Class XII Maths Exercise 1.1

Question 1:

Determine whether each of the following relations are reflexive, symmetric and transitive:

(i) Relation R in the set $A = \{1, 2, 3...13, 14\}$ defined as

 $R = \{(x, y): 3x - y = 0\}$

(ii) Relation R in the set ${\boldsymbol{\mathsf{N}}}$ of natural numbers defined as

 $R = \{(x, y): y = x + 5 and x < 4\}$

(iii) Relation R in the set $A = \{1, 2, 3, 4, 5, 6\}$ as

 $R = \{(x, y): y \text{ is divisible by } x\}$

(iv) Relation R in the set ${\boldsymbol{\mathsf{Z}}}$ of all integers defined as

 $R = \{(x, y): x - y \text{ is as integer}\}\$

(v) Relation R in the set A of human beings in a town at a particular time given by

(a) $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}\$

(b) $R = \{(x, y): x \text{ and } y \text{ live in the same locality}\}$

(c) $R = \{(x, y): x \text{ is exactly 7 cm taller than } y\}$

(d) $R = \{(x, y): x \text{ is wife of } y\}$

(e) $R = \{(x, y): x \text{ is father of } y\}$

Answer

(i) $A = \{1, 2, 3 ... 13, 14\}$ R = {(x, y): 3x - y = 0} ∴R = {(1, 3), (2, 6), (3, 9), (4, 12)} R is not reflexive since (1, 1), (2, 2) ... (14, 14) ∉ R. Also, R is not symmetric as (1, 3) ∈R, but (3, 1) ∉ R. [3(3) - 1 ≠ 0] Also, R is not transitive as (1, 3), (3, 9) ∈R, but (1, 9) ∉ R. [3(1) - 9 ≠ 0] Hence, R is neither reflexive, nor symmetric, nor transitive. (ii) R = {(x, y): y = x + 5 and x < 4} = {(1, 6), (2, 7), (3, 8)} It is seen that (1, 1) ∉ R. ∴R is not reflexive. (1, 6) ∈R But,

V

(1, 6) ∉ R. \therefore R is not symmetric. Now, since there is no pair in R such that (x, y) and $(y, z) \in \mathbb{R}$, then (x, z) cannot belong to R. \therefore R is not transitive. Hence, R is neither reflexive, nor symmetric, nor transitive. (iii) $A = \{1, 2, 3, 4, 5, 6\}$ $R = \{(x, y): y \text{ is divisible by } x\}$ We know that any number (x) is divisible by itself. \Rightarrow (x, x) \in R \therefore R is reflexive. Now, $(2, 4) \in \mathbb{R}$ [as 4 is divisible by 2] But, $(4, 2) \notin R$. [as 2 is not divisible by 4] \therefore R is not symmetric. Let $(x, y), (y, z) \in \mathbb{R}$. Then, y is divisible by x and z is divisible by y. $\therefore z$ is divisible by x. \Rightarrow (x, z) \in R ∴R is transitive. Hence, R is reflexive and transitive but not symmetric. (iv) $R = \{(x, y): x - y \text{ is an integer}\}$ Now, for every $x \in \mathbf{Z}$, $(x, x) \in \mathbf{R}$ as x - x = 0 is an integer. \therefore R is reflexive. Now, for every $x, y \in \mathbf{Z}$ if $(x, y) \in \mathbf{R}$, then x - y is an integer. $\Rightarrow -(x - y)$ is also an integer. \Rightarrow (*y* - *x*) is an integer. $\therefore (y, x) \in \mathbb{R}$ \therefore R is symmetric. Now, Let (x, y) and $(y, z) \in \mathbb{R}$, where $x, y, z \in \mathbb{Z}$. \Rightarrow (x - y) and (y - z) are integers. $\Rightarrow x - z = (x - y) + (y - z)$ is an integer.

 \therefore (*x*, *z*) \in R \therefore R is transitive. Hence, R is reflexive, symmetric, and transitive. (v) (a) $R = \{(x, y): x \text{ and } y \text{ work at the same place}\}$ \Rightarrow (x, x) \in R \therefore R is reflexive. If $(x, y) \in \mathbb{R}$, then x and y work at the same place. \Rightarrow y and x work at the same place. \Rightarrow (*y*, *x*) \in R. ∴R is symmetric. Now, let $(x, y), (y, z) \in \mathbb{R}$ \Rightarrow x and y work at the same place and y and z work at the same place. \Rightarrow x and z work at the same place. \Rightarrow (x, z) \in R \therefore R is transitive. Hence, R is reflexive, symmetric, and transitive. (b) $R = \{(x, y) : x \text{ and } y \text{ live in the same locality} \}$ Clearly $(x, x) \in \mathbb{R}$ as x and x is the same human being. ∴ R is reflexive. If $(x, y) \in \mathbb{R}$, then x and y live in the same locality. \Rightarrow y and x live in the same locality. \Rightarrow (y, x) \in R \therefore R is symmetric. Now, let $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$. \Rightarrow x and y live in the same locality and y and z live in the same locality. \Rightarrow x and z live in the same locality. \Rightarrow (x, z) \in R \therefore R is transitive. Hence, R is reflexive, symmetric, and transitive. (c) $R = \{(x, y): x \text{ is exactly 7 cm taller than } y\}$ Now, (*x*, *x*) ∉ R Since human being *x* cannot be taller than himself.

