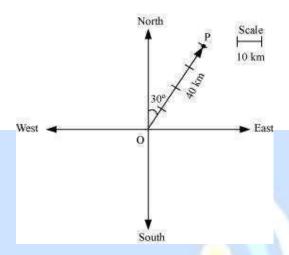
Exercise 10.1

Question 1:

Represent graphically a displacement of 40 km, 30° east of north.

Answer



Here, vector OPrepresents the displacement of 40 km, 30° East of North.

Question 2:

Classify the following measures as scalars and vectors.

- (i) 10 kg (ii) 2 metres north-west (iii) 40°
- (iv) 40 watt (v) 10⁻¹⁹ coulomb (vi) 20 m/s²

Answer

- (i) 10 kg is a scalar quantity because it involves only magnitude.
- (ii) 2 meters north-west is a vector quantity as it involves both magnitude and direction.
- (iii) 40° is a scalar quantity as it involves only magnitude.
- (iv) 40 watts is a scalar quantity as it involves only magnitude.
- (v) 10^{-19} coulomb is a scalar quantity as it involves only magnitude.
- (vi) 20 m/s² is a vector quantity as it involves magnitude as well as direction.

Question 3:

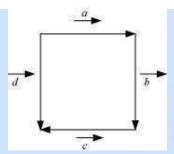
Classify the following as scalar and vector quantities.

(i) time period (ii) distance (iii) force

- (iv) velocity (v) work done Answer
- (i) Time period is a scalar quantity as it involves only magnitude.
- (ii) Distance is a scalar quantity as it involves only magnitude.
- (iii) Force is a vector quantity as it involves both magnitude and direction.
- (iv) Velocity is a vector quantity as it involves both magnitude as well as direction.
- (v) Work done is a scalar quantity as it involves only magnitude.

Question 4:

In Figure, identify the following vectors.



- (i) Coinitial (ii) Equal (iii) Collinear but not equal Answer
- (i) Vectors \vec{a} and \vec{d} are coinitial because they have the same initial point.
- (ii) Vectors \vec{b} and \vec{d} are equal because they have the same magnitude and direction.
- (iii) Vectors \vec{a} and \vec{c} are collinear but not equal. This is because although they are parallel, their directions are not the same.

Question 5:

Answer the following as true or false.

- (i) \vec{a} and $-\vec{a}$ are collinear.
- (ii) Two collinear vectors are always equal in magnitude.
- (iii) Two vectors having same magnitude are collinear.
- (iv) Two collinear vectors having the same magnitude are equal. Answer
- (i) True.

Vectors \vec{a} and $-\vec{a}$ are parallel to the same line. (ii) False. Collinear vectors are those vectors that are parallel to the same line. (iii) False.

Exercise 10.2

Question 1:

Compute the magnitude of the following vectors:

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}; \quad \vec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}; \qquad \vec{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$$

Answer

The given vectors are:

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}; \quad \vec{b} = 2\hat{i} - 7\hat{j} - 3\hat{k}; \qquad \vec{c} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} - \frac{1}{\sqrt{3}}\hat{k}$$

$$|\vec{a}| = \sqrt{(1)^2 + (1)^2 + (1)^2} = \sqrt{3}$$

$$|\vec{b}| = \sqrt{(2)^2 + (-7)^2 + (-3)^2}$$

$$= \sqrt{4 + 49 + 9}$$

$$= \sqrt{62}$$

$$|\vec{c}| = \sqrt{\left(\frac{1}{\sqrt{3}}\right)^2 + \left(\frac{1}{\sqrt{3}}\right)^2 + \left(-\frac{1}{\sqrt{3}}\right)^2}$$

$$= \sqrt{\frac{1}{3} + \frac{1}{3} + \frac{1}{3}} = 1$$

Question 2:

Write two different vectors having same magnitude.

Answer

Consider
$$\vec{a} = (\hat{i} - 2\hat{j} + 3\hat{k})$$
 and $\vec{b} = (2\hat{i} + \hat{j} - 3\hat{k})$.

It can be observed that
$$|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$
 and

$$|\vec{b}| = \sqrt{2^2 + 1^2 + (-3)^2} = \sqrt{4 + 1 + 9} = \sqrt{14}.$$

Hence, \vec{a} and \vec{b} are two different vectors having the same magnitude. The vectors are different because they have different directions.

Question 3:

Write two different vectors having same direction.

Answer

Consider
$$\vec{p} = (\hat{i} + \hat{j} + \hat{k})$$
 and $\vec{q} = (2\hat{i} + 2\hat{j} + 2\hat{k})$.

The direction cosines of \vec{p} are given by,

$$I = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}}, \ m = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}}, \ \text{and} \ n = \frac{1}{\sqrt{1^2 + 1^2 + 1^2}} = \frac{1}{\sqrt{3}}.$$

The direction cosines of \vec{q} are given by

$$I = \frac{2}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}, \quad m = \frac{2}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}},$$

and $n = \frac{2}{\sqrt{2^2 + 2^2 + 2^2}} = \frac{2}{2\sqrt{3}} = \frac{1}{\sqrt{3}}.$

The direction cosines of $\frac{\vec{p}}{p}$ and $\frac{\vec{q}}{q}$ are the same. Hence, the two vectors have the same direction.

Question 4:

Find the values of x and y so that the vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ are equal Answer

The two vectors $2\hat{i} + 3\hat{j}$ and $x\hat{i} + y\hat{j}$ will be equal if their corresponding components are equal.

Hence, the required values of x and y are 2 and 3 respectively.

Question 5:

Find the scalar and vector components of the vector with initial point (2, 1) and terminal point (-5, 7).

Answer

The vector with the initial point P (2, 1) and terminal point Q (-5, 7) can be given by,

$$\overrightarrow{PQ} = (-5-2)\hat{i} + (7-1)\hat{j}$$

$$\Rightarrow \overrightarrow{PQ} = -7\hat{i} + 6\hat{j}$$

Hence, the required scalar components are -7 and 6 while the vector components are $-7\hat{i}$ and $6\hat{j}$.

Question 6:

Find the sum of the vectors

$$\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$$
, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$. Answer

The given vectors are $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$, $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and $\vec{c} = \hat{i} - 6\hat{j} - 7\hat{k}$.

$$\therefore \vec{a} + \vec{b} + \vec{c} = (1 - 2 + 1)\hat{i} + (-2 + 4 - 6)\hat{j} + (1 + 5 - 7)\hat{k}$$
$$= 0 \cdot \hat{i} - 4\hat{j} - 1 \cdot \hat{k}$$
$$= -4\hat{j} - \hat{k}$$

Ouestion 7:

Find the unit vector in the direction of the vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ Answer

The unit vector \hat{a} in the direction of vector $\vec{a} = \hat{i} + \hat{j} + 2\hat{k}$ is given by $\hat{a} = \frac{\vec{a}}{|a|}$. $|\vec{a}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6}$

$$|a| = \sqrt{1 + 1 + 2} = \sqrt{1 + 1 + 4} = \sqrt{6}$$

 $\vec{a} = \hat{i} + \hat{i} + 2\hat{k} = 1 + 1 + 2 = \sqrt{6}$

$$\therefore \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} + \hat{j} + 2\hat{k}}{\sqrt{6}} = \frac{1}{\sqrt{6}}\hat{i} + \frac{1}{\sqrt{6}}\hat{j} + \frac{2}{\sqrt{6}}\hat{k}$$

Ouestion 8:

Find the unit vector in the direction of vector \overrightarrow{PQ} , where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.

Answer

The given points are P (1, 2, 3) and Q (4, 5, 6).

$$\overrightarrow{PQ} = (4-1)\hat{i} + (5-2)\hat{j} + (6-3)\hat{k} = 3\hat{i} + 3\hat{j} + 3\hat{k}$$
$$|\overrightarrow{PQ}| = \sqrt{3^2 + 3^2 + 3^2} = \sqrt{9 + 9 + 9} = \sqrt{27} = 3\sqrt{3}$$

Hence, the unit vector in the direction of \overrightarrow{PQ} is

$$\frac{\overline{PQ}}{|\overline{PQ}|} = \frac{3\hat{i} + 3\hat{j} + 3\hat{k}}{3\sqrt{3}} = \frac{1}{\sqrt{3}}\hat{i} + \frac{1}{\sqrt{3}}\hat{j} + \frac{1}{\sqrt{3}}\hat{k}$$

Question 9:

For given vectors, $\vec{a}=2\hat{i}-\hat{j}+2\hat{k}$ and $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$, find the unit vector in the direction of the vector $\vec{a}+\vec{b}$ Answer

The given vectors are $\vec{a}=2\hat{i}-\hat{j}+2\hat{k}_{\rm and}$ $\vec{b}=-\hat{i}+\hat{j}-\hat{k}$.

$$\vec{a} = 2\hat{i} - \hat{j} + 2\hat{k}$$

$$\vec{b} = -\hat{i} + \hat{j} - \hat{k}$$

$$\vec{a} + \vec{b} = (2-1)\hat{i} + (-1+1)\hat{j} + (2-1)\hat{k} = 1\hat{i} + 0\hat{j} + 1\hat{k} = \hat{i} + \hat{k}$$
$$|\vec{a} + \vec{b}| = \sqrt{1^2 + 1^2} = \sqrt{2}$$

Hence, the unit vector in the direction of $(\vec{a} + \vec{b})$ is $\frac{(\vec{a} + \vec{b})}{|\vec{a} + \vec{b}|} = \frac{\hat{i} + \hat{k}}{\sqrt{2}} = \frac{1}{2}\hat{i} + \frac{1}{\sqrt{2}}\hat{k}$

Ouestion 10:

Find a vector in the direction of vector $6\hat{i} - \hat{j} + 2\hat{k}$ which has magnitude 8 units. Answer

Let
$$\vec{a} = 5\hat{i} - \hat{j} + 2\hat{k}$$
.

$$|\vec{a}| = \sqrt{5^2 + (-1)^2 + 2^2} = \sqrt{25 + 1 + 4} = \sqrt{30}$$

$$\therefore \hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{5\hat{i} - \hat{j} + 2\hat{k}}{\sqrt{30}}$$

Hence, the vector in the direction of vector $\hat{j} - \hat{j} + 2\hat{k}$ which has magnitude 8 units is given by,

$$8\hat{a} = 8\left(\frac{5\hat{i} - \hat{j} + 2\hat{k}}{\sqrt{30}}\right) = \frac{40}{\sqrt{30}}\hat{i} - \frac{8}{\sqrt{30}}\hat{j} + \frac{16}{\sqrt{30}}\hat{k}$$

$$= 8 \left(\frac{5\vec{i} - \vec{j} + 2\vec{k}}{\sqrt{30}} \right)$$
$$= \frac{40}{\sqrt{30}} \vec{i} - \frac{8}{\sqrt{30}} \vec{j} + \frac{16}{\sqrt{30}} \vec{k}$$

Question 11:

Show that the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and $-4\hat{i} + 6\hat{j} - 8\hat{k}$ are collinear. Answer

Let
$$\vec{a} = 2\hat{i} - 3\hat{j} + 4\hat{k}$$
 and $\vec{b} = -4\hat{i} + 6\hat{j} - 8\hat{k}$.

