 1=9$ sq. units
(f) Number of full filled squares $=2$

Number of half-filled squares $=4$
\square Area covered by full filled squares $=2 \times 1=2$ sq. units
And Area covered by half-filled squares $=4 \not x^{1} \overline{\not 2}=2$ sq. units
\square Total area $=2+2=4$ sq. units
(g) Number of full filled squares $=4$

Number of half-filled squares $=2$
\square Area covered by full filled squares $=4 \times 1=4$ sq. units

And Area covered by half-filled squares $=2 \not x^{1} \frac{\not{2}}{}=1$ sq. units
\square Total area $=4+1=5$ sq. units
(h) Number of full filled squares $=3$

Number of half-filled squares $=10$
\square Area covered by full filled squares $=3 \times 1=3$ sq. units
And Area covered by half-filled squares $=\mu \varnothing \times \frac{1}{\npreceq 2}=5$ sq. units
\square Total area $=3+5=8$ sq. units
(i) Number of full filled squares $=7$

Number of half-filled squares $=14$
\square Area covered by full filled squares $=7 \times 1=7$ sq. units
And Area covered by half-filled squares $=14 \times \frac{1}{\not 2}=7$ sq. units
\square Total area $=7+7=14$ sq. units
(j) Number of full filled squares $=10$

Number of half-filled squares $=16$
\square Area covered by full filled squares $=10 \times 1=10$ sq. units
And Area covered by half-filled squares $=16 \times \frac{1}{\not 2}=8$ sq. units
\square Total area $=10+8=18$ sq. units

Exercise 10.3

Question 1:

Find the areas of the rectangles whose sides are:
(a) 3 cm and 4 cm
(b) 12 m and 21 m
(c) 2 km and 3 km
(d) 2 m and 70 cm

Answer 1:

(a) Area of rectangle $=$ length \times breadth

$$
=3 \mathrm{~cm} \times 4 \mathrm{~cm}=12 \mathrm{~cm}^{2}
$$

(b) Area of rectangle $=$ length \times breadth
$=12 \mathrm{~m} \times 21 \mathrm{~m}=252 \mathrm{~m}^{2}$
(c) Area of rectangle $=$ length \times breadth
$=2 \mathrm{~km} \times 3 \mathrm{~km}=6 \mathrm{~km}^{2}$
(d) Area of rectangle $=$ length \times breadth

$$
=2 \mathrm{~m} \times 70 \mathrm{~cm}=2 \mathrm{~m} \times 0.7 \mathrm{~m}=1.4 \mathrm{~m}^{2}
$$

Question 2:

Find the areas of the squares whose sides are:
(a) 10 cm
(b) 14 cm
(c) 5 cm

Answer 2:

(a) Area of square $=$ side \times side $=10 \mathrm{~cm} \times 10 \mathrm{~cm}=100 \mathrm{~cm}^{2}$
(b) Area of square $=$ side \times side $=14 \mathrm{~cm} \times 14 \mathrm{~cm}=196 \mathrm{~cm}^{2}$
(c) Area of square $=$ side \times side $=5 \mathrm{~m} \times 5 \mathrm{~m}=25 \mathrm{~m}^{2}$

Question 3:

The length and the breadth of three rectangles are as given below:
(a) 9 m and 6 m
(b) 17 m and 3 m
(c) 4 m and 14
m Which one has the largest area and which one has the smallest?

Answer 3:

(a) Area of rectangle $=$ length \times breadth $=9 \mathrm{~m} \times 6 \mathrm{~m}=54 \mathrm{~m}^{2}$
(b) Area of rectangle $=$ length x breadth $=3 \mathrm{~m} \times 17 \mathrm{~m}=51 \mathrm{~m}^{2}$
(c) Area of rectangle $=$ length x breadth $=4 \mathrm{~m} \times 14 \mathrm{~m}=56 \mathrm{~m}^{2}$

Thus, the rectangle (c) has largest area, and rectangle (b) has smallest area.

Question 4:

The area of a rectangle garden 50 m long is $300 \mathrm{~m}^{2}$, find the width of the garden.

Answer 4:

Length of rectangle $=50 \mathrm{~m}$ and Area of rectangle $=300$
m^{2} Since, \quad Area of rectangle $=$ length x breadth
Therefore, \quad Breadth $=\begin{aligned} & \text { Area of rectangle } \\ & =\end{aligned} \frac{300}{50}=6 \mathrm{~m}$
Length
Thus, the breadth of the garden is 6 m .

Question 5:

What is the cost of tilling a rectangular plot of land 500 m long and 200 m wide at the rate of ₹8 per hundred sq. m?

Answer 5:

Length of land $=500 \mathrm{~m}$ and Breadth of land $=200 \mathrm{~m}$
Area of land $=$ length \times breadth $=500 \mathrm{~m} \times 200 \mathrm{~m}=1,00,000$
$m^{2} \because \quad$ Cost of tilling 100 sq. m of land $=₹ 8$
$\square \quad$ Cost of tilling $1,00,000$ sq. m of land $=\frac{8 \times 100000}{10 \sigma}=₹ 8000$

Question 6:

A table-top measures 2 m by 1 m 50 cm . What is its area in square meters?