V

 \therefore R is not reflexive. Now, let $(x, y) \in \mathbb{R}$. \Rightarrow x is exactly 7 cm taller than y. Then, y is not taller than x. ∴(*y*, *x*) ∉R Indeed if *x* is exactly 7 cm taller than *y*, then *y* is exactly 7 cm shorter than *x*. \therefore R is not symmetric. Now, Let (x, y), $(y, z) \in \mathbb{R}$. \Rightarrow x is exactly 7 cm taller than y and y is exactly 7 cm taller than z. $\Rightarrow x$ is exactly 14 cm taller than z. ∴(*x*, *z*) ∉R \therefore R is not transitive. Hence, R is neither reflexive, nor symmetric, nor transitive. (d) $R = \{(x, y) : x \text{ is the wife of } y\}$ Now, $(x, x) \notin \mathbb{R}$ Since x cannot be the wife of herself. \therefore R is not reflexive. Now, let $(x, y) \in \mathbb{R}$ $\Rightarrow x$ is the wife of y. Clearly y is not the wife of x. $\therefore(y, x) \notin \mathbb{R}$ Indeed if *x* is the wife of *y*, then *y* is the husband of *x*. \therefore R is not transitive. Let $(x, y), (y, z) \in \mathbb{R}$ \Rightarrow x is the wife of y and y is the wife of z. This case is not possible. Also, this does not imply that *x* is the wife of *z*. $\therefore(x, z) \notin \mathbb{R}$ ∴R is not transitive. Hence, R is neither reflexive, nor symmetric, nor transitive. (e) $R = \{(x, y): x \text{ is the father of } y\}$ (*x*, *x*) ∉ R

As x cannot be the father of himself. \therefore R is not reflexive. Now, let $(x, y) \in \mathbb{R}$. $\Rightarrow x$ is the father of y. $\Rightarrow y$ cannot be the father of y. Indeed, y is the son or the daughter of y. $\therefore (y, x) \notin \mathbb{R}$ $\therefore \mathbb{R}$ is not symmetric. Now, let $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$. $\Rightarrow x$ is the father of y and y is the father of z. $\Rightarrow x$ is not the father of z. Indeed x is the grandfather of z. $\therefore (x, z) \notin \mathbb{R}$ $\therefore \mathbb{R}$ is not transitive. Hence, R is neither reflexive, nor symmetric, nor transitive.

Question 2:

Show that the relation R in the set **R** of real numbers, defined as $R = \{(a, b): a \le b^2\}$ is neither reflexive nor symmetric nor transitive. Answer $R = \{(a, b): a \le b^2\}$

$$\left(\frac{1}{2}, \frac{1}{2}\right) \notin \mathbf{R}$$
, since $\frac{1}{2} > \left(\frac{1}{2}\right)^2 = \frac{1}{4}$.

It can be observed that (2 - 2) \therefore R is not reflexive. Now, $(1, 4) \in \mathbb{R}$ as $1 < 4^2$ But, 4 is not less than 1^2 . $\therefore (4, 1) \notin \mathbb{R}$ $\therefore \mathbb{R}$ is not symmetric. Now, $(3, 2), (2, 1.5) \in \mathbb{R}$ $(as 3 < 2^2 = 4 and 2 < (1.5)^2 = 2.25)$ But, 3 > $(1.5)^2 = 2.25$

V

∴(3, 1.5) ∉ R
∴ R is not transitive.
Hence, R is neither reflexive, nor symmetric, nor transitive.

Question 3:

Check whether the relation R defined in the set $\{1, 2, 3, 4, 5, 6\}$ as $R = \{(a, b): b = a + 1\}$ is reflexive, symmetric or transitive. Answer Let $A = \{1, 2, 3, 4, 5, 6\}$. A relation R is defined on set A as: $R = \{(a, b): b = a + 1\}$ $\therefore \mathsf{R} = \{(1, 2), (2, 3), (3, 4), (4, 5), (5, 6)\}$ We can find $(a, a) \notin R$, where $a \in A$. For instance, $(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (6, 6) \notin \mathbb{R}$ \therefore R is not reflexive. It can be observed that $(1, 2) \in \mathbb{R}$, but $(2, 1) \notin \mathbb{R}$. \therefore R is not symmetric. Now, (1, 2), $(2, 3) \in \mathbf{R}$ But, (1, 3) ∉ R ∴R is not transitive Hence, R is neither reflexive, nor symmetric, nor transitive.

Question 4:

Show that the relation R in **R** defined as $R = \{(a, b): a \le b\}$, is reflexive and transitive but not symmetric.