It is observed that
$$\vec{b} = -4\hat{i} + 6\hat{j} - 8\hat{k} = -2(2\hat{i} - 3\hat{j} + 4\hat{k}) = -2\vec{a}$$

$$\vec{b} = \lambda \vec{a}$$

where,

$$\lambda = -2$$

Hence, the given vectors are collinear.

Question 12:

Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$ Answer

Let
$$\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$$
.

$$|\vec{a}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

Hence, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$.

Question 13:

Find the direction cosines of the vector joining the points A (1, 2, -3) and B (-1, -2, 1) directed from A to B.

Answer

The given points are A (1, 2, -3) and B (-1, -2, 1).

$$\overrightarrow{AB} = (-1-1)\hat{i} + (-2-2)\hat{j} + \{1-(-3)\}\hat{k}$$

$$\Rightarrow \overrightarrow{AB} = -2\hat{i} - 4\hat{j} + 4\hat{k}$$

$$\therefore |\overrightarrow{AB}| = \sqrt{(-2)^2 + (-4)^2 + 4^2} = \sqrt{4+16+16} = \sqrt{36} = 6$$

Hence, the direction cosines of \overrightarrow{AB} are $\left(-\frac{2}{6}, -\frac{4}{6}, \frac{4}{6}\right) = \left(-\frac{1}{3}, -\frac{2}{3}, \frac{2}{3}\right)$.

Question 14:

Show that the vector $\hat{i} + \hat{j} + \hat{k}$ is equally inclined to the axes OX, OY, and OZ. Answer

Let
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
.

Then,

$$|\vec{a}| = \sqrt{1^2 + 1^2 + 1^2} = \sqrt{3}$$

Therefore, the direction cosines of \vec{a} are $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$.

Now, let a, β , and γ be the angles formed by \vec{a} with the positive directions of x, y, and z axes.

Then, we have
$$\cos \alpha = \frac{1}{\sqrt{3}}$$
, $\cos \beta = \frac{1}{\sqrt{3}}$, $\cos \gamma = \frac{1}{\sqrt{3}}$.

Hence, the given vector is equally inclined to axes OX, OY, and OZ.

Question 15:

Find the position vector of a point R which divides the line joining two points P and Q

whose position vectors are $\hat{i}+2\hat{j}-\hat{k}$ and $-\hat{i}+\hat{j}+\hat{k}$ respectively, in the ration 2:1

- (i) internally
- (ii) externally

Answer

The position vector of point R dividing the line segment joining two points P and Q in the ratio m: n is given by:

i. Internally:

$$\frac{m\vec{b} + n\vec{a}}{m + n}$$

ii. Externally:

$$\frac{m\vec{b} - n\vec{a}}{m - n}$$

Position vectors of P and Q are given as:

$$\overrightarrow{OP} = \hat{i} + 2\hat{j} - \hat{k}$$
 and $\overrightarrow{OQ} = -\hat{i} + \hat{j} + \hat{k}$

(i) The position vector of point R which divides the line joining two points P and Q internally in the ratio 2:1 is given by,

$$\overline{OR} = \frac{2(-\hat{i}+\hat{j}+\hat{k})+1(\hat{i}+2\hat{j}-\hat{k})}{2+1} = \frac{(-2\hat{i}+2\hat{j}+2\hat{k})+(\hat{i}+2\hat{j}-\hat{k})}{3}$$
$$= \frac{-\hat{i}+4\hat{j}+\hat{k}}{3} = -\frac{1}{3}\hat{i}+\frac{4}{3}\hat{j}+\frac{1}{3}\hat{k}$$

(ii) The position vector of point R which divides the line joining two points P and Q externally in the ratio 2:1 is given by,

$$\overline{OR} = \frac{2(-\hat{i} + \hat{j} + \hat{k}) - 1(\hat{i} + 2\hat{j} - \hat{k})}{2 - 1} = (-2\hat{i} + 2\hat{j} + 2\hat{k}) - (\hat{i} + 2\hat{j} - \hat{k})$$
$$= -3\hat{i} + 3\hat{k}$$

Question 16:

Find the position vector of the mid point of the vector joining the points P (2, 3, 4) and Q (4, 1, -2).

Answer

The position vector of mid-point R of the vector joining points P (2, 3, 4) and Q (4, 1, -2) is given by,

$$\overline{OR} = \frac{\left(2\hat{i} + 3\hat{j} + 4\hat{k}\right) + \left(4\hat{i} + \hat{j} - 2\hat{k}\right)}{2} = \frac{\left(2 + 4\right)\hat{i} + \left(3 + 1\right)\hat{j} + \left(4 - 2\right)\hat{k}}{2}$$
$$= \frac{6\hat{i} + 4\hat{j} + 2\hat{k}}{2} = 3\hat{i} + 2\hat{j} + \hat{k}$$

Question 17:

Show that the points A, B and C with position vectors, $\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}$,

 $\vec{b} = 2\hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$, respectively form the vertices of a right angled triangle. Answer

Position vectors of points A, B, and C are respectively given as:

$$\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$$

$$\vec{a} = 3\hat{i} - 4\hat{j} - 4\hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + \hat{k} \text{ and } \vec{c} = \hat{i} - 3\hat{j} - 5\hat{k}$$

$$\vec{AB} = \vec{b} - \vec{a} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$$

$$\overrightarrow{BC} = \overrightarrow{c} - \overrightarrow{b} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$$

$$\overrightarrow{CA} = \vec{a} - \vec{c} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$$

$$\left| |\overline{AB}|^2 = (-1)^2 + 3^2 + 5^2 = 1 + 9 + 25 = 35$$

$$\left| \overrightarrow{BC} \right|^2 = (-1)^2 + (-2)^2 + (-6)^2 = 1 + 4 + 36 = 41$$

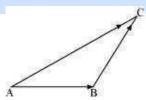
$$\left|\overline{CA}\right|^2 = 2^2 + (-1)^2 + 1^2 = 4 + 1 + 1 = 6$$

$$\left| \left| \overrightarrow{AB} \right|^2 + \left| \overrightarrow{CA} \right|^2 = 36 + 6 = 41 = \left| \overrightarrow{BC} \right|^2$$

Hence, ABC is a right-angled triangle.

Ouestion 18:

In triangle ABC which of the following is not true:



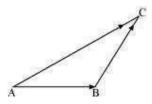
$$\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$$

B.
$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$$

$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$$

D.
$$\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$$

Answer



On applying the triangle law of addition in the given triangle, we have:

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} = -\overrightarrow{CA}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CA} = \overrightarrow{0}$$

... The equation given in alternative A is true.

$$\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{AC} = \overrightarrow{0}$$

... The equation given in alternative B is true.

From equation (2), we have:

$$\overrightarrow{AB} - \overrightarrow{CB} + \overrightarrow{CA} = \overrightarrow{0}$$

.. The equation given in alternative D is true.

Now, consider the equation given in alternative C:

$$\overrightarrow{AB} + \overrightarrow{BC} - \overrightarrow{CA} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{CA}$$

From equations (1) and (3), we have:

$$\overrightarrow{AC} = \overrightarrow{CA}$$

$$\Rightarrow \overrightarrow{AC} = -\overrightarrow{AC}$$

$$\Rightarrow \overrightarrow{AC} + \overrightarrow{AC} = \overrightarrow{0}$$

$$\Rightarrow 2\overrightarrow{AC} = \overrightarrow{0}$$

$$\Rightarrow \overrightarrow{AC} = \overrightarrow{0}$$
, which is not true.

Hence, the equation given in alternative C is incorrect.

The correct answer is C.

Question 19:

If \vec{a} and \vec{b} are two collinear vectors, then which of the following are incorrect:

A.
$$\vec{b} = \lambda \vec{a}$$
 , for some scalar λ

B.
$$\vec{a} = \pm \vec{b}$$

C. the respective components of \vec{a} and \vec{b} are proportional

D. both the vectors \vec{a} and \vec{b} have same direction, but different magnitudes Answer

If \vec{a} and \vec{b} are two collinear vectors, then they are parallel.

Therefore, we have:

$$\vec{b} = \lambda \vec{a}$$
 (For some scalar λ)

If
$$\lambda = \pm 1$$
, then $\vec{a} = \pm \vec{b}$.

If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
 and $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$, then

$$\vec{b} = \lambda \vec{a}$$
.

$$\Rightarrow b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = \lambda \left(a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \right)$$

$$\Rightarrow b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k} = (\lambda a_1) \hat{i} + (\lambda a_2) \hat{j} + (\lambda a_3) \hat{k}$$

$$\Rightarrow b_1 = \lambda a_1, b_2 = \lambda a_2, b_3 = \lambda a_3$$

$$\Rightarrow \frac{b_1}{a_1} = \frac{b_2}{a_2} = \frac{b_3}{a_3} = \lambda$$

Thus, the respective components of \vec{a} and \vec{b} are proportional.

However, vectors \vec{a} and \vec{b} can have different directions.

Hence, the statement given in D is incorrect.

The correct answer is D.