Answer 6:

Length of table $=2 \mathrm{~m}$
Breadth of table $=1 \mathrm{~m} 50 \mathrm{~cm}=1.50$
m Area of table $=$ length \times breadth

$$
=2 \mathrm{~m} \times 1.50 \mathrm{~m}=3 \mathrm{~m}^{2}
$$

Question 7:

A room us 4 m long and 3 m 50 cm wide. How many square meters of carpet is needed to cover the floor of the room?

Answer 7:

Length of room $=4 \mathrm{~m}$
Breadth of room $=3 \mathrm{~m} 50 \mathrm{~cm}=3.50$
m Area of carpet $=$ length \times breadth

$$
=4 \times 3.50=14 \mathrm{~m}^{2}
$$

Question 8:

A floor is 5 m long and 4 m wide. A square carpet of sides 3 m is laid on the floor. Find the area of the floor that is not carpeted.

Answer 8:

Length of floor $=5 \mathrm{~m}$ and breadth of floor $=4$
m Area of floor $=$ length \times breadth

$$
=5 \mathrm{~m} \times 4 \mathrm{~m}=20
$$

m^{2} Now, Side of square carpet $=3$
m
Area of square carpet $=$ side \times side $=3 \times 3=9 \mathrm{~m}^{2}$
Area of floor that is not carpeted $=20 m^{2}-9 m^{2}=11 m^{2}$

Question 9:

Five square flower beds each of sides 1 m are dug on a piece of land 5 m long and 4 m wide. What is the area of the remaining part of the land?

Answer 9:

Side of square bed $=1 \mathrm{~m}$
Area of square bed $=$ side \times side $=1 \mathrm{~m} \times 1 \mathrm{~m}=1 \mathrm{~m}^{2}$
\square Area of 5 square beds $=1 \times 5=5$
m^{2} Now, Length of land $=5 \mathrm{~m}$
Breadth of land $=4 \mathrm{~m}$
$\square \quad$ Area of land $\quad=$ length \times breadth

$$
=5 \mathrm{~m} \times 4 \mathrm{~m}=20 \mathrm{~m}^{2}
$$

Area of remaining part $=$ Area of land - Area of 5 flower beds

$$
=20 m^{2}-5 m^{2}=15 m^{2}
$$

Question 10:

By splitting the following figures into rectangles, find their areas. (The measures are given in centimetres)

Answer 10:

(a) Area of HKLM $=3 \times 3=9$
cm^{2} Area of IJGH $=1 \times 2=$
$2 \mathrm{~cm}^{2}$ Area of FEDG $=3 \times 3$
$=9 \mathrm{~cm}^{2}$ Area of $\mathrm{ABCD}=2 \mathrm{x}$
$4=8 \mathrm{~cm}^{2}$
Total area of the figure $=9+2+9+8=28 \mathrm{cr}^{4}$

(b) Area of $A B C D=3 \times 1=3$
cm^{2} Area of $\mathrm{BDEF}=3 \times 1=$
$3 \mathrm{~cm}^{2}$ Area of $\mathrm{FGHI}=3 \times 1$
$=3 \mathrm{~cm}^{2}$
Total area of the figure $=3+3+3=9 \mathrm{~cm}^{2}$

Question 11:

Split the following shapes into rectangles and find their areas. (The measures are given in centimetres)

Answer 11:

(a) Area of rectangle $A B C D=2 \times 10=20$
cm^{2} Area of rectangle DEFG $=10 \times 2=$
$20 \mathrm{~cm}^{2}$ Total area of the figure $=20+20$
$=40 \mathrm{~cm}^{2}$

(b) There are 5 squares each of side 7 cm . Area of one square $=7 \times 7=49$ cm^{2} Area of 5 squares $=49 \times 5=$ $245 \mathrm{~cm}^{2}$

(c) Area of rectangle $A B C D=5 \times 1=5$ cm^{2} Area of rectangle EFGH $=4 \times 1=$ $4 \mathrm{~cm}^{2}$ Total area of the figure $=5+4$ cm^{2}

Question 12:

How many tiles whose length and breadth are 12 cm and 5 cm respectively will be needed to fit in a rectangular region whose length and breadth are respectively?
(a) 100 cm and 144 cm
(b) 70 cm and 36 cm

Answer 12:

(a) Area of region $=100 \mathrm{~cm} \times 144 \mathrm{~cm}=14400$
cm^{2} Area of one tile $=5 \mathrm{~cm} \times 12 \mathrm{~cm}=60 \mathrm{~cm}^{2}$
Number of tiles

$$
\begin{aligned}
& =\frac{\text { Area of region }}{\text { Area of one tile }} \\
& =\frac{14400}{60}=240
\end{aligned}
$$

Thus, 240 tiles are required.
(b) Area of region $=70 \mathrm{~cm} \times 36 \mathrm{~cm}=2520$
cm^{2} Area of one tile $=5 \mathrm{~cm} \times 12 \mathrm{~cm}=60$
cm^{2}
Number of tiles $=\frac{\text { Area of region }}{\text { Area of one tile }}$

$$
=\frac{2520}{60}=42
$$

Thus, 42 tiles are required.