Exercise 10.3

Question 1:

Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively

having
$$\vec{a} \cdot \vec{b} = \sqrt{6}$$

. Answer

It is given that,

$$\left| \vec{a} \right| = \sqrt{3}, \ \left| \vec{b} \right| = 2 \text{ and, } \vec{a} \cdot \vec{b} = \sqrt{6}$$

Now, we know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.

$$\therefore \sqrt{6} = \sqrt{3} \times 2 \times \cos \theta$$

$$\Rightarrow \cos \theta = \frac{\sqrt{6}}{\sqrt{3} \times 2}$$

$$\Rightarrow \cos \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, the angle between the given vectors \vec{a} and \vec{b} is $\frac{\pi}{4}$.

Question 2:

Find the angle between the vectors $\hat{i} - 2\hat{j} + 3\hat{k}$ and $3\hat{i} - 2\hat{j} + \hat{k}$ Answer

The given vectors are $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$ and $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$.

$$|\vec{a}| = \sqrt{1^2 + (-2)^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

$$|\vec{b}| = \sqrt{3^2 + (-2)^2 + 1^2} = \sqrt{9 + 4 + 1} = \sqrt{14}$$
Now, $\vec{a} \cdot \vec{b} = (\hat{i} - 2\hat{j} + 3\hat{k})(3\hat{i} - 2\hat{j} + \hat{k})$

$$= 1.3 + (-2)(-2) + 3.1$$

$$= 3 + 4 + 3$$

$$= 10$$

Also, we know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

$$\therefore 10 = \sqrt{14}\sqrt{14}\cos\theta$$

$$\Rightarrow \cos\theta = \frac{10}{14}$$

$$\Rightarrow \theta = \cos^{-1}\left(\frac{5}{7}\right)$$

Question 3:

Find the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$. Answer

Let
$$\vec{a} = \hat{i} - \hat{j}$$
 and $\vec{b} = \hat{i} + \hat{j}$.

Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{|\vec{b}|}(\vec{a}.\vec{b}) = \frac{1}{\sqrt{1+1}} \{1.1 + (-1)(1)\} = \frac{1}{\sqrt{2}} (1-1) = 0$$

Hence, the projection of vector \vec{a} on \vec{b} is 0.

Question 4:

Find the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $7\hat{i}-\hat{j}+8\hat{k}$. Answer

Let
$$\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}$$
 and $\hat{b} = 7\hat{i} - \hat{j} + 8\hat{k}$.

Now, projection of vector \vec{a} on \vec{b} is given by,

$$\frac{1}{\left|\vec{b}\right|}\left(\vec{a}\cdot\vec{b}\right) = \frac{1}{\sqrt{7^2 + \left(-1\right)^2 + 8^2}}\left\{1\left(7\right) + 3\left(-1\right) + 7\left(8\right)\right\} = \frac{7 - 3 + 56}{\sqrt{49 + 1 + 64}} = \frac{60}{\sqrt{114}}$$

Question 5:

Show that each of the given three vectors is a unit vector:

$$\frac{1}{7}(2\hat{i}+3\hat{j}+6\hat{k}), \frac{1}{7}(3\hat{i}-6\hat{j}+2\hat{k}), \frac{1}{7}(6\hat{i}+2\hat{j}-3\hat{k})$$

Also, show that they are mutually perpendicular to each other.

Answer

Let
$$\vec{a} = \frac{1}{7} (2\hat{i} + 3\hat{j} + 6\hat{k}) = \frac{2}{7}\hat{i} + \frac{3}{7}\hat{j} + \frac{6}{7}\hat{k}$$
,
 $\vec{b} = \frac{1}{7} (3\hat{i} - 6\hat{j} + 2\hat{k}) = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}$,
 $\vec{c} = \frac{1}{7} (6\hat{i} + 2\hat{j} - 3\hat{k}) = \frac{6}{7}\hat{i} + \frac{2}{7}\hat{j} - \frac{3}{7}\hat{k}$.

$$|\vec{a}| = \sqrt{\left(\frac{2}{7}\right)^2 + \left(\frac{3}{7}\right)^2 + \left(\frac{6}{7}\right)^2} = \sqrt{\frac{4}{49} + \frac{9}{49} + \frac{36}{49}} = 1$$

$$|\vec{b}| = \sqrt{\left(\frac{3}{7}\right)^2 + \left(-\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2} = \sqrt{\frac{9}{49} + \frac{36}{49} + \frac{4}{49}} = 1$$

$$|\vec{c}| = \sqrt{\left(\frac{6}{7}\right)^2 + \left(\frac{2}{7}\right)^2 + \left(-\frac{3}{7}\right)^2} = \sqrt{\frac{36}{49} + \frac{4}{49} + \frac{9}{49}} = 1$$

Thus, each of the given three vectors is a unit vector.

$$\vec{a} \cdot \vec{b} = \frac{2}{7} \times \frac{3}{7} + \frac{3}{7} \times \left(\frac{-6}{7}\right) + \frac{6}{7} \times \frac{2}{7} = \frac{6}{49} - \frac{18}{49} + \frac{12}{49} = 0$$

$$\vec{b} \cdot \vec{c} = \frac{3}{7} \times \frac{6}{7} + \left(\frac{-6}{7}\right) \times \frac{2}{7} + \frac{2}{7} \times \left(\frac{-3}{7}\right) = \frac{18}{49} - \frac{12}{49} - \frac{6}{49} = 0$$

$$\vec{c} \cdot \vec{a} = \frac{6}{7} \times \frac{2}{7} + \frac{2}{7} \times \frac{3}{7} + \left(\frac{-3}{7}\right) \times \frac{6}{7} = \frac{12}{49} + \frac{6}{49} - \frac{18}{49} = 0$$

Hence, the given three vectors are mutually perpendicular to each other.

Question 6:

Find
$$|\vec{a}|$$
 and $|\vec{b}|$, if $(\vec{a} + \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$ and $|\vec{a}| = 8 |\vec{b}|$. Answer

$$(\vec{a} \cdot \vec{b}) \cdot (\vec{a} - \vec{b}) = 8$$

$$\Rightarrow \vec{a} \cdot \vec{a} - \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} - \vec{b} \cdot \vec{b} = 8$$

$$\Rightarrow |\vec{a}|^2 - |\vec{b}|^2 = 8$$

$$\Rightarrow (8|\vec{b}|)^2 - |\vec{b}|^2 = 8$$

$$\Rightarrow (8|\vec{b}|^2 - |\vec{b}|^2 = 8$$

$$\Rightarrow 63|\vec{b}|^2 = 8$$

$$\Rightarrow 63|\vec{b}|^2 = 8$$

$$\Rightarrow |\vec{b}|^2 = \frac{8}{63}$$

$$\Rightarrow |\vec{b}| = \sqrt{\frac{8}{63}}$$
[Magnitude of a vector is non-negative]
$$\Rightarrow |\vec{b}| = \frac{2\sqrt{2}}{3\sqrt{7}}$$

$$|\vec{a}| = 8|\vec{b}| = \frac{8 \times 2\sqrt{2}}{3\sqrt{7}} = \frac{16\sqrt{2}}{3\sqrt{7}}$$

Question 7:

Evaluate the product
$$(3\vec{a}-5\vec{b})\cdot(2\vec{a}+7\vec{b})$$
.
Answer
$$(3\vec{a}-5\vec{b})\cdot(2\vec{a}+7\vec{b})$$

$$=3\vec{a}\cdot 2\vec{a}+3\vec{a}\cdot 7\vec{b}-5\vec{b}\cdot 2\vec{a}-5\vec{b}\cdot 7\vec{b}$$

$$=6\vec{a}\cdot \vec{a}+21\vec{a}\cdot \vec{b}-10\vec{a}\cdot \vec{b}-35\vec{b}\cdot \vec{b}$$

$$=6|\vec{a}|^2+11\vec{a}\cdot \vec{b}-35|\vec{b}|^2$$

Question 8:

Find the magnitude of two vectors \vec{a} and \vec{b} , having the same magnitude and such that

the angle between them is 60° and their scalar product is $\frac{1}{2}$ Answer

Let θ be the angle between the vectors \vec{a} and \vec{b} .

It is given that
$$|\vec{a}| = |\vec{b}|$$
, $\vec{a} \cdot \vec{b} = \frac{1}{2}$, and $\theta = 60^{\circ}$(1)

We know that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$

$$\therefore \frac{1}{2} = |\vec{a}| |\vec{a}| \cos 60^{\circ}$$
 [Using (1)]

$$\Rightarrow \frac{1}{2} = |\vec{a}|^{2} \times \frac{1}{2}$$

$$\Rightarrow |\vec{a}|^{2} = 1$$

$$\Rightarrow |\vec{a}| = |\vec{b}| = 1$$

Question 9:

Find $|\vec{x}|$, if for a unit vector \vec{a} , $(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$.

$$(\vec{x} - \vec{a}) \cdot (\vec{x} + \vec{a}) = 12$$

$$\Rightarrow \vec{x} \cdot \vec{x} + \vec{x} \cdot \vec{a} - \vec{a} \cdot \vec{x} - \vec{a} \cdot \vec{a} = 12$$

$$\Rightarrow |\vec{x}|^2 - |\vec{a}|^2 = 12$$

$$\Rightarrow |\vec{x}|^2 - 1 = 12 \qquad [|\vec{a}| = 1 \text{ as } \vec{a} \text{ is a unit vector}]$$

$$\Rightarrow |\vec{x}|^2 = 13$$

$$\therefore |\vec{x}| = \sqrt{13}$$

Question 10:

If $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$ and $\vec{c} = 3\hat{i} + \hat{j}$ are such that $\vec{a} + \lambda \vec{b}$ is perpendicular to \vec{c} then find the value of λ .

Answer

The given vectors are $\vec{a} = 2\hat{i} + 2\hat{j} + 3\hat{k}$, $\vec{b} = -\hat{i} + 2\hat{j} + \hat{k}$, and $\vec{c} = 3\hat{i} + \hat{j}$.

Now.

$$\vec{a} + \lambda \vec{b} = (2\hat{i} + 2\hat{j} + 3\hat{k}) + \lambda (-\hat{i} + 2\hat{j} + \hat{k}) = (2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k}$$

If $(\vec{a} + \lambda \vec{b})$ is perpendicular to \vec{c} , then

$$(\vec{a} + \lambda \vec{b}) \cdot \vec{c} = 0.$$

$$\Rightarrow \left[(2 - \lambda)\hat{i} + (2 + 2\lambda)\hat{j} + (3 + \lambda)\hat{k} \right] \cdot (3\hat{i} + \hat{j}) = 0$$

$$\Rightarrow (2 - \lambda)3 + (2 + 2\lambda)1 + (3 + \lambda)0 = 0$$

$$\Rightarrow 6 - 3\lambda + 2 + 2\lambda = 0$$

$$\Rightarrow -\lambda + 8 = 0$$

Hence, the required value of λ is 8.

Question 11:

 $\Rightarrow \lambda = 8$

Show that $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ is perpendicular to $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$, for any two nonzero vectors \vec{a} and \vec{b} Answer

$$(|\vec{a}|\vec{b} + |\vec{b}|\vec{a}) \cdot (|\vec{a}|\vec{b} - |\vec{b}|\vec{a})$$

$$= |\vec{a}|^2 \vec{b} \cdot \vec{b} - |\vec{a}||\vec{b}||\vec{b} \cdot \vec{a} + |\vec{b}||\vec{a}||\vec{a} \cdot \vec{b} - |\vec{b}|^2 \vec{a} \cdot \vec{a}$$

$$= |\vec{a}|^2 |\vec{b}|^2 - |\vec{b}|^2 |\vec{a}|^2$$

$$= 0$$

Hence, $|\vec{a}|\vec{b}+|\vec{b}|\vec{a}$ and $|\vec{a}|\vec{b}-|\vec{b}|\vec{a}$ are perpendicular to each other.

Ouestion 12:

If $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$, then what can be concluded about the vector \vec{b} ?

Answer

It is given that $\vec{a} \cdot \vec{a} = 0$ and $\vec{a} \cdot \vec{b} = 0$.

Now.

$$\vec{a} \cdot \vec{a} = 0 \Rightarrow |\vec{a}|^2 = 0 \Rightarrow |\vec{a}| = 0$$

 \vec{a} is a zero vector.

Hence, vector \vec{b} satisfying $\vec{a} \cdot \vec{b} = 0$ can be any vector.

Question 14:

If either vector $\vec{a} = \vec{0}$ or $\vec{b} = \vec{0}$, then $\vec{a} \cdot \vec{b} = 0$. But the converse need not be true. Justify your answer with an example.

Answer

Consider
$$\vec{a} = 2\hat{i} + 4\hat{j} + 3\hat{k}$$
 and $\vec{b} = 3\hat{i} + 3\hat{j} - 6\hat{k}$.

Then.

$$\vec{a} \cdot \vec{b} = 2.3 + 4.3 + 3(-6) = 6 + 12 - 18 = 0$$

We now observe that:

$$|\vec{a}| = \sqrt{2^2 + 4^2 + 3^2} = \sqrt{29}$$

$$\vec{a} \neq \vec{0}$$

$$\left| \vec{b} \right| = \sqrt{3^2 + 3^2 + (-6)^2} = \sqrt{54}$$

$$\vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

Ouestion 15:

If the vertices A, B, C of a triangle ABC are (1, 2, 3), (-1, 0, 0), (0, 1, 2), respectively,

then find \angle ABC. [\angle ABC is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC}] Answer

The vertices of \triangle ABC are given as A (1, 2, 3), B (-1, 0, 0), and C (0, 1, 2).

Also, it is given that $\angle ABC$ is the angle between the vectors \overrightarrow{BA} and \overrightarrow{BC} .

$$\overrightarrow{BA} = \{1 - (-1)\} \hat{i} + (2 - 0) \hat{j} + (3 - 0) \hat{k} = 2\hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = \{0 - (-1)\} \hat{i} + (1 - 0) \hat{j} + (2 - 0) \hat{k} = \hat{i} + \hat{j} + 2\hat{k}$$

$$\therefore \overrightarrow{BA} \cdot \overrightarrow{BC} = (2\hat{i} + 2\hat{j} + 3\hat{k}) \cdot (\hat{i} + \hat{j} + 2\hat{k}) = 2 \times 1 + 2 \times 1 + 3 \times 2 = 2 + 2 + 6 = 10$$

$$|\overrightarrow{BA}| = \sqrt{2^2 + 2^2 + 3^2} = \sqrt{4 + 4 + 9} = \sqrt{17}$$

$$|\overrightarrow{BC}| = \sqrt{1 + 1 + 2^2} = \sqrt{6}$$

Now, it is known that:

$$\overrightarrow{BA} \cdot \overrightarrow{BC} = |\overrightarrow{BA}| |\overrightarrow{BC}| \cos(\angle ABC)$$

$$∴ 10 = \sqrt{17} \times \sqrt{6} \cos(\angle ABC)$$

$$\Rightarrow \cos(\angle ABC) = \frac{10}{\sqrt{17} \times \sqrt{6}}$$

$$\Rightarrow \angle ABC = \cos^{-1}\left(\frac{10}{\sqrt{102}}\right)$$

Question 16:

Show that the points A (1, 2, 7), B (2, 6, 3) and C (3, 10, -1) are collinear. Answer

The given points are A (1, 2, 7), B (2, 6, 3), and C (3, 10, -1).

$$\overrightarrow{AB} = (2-1)\hat{i} + (6-2)\hat{j} + (3-7)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overrightarrow{BC} = (3-2)\hat{i} + (10-6)\hat{j} + (-1-3)\hat{k} = \hat{i} + 4\hat{j} - 4\hat{k}$$

$$\overrightarrow{AC} = (3-1)\hat{i} + (10-2)\hat{j} + (-1-7)\hat{k} = 2\hat{i} + 8\hat{j} - 8\hat{k}$$

$$|\overrightarrow{AB}| = \sqrt{1^2 + 4^2 + (-4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$|\overrightarrow{BC}| = \sqrt{1^2 + 4^2 + (-4)^2} = \sqrt{1 + 16 + 16} = \sqrt{33}$$

$$|\overrightarrow{AC}| = \sqrt{2^2 + 8^2 + 8^2} = \sqrt{4 + 64 + 64} = \sqrt{132} = 2\sqrt{33}$$

$$|\overrightarrow{AC}| = |\overrightarrow{AB}| + |\overrightarrow{BC}|$$

Hence, the given points A, B, and C are collinear.

Question 17:

Show that the vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ form the vertices of a right angled triangle.

Answer

Let vectors $2\hat{i} - \hat{j} + \hat{k}$, $\hat{i} - 3\hat{j} - 5\hat{k}$ and $3\hat{i} - 4\hat{j} - 4\hat{k}$ be position vectors of points A, B, and C respectively.

i.e.,
$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$ and $\overrightarrow{OC} = 3\hat{i} - 4\hat{j} - 4\hat{k}$

Now, vectors \overrightarrow{AB} , \overrightarrow{BC} , and \overrightarrow{AC} represent the sides of $\triangle ABC$.

i.e.,
$$\overrightarrow{OA} = 2\hat{i} - \hat{j} + \hat{k}$$
, $\overrightarrow{OB} = \hat{i} - 3\hat{j} - 5\hat{k}$, and $\overrightarrow{OC} = 3\hat{i} - 4\hat{j} - 4\hat{k}$
 $\therefore \overrightarrow{AB} = (1-2)\hat{i} + (-3+1)\hat{j} + (-5-1)\hat{k} = -\hat{i} - 2\hat{j} - 6\hat{k}$
 $\overrightarrow{BC} = (3-1)\hat{i} + (-4+3)\hat{j} + (-4+5)\hat{k} = 2\hat{i} - \hat{j} + \hat{k}$
 $\overrightarrow{AC} = (2-3)\hat{i} + (-1+4)\hat{j} + (1+4)\hat{k} = -\hat{i} + 3\hat{j} + 5\hat{k}$
 $|\overrightarrow{AB}| = \sqrt{(-1)^2 + (-2)^2 + (-6)^2} = \sqrt{1+4+36} = \sqrt{41}$
 $|\overrightarrow{BC}| = \sqrt{2^2 + (-1)^2 + 1^2} = \sqrt{4+1+1} = \sqrt{6}$
 $|\overrightarrow{AC}| = \sqrt{(-1)^2 + 3^2 + 5^2} = \sqrt{1+9+25} = \sqrt{35}$
 $\therefore |\overrightarrow{BC}|^2 + |\overrightarrow{AC}|^2 = 6 + 35 = 41 = |\overrightarrow{AB}|^2$

Hence, ΔABC is a right-angled triangle.

Question 18:

If $\vec{\$}$ a nonzero vector of magnitude 'a' and λ a nonzero scalar, then λ is \vec{a} unit vector if

(A)
$$\lambda = 1$$
 (B) $\lambda = -1$ (C) $a = |\lambda|$ (D) $a = \frac{1}{|\lambda|}$

Answer

Vector $\lambda \vec{a}$ is a unit vector if $|\lambda \vec{a}| = 1$.

Now,

$$|\lambda \vec{a}| = 1$$

$$\Rightarrow |\lambda||\vec{a}| = 1$$

$$\Rightarrow |\vec{a}| = \frac{1}{|\lambda|}$$

$$\left[\lambda\neq0\right]$$

$$\Rightarrow a = \frac{1}{|\lambda|}$$

$$\left[\left|\vec{a}\right|=a\right]$$

Hence, vector $\lambda \vec{a}$ is a unit vector if $a = \frac{1}{|\lambda|}$. The correct answer is D.

Exercise 10.4

Question 1:

Find
$$\left|\vec{a}\times\vec{b}\right|$$
, if $\vec{a}=\hat{i}-7\hat{j}+7\hat{k}$ and $\vec{b}=3\hat{i}-2\hat{j}+2\hat{k}$.

Answer

We have,

$$\vec{a} = \hat{i} - 7\hat{j} + 7\hat{k}$$
 and $\vec{b} = 3\hat{i} - 2\hat{j} + 2\hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -7 & 7 \\ 3 & -2 & 2 \end{vmatrix}$$
$$= \hat{i} \left(-14 + 14 \right) - \hat{j} \left(2 - 21 \right) + \hat{k} \left(-2 + 21 \right) = 19 \hat{j} + 19 \hat{k}$$
$$\therefore |\vec{a} \times \vec{b}| = \sqrt{\left(19 \right)^2 + \left(19 \right)^2} = \sqrt{2 \times \left(19 \right)^2} = 19\sqrt{2}$$

Question 2:

Find a unit vector perpendicular to each of the vector $\vec{a} + \vec{b}$ and $\vec{a} - \vec{b}$, where $\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$ and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$.

Answer

We have,

$$\vec{a} = 3\hat{i} + 2\hat{j} + 2\hat{k}$$
 and $\vec{b} = \hat{i} + 2\hat{j} - 2\hat{k}$

$$\vec{a} + \vec{b} = 4\hat{i} + 4\hat{j}, \ \vec{a} - \vec{b} = 2\hat{i} + 4\hat{k}$$

$$(\vec{a} + \vec{b}) \times (\vec{a} - \vec{b}) = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & 4 & 0 \\ 2 & 0 & 4 \end{vmatrix} = \hat{i} (16) - \hat{j} (16) + \hat{k} (-8) = 16\hat{i} - 16\hat{j} - 8\hat{k}$$

Hence, the unit vector perpendicular to each of the vectors $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ is given by the relation,

$$= \pm \frac{\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)}{\left|\left(\vec{a} + \vec{b}\right) \times \left(\vec{a} - \vec{b}\right)\right|} = \pm \frac{16\hat{i} - 16\hat{j} - 8\hat{k}}{24}$$
$$= \pm \frac{2\hat{i} - 2\hat{j} - \hat{k}}{3} = \pm \frac{2}{3}\hat{i} \mp \frac{2}{3}\hat{j} \mp \frac{1}{3}\hat{k}$$

Question 3:

If a unit vector $\frac{\vec{a}}{3}$ makes an $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ angles with \hat{j} and an acute angle θ with \hat{k} , then find θ and hence, the compounds of \hat{a} .

Let unit vector $\frac{a}{a}$ have (a_1, a_2, a_3) components.

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$

Since \vec{a} is a unit vector, $|\vec{a}| = 1$.

Also, it is given that \bar{a} makes angles $\frac{\pi}{3}$ with $\hat{i}_{w_{1}}^{\pi}$ h \hat{j} , and an acute angle θ with \hat{k} . Then, we have:

$$\cos \frac{\pi}{3} = \frac{a_1}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{2} = a_1 \qquad [|\vec{a}| = 1]$$

$$\cos \frac{\pi}{4} = \frac{a_2}{|\vec{a}|}$$

$$\Rightarrow \frac{1}{\sqrt{2}} = a_2 \qquad [|\vec{a}| = 1]$$
Also, $\cos \theta = \frac{a_3}{|\vec{a}|}$.
$$\Rightarrow a_3 = \cos \theta$$

Now,

$$|a| = 1$$

$$\Rightarrow \sqrt{a_1^2 + a_2^2 + a_3^2} = 1$$

$$\Rightarrow \left(\frac{1}{2}\right)^2 + \left(\frac{1}{\sqrt{2}}\right)^2 + \cos^2 \theta = 1$$

$$\Rightarrow \frac{1}{4} + \frac{1}{2} + \cos^2 \theta = 1$$

$$\Rightarrow \frac{3}{4} + \cos^2 \theta = 1$$

$$\Rightarrow \cos^2 \theta = 1 - \frac{3}{4} = \frac{1}{4}$$

$$\Rightarrow \cos \theta = \frac{1}{2} \Rightarrow \theta = \frac{\pi}{3}$$

$$\therefore a_3 = \cos \frac{\pi}{3} = \frac{1}{2}$$

Hence, $\theta = \frac{\pi}{3}$ and the components of \vec{a} are $\left(\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}\right)$

Question 4:

Show that

$$(\vec{a} - \vec{b}) \times (\vec{a} + \vec{b}) = 2(\vec{a} \times \vec{b})$$

Answer

$$\begin{split} &(\vec{a}-\vec{b}) \times (\vec{a}+\vec{b}) \\ &= (\vec{a}-\vec{b}) \times \vec{a} + (\vec{a}-\vec{b}) \times \vec{b} \\ &= \vec{a} \times \vec{a} - \vec{b} \times \vec{a} + \vec{a} \times \vec{b} - \vec{b} \times \vec{b} \\ &= \vec{0} + \vec{a} \times \vec{b} + \vec{a} \times \vec{b} - \vec{0} \\ &= 2\vec{a} \times \vec{b} \end{split}$$

[By distributivity of vector product over addition]

[Again, by distributivity of vector product over addition]

Question 5:

Find
$$\lambda$$
 and μ if $(2\hat{i}+6\hat{j}+27\hat{k})\times(\hat{i}+\lambda\hat{j}+\mu\hat{k})=\vec{0}$.

Answer

$$\begin{aligned} & \left(2\hat{i} + 6\hat{j} + 27\hat{k}\right) \times \left(\hat{i} + \lambda\hat{j} + \mu\hat{k}\right) = \vec{0} \\ & \Rightarrow \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 6 & 27 \\ 1 & \lambda & \mu \end{vmatrix} = 0\hat{i} + 0\hat{j} + 0\hat{k} \\ & \Rightarrow \hat{i}\left(6\mu - 27\lambda\right) - \hat{j}\left(2\mu - 27\right) + \hat{k}\left(2\lambda - 6\right) = 0\hat{i} + 0\hat{j} + 0\hat{k} \end{aligned}$$

On comparing the corresponding components, we have:

$$6\mu - 27\lambda = 0$$

$$2\mu - 27 = 0$$

$$2\lambda - 6 = 0$$

Now.

$$2\lambda - 6 = 0 \Rightarrow \lambda = 3$$

$$2\mu - 27 = 0 \Rightarrow \mu = \frac{27}{2}$$

Hence, $\lambda = 3$ and $\mu = \frac{27}{2}$.

Question 6:

Given that $\vec{a} \cdot \vec{b} = 0$ and $\vec{a} \times \vec{b} = \vec{0}$. What can you conclude about the vectors \vec{a} and \vec{b} ? Answer

$$\vec{a} \cdot \vec{b} = 0$$

Then,

(i) Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$, or $\vec{a} \perp \vec{b}$ (in case \vec{a} and \vec{b} are non-zero)

(ii) Either
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$, or $|\vec{a}| |\vec{b}|$ (in case \vec{a} and \vec{b} are non-zero)

But, and \vec{b} cannot be perpendicular and parallel simultaneously.

Hence,
$$|\vec{a}| = 0$$
 or $|\vec{b}| = 0$.

Let the vectors \vec{a} , \vec{b} , \vec{c} given as $a_1\hat{i} + a_2\hat{j} + a_3\hat{k}$, $b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$, $c_1\hat{i} + c_2\hat{j} + c_3\hat{k}$. Then show

$$_{\mathrm{that}}=\vec{a}\times\!\left(\vec{b}+\vec{c}\right)\!=\vec{a}\times\!\vec{b}+\vec{a}\times\!\vec{c}$$

Answer

We have,

$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}, \ \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}, \ \vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k}$$

$$(\vec{b} + \vec{c}) = (b_1 + c_1)\hat{i} + (b_2 + c_2)\hat{j} + (b_3 + c_3)\hat{k}$$

Now,
$$\vec{a} \times (\vec{b} + \vec{c}) \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 + c_1 & b_2 + c_2 & b_3 + c_3 \end{vmatrix}$$

$$= \hat{i} \left[a_2 (b_3 + c_3) - a_3 (b_2 + c_2) \right] - \hat{j} \left[a_1 (b_3 + c_3) - a_3 (b_1 + c_1) \right] + \hat{k} \left[a_1 (b_2 + c_2) - a_2 (b_1 + c_1) \right]$$

$$= \hat{i} \left[a_2 b_3 + a_2 c_3 - a_3 b_2 - a_3 c_2 \right] + \hat{j} \left[-a_1 b_3 - a_1 c_3 + a_3 b_1 + a_3 c_1 \right] + \hat{k} \left[a_1 b_2 + a_1 c_2 - a_2 b_1 - a_2 c_1 \right] \dots (1)$$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$$

$$= \hat{i} \begin{bmatrix} a_2 b_3 - a_3 b_2 \end{bmatrix} + \hat{j} \begin{bmatrix} b_1 a_3 - a_1 b_3 \end{bmatrix} + \hat{k} \begin{bmatrix} a_1 b_2 - a_2 b_1 \end{bmatrix}$$

$$\vec{a} \times \vec{c} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ a_1 & a_2 & a_3 \\ c_2 & c_3 & c_4 \end{vmatrix}$$
(2)

$$= \hat{i} \left[a_2 c_3 - a_3 c_2 \right] + \hat{j} \left[a_3 c_1 - a_1 c_3 \right] + \hat{k} \left[a_1 c_2 - a_2 c_1 \right]$$
 (3)

On adding (2) and (3), we get:

$$(\vec{a} \times \vec{b}) + (\vec{a} \times \vec{c}) = \hat{i} [a_2b_3 + a_2c_3 - a_3b_2 - a_3c_2] + \hat{j} [b_1a_3 + a_3c_1 - a_1b_3 - a_1c_3] + \hat{k} [a_1b_2 + a_1c_2 - a_2b_1 - a_2c_1]$$
(4)

Now, from (1) and (4), we have:

$$\vec{a} \times \left(\vec{b} + \vec{c} \right) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}$$

Hence, the given result is proved.

Question 8:

If either $\vec{a}=\vec{0}$ or $\vec{b}=\vec{0}$, then $\vec{a}\times\vec{b}=\vec{0}$. Is the converse true? Justify your answer with an example.

Answer

Take any parallel non-zero vectors so that $\vec{a} \times \vec{b} = \vec{0}$.

Let
$$\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$$
, $\vec{b} = 4\hat{i} + 6\hat{j} + 8\hat{k}$.

Then,

$$\begin{vmatrix} \vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 4 \\ 4 & 6 & 8 \end{vmatrix} = \hat{i} (24 - 24) - \hat{j} (16 - 16) + \hat{k} (12 - 12) = 0 \hat{i} + 0 \hat{j} + 0 \hat{k} = \vec{0}$$

It can now be observed that:

$$|\vec{a}| = \sqrt{2^2 + 3^2 + 4^2} = \sqrt{29}$$

$$\vec{a} \neq \vec{0}$$

$$\left| \vec{b} \right| = \sqrt{4^2 + 6^2 + 8^2} = \sqrt{116}$$

$$\vec{b} \neq \vec{0}$$

Hence, the converse of the given statement need not be true.

Question 9:

Find the area of the triangle with vertices A (1, 1, 2), B (2, 3, 5) and

C(1, 5,

5). Answer

The vertices of triangle ABC are given as A (1, 1, 2), B (2, 3, 5), and C (1, 5, 5).

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of $\triangle ABC$ are given as:

$$\overrightarrow{AB} = (2-1)\hat{i} + (3-1)\hat{j} + (5-2)\hat{k} = \hat{i} + 2\hat{j} + 3\hat{k}$$

$$\overrightarrow{BC} = (1-2)\hat{i} + (5-3)\hat{j} + (5-5)\hat{k} = -\hat{i} + 2\hat{j}$$

Area of
$$\triangle ABC = \frac{1}{2} \left| \overrightarrow{AB} \times \overrightarrow{BC} \right|$$

$$\overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ -1 & 2 & 0 \end{vmatrix} = \hat{i} \left(-6 \right) - \hat{j} \left(3 \right) + \hat{k} \left(2 + 2 \right) = -6\hat{i} - 3\hat{j} + 4\hat{k}$$

$$\therefore \left| \overrightarrow{AB} \times \overrightarrow{BC} \right| = \sqrt{\left(-6 \right)^2 + \left(-3 \right)^2 + 4^2} = \sqrt{36 + 9 + 16} = \sqrt{61}$$

Hence, the area of $\triangle ABC$ is $\frac{\sqrt{61}}{2}$ square units.

Question 10:

Find the area of the parallelogram whose adjacent sides are determined by the vector $\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$ and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

Answer

The area of the parallelogram whose adjacent sides are \vec{a} and \vec{b} is $|\vec{a} \times \vec{b}|$. Adjacent sides are given as:

$$\vec{a} = \hat{i} - \hat{j} + 3\hat{k}$$
 and $\vec{b} = 2\hat{i} - 7\hat{j} + \hat{k}$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 3 \\ 2 & -7 & 1 \end{vmatrix} = \hat{i} (-1 + 21) - \hat{j} (1 - 6) + \hat{k} (-7 + 2) = 20\hat{i} + 5\hat{j} - 5\hat{k}$$

$$\left| \vec{a} \times \vec{b} \right| = \sqrt{20^2 + 5^2 + 5^2} = \sqrt{400 + 25 + 25} = 15\sqrt{2}$$

Hence, the area of the given parallelogram is $15\sqrt{2}$ square units

Question 11:

Let the vectors \vec{a} and \vec{b} be such that $|\vec{a}|=3$ and $|\vec{b}|=\frac{\sqrt{2}}{3}$, then $\vec{a}\times\vec{b}$ is a unit vector, if the angle between \vec{a} and \vec{b} is

(A)
$$\frac{\pi}{6}$$
 (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{3}$ (D) $\frac{\pi}{2}$

Answer

It is given that $|\vec{a}| = 3$ and $|\vec{b}| = \frac{\sqrt{2}}{3}$

We know that $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin \theta \, \hat{n}$, where \hat{n} is a unit vector perpendicular to both \vec{a} and \vec{b} and θ is the angle between \vec{a} and \vec{b} .

Now, $\vec{a} \times \vec{b}$ is a unit vector if $|\vec{a} \times \vec{b}| = 1$.

$$\left| \vec{a} \times \vec{b} \right| = 1$$

$$\Rightarrow |\vec{a}| |\vec{b}| \sin \theta \, \hat{n} = 1$$

$$\Rightarrow |\vec{a}||\vec{b}||\sin\theta| = 1$$

$$\Rightarrow 3 \times \frac{\sqrt{2}}{3} \times \sin \theta = 1$$

$$\Rightarrow \sin \theta = \frac{1}{\sqrt{2}}$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $\vec{a} \times \vec{b}$ is a unit vector if the angle between \vec{a} and \vec{b} is $\frac{\pi}{4}$

Question 12:

Area of a rectangle having vertices A, B, C, and D with position vectors

$$-\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \ \text{and} \ -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k} \ \text{respectively is}$$

(A)
$$\frac{1}{2}$$
 (B) 1 (C) 2 (D)

⁴ Answer

The position vectors of vertices A, B, C, and D of rectangle ABCD are given as:

$$\overrightarrow{\mathrm{OA}} = -\hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OB}} = \hat{i} + \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OC}} = \hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}, \ \overrightarrow{\mathrm{OD}} = -\hat{i} - \frac{1}{2}\hat{j} + 4\hat{k}$$

The adjacent sides \overrightarrow{AB} and \overrightarrow{BC} of the given rectangle are given as:

$$\overrightarrow{AB} = (1+1)\hat{i} + \left(\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = 2\hat{i}$$

$$\overrightarrow{BC} = (1-1)\hat{i} + \left(-\frac{1}{2} - \frac{1}{2}\right)\hat{j} + (4-4)\hat{k} = -\hat{j}$$

$$\therefore \overrightarrow{AB} \times \overrightarrow{BC} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 0 & 0 \\ 0 & -1 & 0 \end{vmatrix} = \hat{k}(-2) = -2\hat{k}$$

$$|\overrightarrow{AB} \times \overrightarrow{AC}| = \sqrt{(-2)^2} = 2$$

Now, it is known that the area of a parallelogram whose adjacent sides are

$$\vec{a}$$
 and \vec{b} is $\left| \vec{a} \times \vec{b} \right|$

Hence, the area of the given rectangle is

$$|\overrightarrow{AB} \times \overrightarrow{BC}| = 2$$
 square units. The correct answer is C.

Miscellaneous Solutions

Question 1:

Write down a unit vector in XY-plane, making an angle of 30° with the positive direction of x-axis.

Answer

If \vec{r} is a unit vector in the XY-plane, then $\vec{r} = \cos\theta \hat{i} + \sin\theta \hat{j}$.

Here, θ is the angle made by the unit vector with the positive direction of the x-axis. Therefore, for $\theta = 30^{\circ}$:

$$\vec{r} = \cos 30^{\circ} \hat{i} + \sin 30^{\circ} \hat{j} = \frac{\sqrt{3}}{2} \hat{i} + \frac{1}{2} \hat{j}$$

Hence, the required unit vector is $\frac{\sqrt{3}}{2}\hat{i} + \frac{1}{2}\hat{j}$

Question 2:

Find the scalar components and magnitude of the vector joining the points

$$P(x_1, y_1, z_1)$$
 and $Q(x_2, y_2, z_2)$

Answer

The vector joining the points $P(x_1, y_1, z_1)$ and $Q(x_2, y_2, z_2)$ can be obtained by,

PQ = Position vector of Q - Position vector of P

$$= (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

$$|\overline{PQ}| = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2 + (z_2 - z_1)^2}$$

Hence, the scalar components and the magnitude of the vector joining the given points

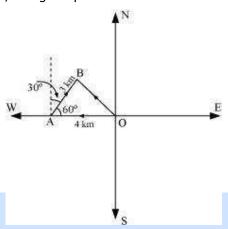
are respectively
$$\{(x_2-x_1),(y_2-y_1),(z_2-z_1)\}$$
 and $\sqrt{(x_2-x_1)^2+(y_2-y_1)^2+(z_2-z_1)^2}$.

Question 3:

A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.

Answer

Let O and B be the initial and final positions of the girl respectively. Then, the girl's position can be shown as:



Now, we have:

$$\overrightarrow{OA} = -4\hat{i}$$

$$\overrightarrow{AB} = \hat{i} |\overrightarrow{AB}| \cos 60^\circ + \hat{j} |\overrightarrow{AB}| \sin 60^\circ$$

$$= \hat{i} \cdot 3 \times \frac{1}{2} + \hat{j} \cdot 3 \times \frac{\sqrt{3}}{2}$$

$$= \frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

By the triangle law of vector addition, we have:

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB}$$

$$= \left(-4\hat{i}\right) + \left(\frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}\right)$$

$$= \left(-4 + \frac{3}{2}\right)\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

$$= \left(\frac{-8 + 3}{2}\right)\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

$$= \frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

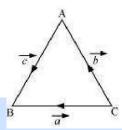
Hence, the girl's displacement from her initial point of departure is

$$\frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

Question 4:

If $\vec{a}=\vec{b}+\vec{c}$, then is it true that $|\vec{a}|=|\vec{b}|+|\vec{c}|$? Justify your answer. Answer

In $\triangle ABC$, let $\overrightarrow{CB} = \vec{a}$, $\overrightarrow{CA} = \vec{b}$, and $\overrightarrow{AB} = \vec{c}$ (as shown in the following figure).



Now, by the triangle law of vector addition, we have $\vec{a} = \vec{b} + \vec{c}$.

It is clearly known that $|\vec{a}|$, $|\vec{b}|$, and $|\vec{c}|$ represent the sides of \triangle ABC. Also, it is known that the sum of the lengths of any two sides of a triangle is greater than the third side.

$$\therefore \left| \vec{a} \right| < \left| \vec{b} \right| + \left| \vec{c} \right|$$

Hence, it is not true that $\left| \vec{a} \right| = \left| \vec{b} \right| + \left| \vec{c} \right|$

Question 5:

Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$ is a unit vector. Answer

$$x(\hat{i}+\hat{j}+\hat{k})$$
 is a unit vector if $x(\hat{i}+\hat{j}+\hat{k})=1$

Now,

$$\left|x\left(\hat{i}+\hat{j}+\hat{k}\right)\right| = 1$$

$$\Rightarrow \sqrt{x^2 + x^2 + x^2} = 1$$

$$\Rightarrow \sqrt{3x^2} = 1$$

$$\Rightarrow \sqrt{3}x = 1$$

$$\Rightarrow x = \pm \frac{1}{\sqrt{3}}$$

Hence, the required value of x is $\pm \frac{1}{\sqrt{3}}$

Question 6:

Find a vector of magnitude 5 units, and parallel to the resultant of the vectors

$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

Answer

We have,

$$\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$$
 and $\vec{b} = \hat{i} - 2\hat{j} + \hat{k}$

Let \vec{c} be the resultant of \vec{a} and \vec{b} .

Then,

$$\vec{c} = \vec{a} + \vec{b} = (2+1)\hat{i} + (3-2)\hat{j} + (-1+1)\hat{k} = 3\hat{i} + \hat{j}$$
$$\therefore |\vec{c}| = \sqrt{3^2 + 1^2} = \sqrt{9+1} = \sqrt{10}$$

$$\therefore \hat{c} = \frac{\vec{c}}{|\vec{c}|} = \frac{\left(3\hat{i} + \hat{j}\right)}{\sqrt{10}}$$

Hence, the vector of magnitude 5 units and parallel to the resultant of vectors \vec{a} and \vec{b} is

$$\pm 5 \cdot \hat{c} = \pm 5 \cdot \frac{1}{\sqrt{10}} (3\hat{i} + \hat{j}) = \pm \frac{3\sqrt{10}\hat{i}}{2} \pm \frac{\sqrt{10}}{2} \hat{j}.$$

Question 7:

If
$$\vec{a} = \hat{i} + \hat{j} + \hat{k}$$
, $\vec{b} = 2\hat{i} - \hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} - 2\hat{j} + \hat{k}$, find a unit vector parallel to the

$$vector 2\vec{a} - \vec{b} + 3\vec{c}$$

. Answer

We have,

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \ \vec{b} = 2\hat{i} - \hat{j} + 3\hat{k} \text{ and } \vec{c} = \hat{i} - 2\hat{j} + \hat{k}$$

$$2\vec{a} - \vec{b} + 3\vec{c} = 2(\hat{i} + \hat{j} + \hat{k}) - (2\hat{i} - \hat{j} + 3\hat{k}) + 3(\hat{i} - 2\hat{j} + \hat{k})$$

$$= 2\hat{i} + 2\hat{j} + 2\hat{k} - 2\hat{i} + \hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$$

$$= 3\hat{i} - 3\hat{j} + 2\hat{k}$$

$$|2\vec{a} - \vec{b} + 3\vec{c}| = \sqrt{3^2 + (-3)^2 + 2^2} = \sqrt{9 + 9 + 4} = \sqrt{22}$$

Hence, the unit vector along $2\vec{a} - \vec{b} + 3\vec{c}$ is

$$\frac{2\vec{a} - \vec{b} + 3\vec{c}}{\left|2\vec{a} - \vec{b} + 3\vec{c}\right|} = \frac{3\hat{i} - 3\hat{j} + 2\hat{k}}{\sqrt{22}} = \frac{3}{\sqrt{22}}\hat{i} - \frac{3}{\sqrt{22}}\hat{j} + \frac{2}{\sqrt{22}}\hat{k}.$$

Question 8:

Show that the points A (1, -2, -8), B (5, 0, -2) and C (11, 3, 7) are collinear, and find the ratio in which B divides AC.

Answer

The given points are A (1, -2, -8), B (5, 0, -2), and C (11, 3, 7).

Thus, the given points A, B, and C are collinear.

Now, let point B divide AC in the ratio λ :1. Then, we have:

$$\overrightarrow{OB} = \frac{\lambda \overrightarrow{OC} + \overrightarrow{OA}}{(\lambda + 1)}$$

$$\Rightarrow 5\hat{i} - 2\hat{k} = \frac{\lambda \left(11\hat{i} + 3\hat{j} + 7\hat{k}\right) + \left(\hat{i} - 2\hat{j} - 8\hat{k}\right)}{\lambda + 1}$$

$$\Rightarrow (\lambda + 1)\left(5\hat{i} - 2\hat{k}\right) = 11\lambda\hat{i} + 3\lambda\hat{j} + 7\lambda\hat{k} + \hat{i} - 2\hat{j} - 8\hat{k}$$

$$\Rightarrow 5(\lambda + 1)\hat{i} - 2(\lambda + 1)\hat{k} = (11\lambda + 1)\hat{i} + (3\lambda - 2)\hat{j} + (7\lambda - 8)\hat{k}$$

On equating the corresponding components, we get:

$$5(\lambda + 1) = 11\lambda + 1$$

$$\Rightarrow 5\lambda + 5 = 11\lambda + 1$$

$$\Rightarrow 6\lambda = 4$$

$$\Rightarrow \lambda = \frac{4}{6} = \frac{2}{3}$$

Hence, point B divides AC in the ratio 2:3.

Question 9:

Find the position vector of a point R which divides the line joining two points P and Q

whose position vectors are $(2\vec{a}+\vec{b})$ and $(\vec{a}-3\vec{b})$ externally in the ratio 1: 2. Also, show that P is the mid point of the line segment RQ.

Answer

It is given that $\overrightarrow{OP} = 2\vec{a} + \vec{b}$, $\overrightarrow{OQ} = \vec{a} - 3\vec{b}$.

It is given that point R divides a line segment joining two points P and Q externally in the ratio 1: 2. Then, on using the section formula, we get:

$$\overrightarrow{OR} = \frac{2(2\vec{a} + \vec{b}) - (\vec{a} - 3\vec{b})}{2 - 1} = \frac{4\vec{a} + 2\vec{b} - \vec{a} + 3\vec{b}}{1} = 3\vec{a} + 5\vec{b}$$

Therefore, the position vector of point R is $3\vec{a} + 5\vec{b}$

Position vector of the mid-point of RQ = $\frac{\overrightarrow{OQ} + \overrightarrow{OR}}{2}$

$$= \frac{\left(\vec{a} - 3\vec{b}\right) + \left(3\vec{a} + 5\vec{b}\right)}{2}$$
$$= 2\vec{a} + \vec{b}$$
$$= \overrightarrow{OP}$$

Hence, P is the mid-point of the line segment RQ.

Question 10:

The two adjacent sides of a parallelogram are $2\hat{i}-4\hat{j}+5\hat{k}$ and $\hat{i}-2\hat{j}-3\hat{k}$. Find the unit vector parallel to its diagonal. Also, find its area.

Answer

Adjacent sides of a parallelogram are given as: $\vec{a}=2\hat{i}-4\hat{j}+5\hat{k}$ and $\vec{b}=\hat{i}-2\hat{j}-3\hat{k}$ Then, the diagonal of a parallelogram is given by $\vec{a}+\vec{b}$.

$$\vec{a} + \vec{b} = (2+1)\hat{i} + (-4-2)\hat{j} + (5-3)\hat{k} = 3\hat{i} - 6\hat{j} + 2\hat{k}$$

Thus, the unit vector parallel to the diagonal is

$$\frac{\vec{a} + \vec{b}}{\left|\vec{a} + \vec{b}\right|} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{\sqrt{3^2 + \left(-6\right)^2 + 2^2}} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{\sqrt{9 + 36 + 4}} = \frac{3\hat{i} - 6\hat{j} + 2\hat{k}}{7} = \frac{3}{7}\hat{i} - \frac{6}{7}\hat{j} + \frac{2}{7}\hat{k}.$$

 \vec{a} Area of parallelogram ABCD = $|\vec{a} \times \vec{b}|$

$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & -4 & 5 \\ 1 & -2 & -3 \end{vmatrix}$$

$$= \hat{i} (12+10) - \hat{j} (-6-5) + \hat{k} (-4+4)$$

$$= 22\hat{i} + 11\hat{j}$$

$$= 11(2\hat{i} + \hat{j})$$

$$\therefore |\vec{a} \times \vec{b}| = 11\sqrt{2^2 + 1^2} = 11\sqrt{5}$$

Hence, the area of the parallelogram is $11\sqrt{5}$ square units.

Ouestion 11:

Show that the direction cosines of a vector equally inclined to the axes OX, OY and OZ

are
$$\frac{1}{\sqrt{3}}$$
, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$

Answer

Let a vector be equally inclined to axes OX, OY, and OZ at angle a.

Then, the direction cosines of the vector are $\cos a$, $\cos a$, and $\cos a$.

Now,

$$\cos^2 \alpha + \cos^2 \alpha + \cos^2 \alpha = 1$$

$$\Rightarrow 3\cos^2 \alpha = 1$$

$$\Rightarrow \cos \alpha = \frac{1}{\sqrt{3}}$$

Hence, the direction cosines of the vector which are equally inclined to the axes

are
$$\frac{1}{\sqrt{3}}$$
, $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}}$

Question 12:

Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is

perpendicular to both \vec{a} and \vec{b} ,

and c.d = 15. Answer

Let
$$\vec{d} = d_1 \hat{i} + d_2 \hat{j} + d_3 \hat{k}$$
.

Since \vec{d} is perpendicular to both \vec{a} and \vec{b} , we have:

$$\vec{d} \cdot \vec{a} = 0$$

$$\Rightarrow d_1 + 4d_2 + 2d_3 = 0$$

And,

$$\vec{d} \cdot \vec{b} = 0$$

$$\Rightarrow 3d_1 - 2d_2 + 7d_3 = 0$$

Also, it is given that:

$$\vec{c} \cdot \vec{d} = 15$$

$$\Rightarrow 2d_1 - d_2 + 4d_3 = 15$$

On solving (i), (ii), and (iii), we get:

$$d_1 = \frac{160}{3}, d_2 = -\frac{5}{3} \text{ and } d_3 = -\frac{70}{3}$$

$$\therefore \vec{d} = \frac{160}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k} = \frac{1}{3}(160\hat{i} - 5\hat{j} - 70\hat{k})$$

Hence, the required vector is $\frac{1}{3} \left(160\hat{i} - 5\hat{j} - 70\hat{k} \right)$

Question 13:

The scalar product of the vector $\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors

$$2\hat{i}+4\hat{j}-5\hat{k}_{a}$$
 and $\hat{\lambda}\hat{i}+2\hat{j}+3\hat{k}$ is equal to one. Find the value of $\hat{\lambda}$. Answer

$$(2\hat{i}+4\hat{j}-5\hat{k})+(\lambda\hat{i}+2\hat{j}+3\hat{k})$$
$$=(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}$$

Therefore, unit vector along $(2\hat{i} + 4\hat{j} - 5\hat{k}) + (\lambda\hat{i} + 2\hat{j} + 3\hat{k})$ is given as:

$$\frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{(2+\lambda)^2+6^2+(-2)^2}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{4+4\lambda+\lambda^2+36+4}} = \frac{(2+\lambda)\hat{i}+6\hat{j}-2\hat{k}}{\sqrt{\lambda^2+4\lambda+44}}$$

Scalar product of $(\hat{i} + \hat{j} + \hat{k})$ with this unit vector is 1.

$$\Rightarrow (\hat{i} + \hat{j} + \hat{k}) \cdot \frac{(2 + \lambda)\hat{i} + 6\hat{j} - 2\hat{k}}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \frac{(2 + \lambda) + 6 - 2}{\sqrt{\lambda^2 + 4\lambda + 44}} = 1$$

$$\Rightarrow \sqrt{\lambda^2 + 4\lambda + 44} = \lambda + 6$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = (\lambda + 6)^2$$

$$\Rightarrow \lambda^2 + 4\lambda + 44 = \lambda^2 + 12\lambda + 36$$

$$\Rightarrow 8\lambda = 8$$

$$\Rightarrow \lambda = 1$$

Hence, the value of λ is 1.

Question 14:

If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector

 $\vec{a} + \vec{b} + \vec{c}$ is equally inclined to

 \vec{a}, \vec{b} and \vec{c} Answer

Since $\vec{a}, \vec{b}, \text{ and } \vec{c}$ are mutually perpendicular vectors, we have

 $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$. It is given that:

$$\left|\vec{a}\right| = \left|\vec{b}\right| = \left|\vec{c}\right|$$

Let vector $\vec{a} + \vec{b} + \vec{c}$ be inclined to \vec{a}, \vec{b} , and \vec{c} at angles

 θ_1 , θ_2 , and θ_3 respectively. Then, we have:

$$\cos \theta_{1} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} = \frac{\vec{a} \cdot \vec{a} + \vec{b} \cdot \vec{a} + \vec{c} \cdot \vec{a}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|}$$

$$= \frac{\left|\vec{a}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{a}\right|} \qquad \left[\vec{b} \cdot \vec{a} = \vec{c} \cdot \vec{a} = 0\right]$$

$$= \frac{\left|\vec{a}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

$$\cos \theta_{2} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{b}\right|} = \frac{\vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{b} + \vec{c} \cdot \vec{b}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|}$$

$$= \frac{\left|\vec{b}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \cdot \left|\vec{b}\right|} \qquad \left[\vec{a} \cdot \vec{b} = \vec{c} \cdot \vec{b} = 0\right]$$

$$= \frac{\left|\vec{b}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

$$\cos \theta_{3} = \frac{\left(\vec{a} + \vec{b} + \vec{c}\right) \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} = \frac{\vec{a} \cdot \vec{c} + \vec{b} \cdot \vec{c} + \vec{c} \cdot \vec{c}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|}$$

$$= \frac{\left|\vec{c}\right|^{2}}{\left|\vec{a} + \vec{b} + \vec{c}\right| \left|\vec{c}\right|} \qquad \left[\vec{a} \cdot \vec{c} = \vec{b} \cdot \vec{c} = 0\right]$$

$$= \frac{\left|\vec{c}\right|}{\left|\vec{a} + \vec{b} + \vec{c}\right|}$$

Now, as
$$|\vec{a}| = |\vec{b}| = |\vec{c}|$$
, $\cos \theta_1 = \cos \theta_2 = \cos \theta_3$.

$$\therefore \theta_1 = \theta_2 = \theta_3$$

Hence, the vector $\left(\vec{a}+\vec{b}+\vec{c}\right)$ is equally inclined $t\vec{lpha i}, \vec{b}$, and \vec{c} .

Question 15:

Prove that $(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$, if and only if \vec{a} , \vec{b} are perpendicular, given $\vec{a} \neq \vec{0}$, $\vec{b} \neq \vec{0}$.

Answer

$$(\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = |\vec{a}|^2 + |\vec{b}|^2$$

$$\Leftrightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = |\vec{a}|^2 + |\vec{b}|^2 \qquad [Distributivity of scalar products over addition]$$

$$\Leftrightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = |\vec{a}|^2 + |\vec{b}|^2 \qquad [\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} \text{ (Scalar product is commutative)}]$$

$$\Leftrightarrow 2\vec{a} \cdot \vec{b} = 0$$

$$\Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

$$\Leftrightarrow \vec{a} \cdot \vec{b} = 0$$

$$\therefore \vec{a} \text{ and } \vec{b} \text{ are perpendicular.} \qquad [\vec{a} \neq \vec{0}, \ \vec{b} \neq \vec{0} \text{ (Given)}]$$

Question 16:

If θ is the angle between two vectors \vec{a} and \vec{b} , then $\vec{a} \cdot \vec{b} \ge 0$ only when

(A)
$$0 < \theta < \frac{\pi}{2}$$
 (B) $0 \le \theta \le \frac{\pi}{2}$

(C)
$$0 < \theta < \pi$$
 (D)

$$0 \le \theta \le \pi$$
 Answer

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors so that $|\vec{a}|$ and $|\vec{b}|$ are positive

It is known that $\vec{a} \cdot \vec{b} = |\vec{a}| |\vec{b}| \cos \theta$.

$$\vec{a} \cdot \vec{b} \ge 0$$

$$\Rightarrow \left| \vec{a} \right| \left| \vec{b} \right| \cos \theta \ge 0$$

$$\Rightarrow \cos \theta \ge 0$$

$$\Rightarrow \cos \theta \ge 0$$
 $\left[\left| \vec{a} \right| \text{ and } \left| \vec{b} \right| \text{ are positive} \right]$

$$\Rightarrow 0 \le \theta \le \frac{\pi}{2}$$

Hence, $\vec{a}.\vec{b} \ge 0$ when $0 \le \theta \le \frac{\pi}{2}$. The correct answer is B.

Question 17:

Let \vec{a} and \vec{b} be two unit vectors and θ is the angle between them. Then $\vec{a} + \vec{b}$ is a unit vector if

(A)
$$\theta = \frac{\pi}{4}$$
 (B) $\theta = \frac{\pi}{3}$ (C) $\theta = \frac{\pi}{2}$ (D) $\theta = \frac{2\pi}{3}$

Let \vec{a} and \vec{b} be two unit vectors and θ be the angle between them.

Then,
$$\left| \vec{a} \right| = \left| \vec{b} \right| = 1$$

Now, $\vec{a} + \vec{b}$ is a unit vector if $|\vec{a} + \vec{b}| = 1$

$$\begin{vmatrix} \vec{a} + \vec{b} \end{vmatrix} = 1$$

$$\Rightarrow (\vec{a} + \vec{b})^2 = 1$$

$$\Rightarrow (\vec{a} + \vec{b}) \cdot (\vec{a} + \vec{b}) = 1$$

$$\Rightarrow \vec{a} \cdot \vec{a} + \vec{a} \cdot \vec{b} + \vec{b} \cdot \vec{a} + \vec{b} \cdot \vec{b} = 1$$

$$\Rightarrow |\vec{a}|^2 + 2\vec{a} \cdot \vec{b} + |\vec{b}|^2 = 1$$

$$\Rightarrow 1^2 + 2|\vec{a}||\vec{b}|\cos\theta + 1^2 = 1$$

$$\Rightarrow 1 + 2 \cdot 1 \cdot 1\cos\theta + 1 = 1$$

$$\Rightarrow \cos\theta = -\frac{1}{2}$$

$$\Rightarrow \theta = \frac{2\pi}{3}$$

Hence, $\vec{a} + \vec{b}$ is a unit vector if $\theta = \frac{2\pi}{3}$. The correct answer is D.

Question 18:

The value of \hat{i} . $(\hat{j} \times \hat{k}) + \hat{j}$. $(\hat{i} \times \hat{k}) + \hat{k}$. $(\hat{i} \times \hat{j})$ is (A) 0 (B) -1 (C) 1 (D) 3

Answer

$$\hat{i}.(\hat{j} \times \hat{k}) + \hat{j}.(\hat{i} \times \hat{k}) + \hat{k}.(\hat{i} \times \hat{j})$$

$$= \hat{i} \cdot \hat{i} + \hat{j} \cdot (-\hat{j}) + \hat{k} \cdot \hat{k}$$

$$= 1 - \hat{j} \cdot \hat{j} + 1$$

$$= 1 - 1 + 1$$

$$= 1$$

The correct answer is C.

Question 19:

If θ is the angle between any two vectors \vec{a} and \vec{b} , then $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ isequal to

(A) 0 (B)
$$\frac{\pi}{4}$$
(C) $\frac{\pi}{2}$ (D) п Answer

Let θ be the angle between two vectors \vec{a} and \vec{b} .

Then, without loss of generality, \vec{a} and \vec{b} are non-zero vectors, so that $|\vec{a}|$ and $|\vec{b}|$ are positive

$$\left| \vec{a} \cdot \vec{b} \right| = \left| \vec{a} \times \vec{b} \right|$$

$$\Rightarrow |\vec{a}| |\vec{b}| \cos \theta = |\vec{a}| |\vec{b}| \sin \theta$$

$$\Rightarrow \cos \theta = \sin \theta$$

 \Rightarrow cos θ = sin θ $\left[|\vec{a}| \text{ and } |\vec{b}| \text{ are positive } \right]$

$$\Rightarrow \tan \theta = 1$$

$$\Rightarrow \theta = \frac{\pi}{4}$$

Hence, $|\vec{a}.\vec{b}| = |\vec{a} \times \vec{b}|$ when θ is equal to $\frac{\pi}{4}$. The correct answer is B.