Answer $R = \{(a, b); a \le b\}$ Clearly $(a, a) \in R$ as a = a. $\therefore R$ is reflexive. Now, $(2, 4) \in R$ (as 2 < 4)

But, $(4, 2) \notin R$ as 4 is greater than 2. \therefore R is not symmetric. Now, let (a, b), $(b, c) \in \mathbb{R}$. Then, $a \leq b$ and $b \leq c$ $\Rightarrow a \leq c$ \Rightarrow (*a*, *c*) \in R \therefore R is transitive. Hence, R is reflexive and transitive but not symmetric.

Question 5:

Check whether the relation R in **R** defined as $R = \{(a, b): a \le b^3\}$ is reflexive, symmetric or transitive.

Answer

 $R = \{(a, b): a \le b^3\}$ $\left(\frac{1}{2}, \frac{1}{2}\right) \notin \mathbb{R} \text{ as } \frac{1}{2} > \left(\frac{1}{2}\right)^3 = \frac{1}{8}.$ It is observed that ∴ R is not reflexive. Now, $(1, 2) \in \mathbb{R}$ (as $1 < 2^3 = 8$) But, $(2, 1) \notin R (as 2^3 > 1)$: R is not symmetric. We have $\left(3, \frac{3}{2}\right), \left(\frac{3}{2}, \frac{6}{5}\right) \in \mathbb{R}$ as $3 < \left(\frac{3}{2}\right)^3$ and $\frac{3}{2} < \left(\frac{6}{5}\right)^3$. $\operatorname{But}\left(3, \frac{6}{5}\right) \notin \operatorname{R} \text{ as } 3 > \left(\frac{6}{5}\right)^3.$

But

 \therefore R is not transitive.

Hence, R is neither reflexive, nor symmetric, nor transitive.

Question 6:

Show that the relation R in the set $\{1, 2, 3\}$ given by R = $\{(1, 2), (2, 1)\}$ is symmetric but neither reflexive nor transitive.

Answer

Let $A = \{1, 2, 3\}$. A relation R on A is defined as $R = \{(1, 2), (2, 1)\}$. It is seen that $(1, 1), (2, 2), (3, 3) \notin R$. \therefore R is not reflexive. Now, as $(1, 2) \in R$ and $(2, 1) \in R$, then R is symmetric. Now, (1, 2) and $(2, 1) \in R$ However, $(1, 1) \notin R$ \therefore R is not transitive.

Hence, R is symmetric but neither reflexive nor transitive.

Question 7:

Show that the relation R in the set A of all the books in a library of a college, given by R

= {(x, y): x and y have same number of pages} is an equivalence relation.

Answer

Set *A* is the set of all books in the library of a college.

 $R = \{x, y\}$: x and y have the same number of pages}

Now, R is reflexive since $(x, x) \in R$ as x and x has the same number of pages.

Let $(x, y) \in \mathbb{R} \Rightarrow x$ and y have the same number of pages.

 \Rightarrow y and x have the same number of pages.

$$\Rightarrow (y, x) \in \mathbb{R}$$

∴R is symmetric.

Now, let $(x, y) \in \mathbb{R}$ and $(y, z) \in \mathbb{R}$.

 \Rightarrow x and y and have the same number of pages and y and z have the same number of pages.

 \Rightarrow *x* and *z* have the same number of pages.

 \Rightarrow (x, z) \in R

 $\therefore R$ is transitive.

Hence, R is an equivalence relation.

Question 8:

Show that the relation R in the set $A = \{1, 2, 3, 4, 5\}$ given by

 $R = \{(a, b): |a-b| \text{ is even}\}, \text{ is an equivalence relation. Show that all the elements of } \{1, 3, 5\} \text{ are related to each other and all the elements of } \{2, 4\} \text{ are related to each other.}$ But no element of $\{1, 3, 5\}$ is related to any element of $2, 4\}.$

Answer

 $A = \{1, 2, 3, 4, 5\}$ R = {(a, b): |a-b| is even}

It is clear that for any element $a \in A$, we have $\begin{vmatrix} a-a \end{vmatrix} = 0$ (which is even). \therefore R is reflexive.

Let
$$(a, b) \in \mathbb{R}$$
.

$$\Rightarrow |a-b|$$
 is even.
 $\Rightarrow |-(a-b)| = |b-a|$ is also even.

$$\Rightarrow (b, a) \in \mathbb{R}$$

∴R is symmetric.

Now, let $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$.

 $\Rightarrow |a-b|$ is even and |b-c| is even.

$$\Rightarrow (a-b)$$
 is even and $(b-c)$ is even.

$$\Rightarrow (a-c) = (a-b) + (b-c)$$
 is even.

$$\Rightarrow |a-c|$$
 is even

$$\Rightarrow$$
 (*a*, *c*) \in R

 \therefore R is transitive.

Hence, R is an equivalence relation.

Now, all elements of the set $\{1, 2, 3\}$ are related to each other as all the elements of this subset are odd. Thus, the modulus of the difference between any two elements will be even.

Similarly, all elements of the set $\{2, 4\}$ are related to each other as all the elements of this subset are even.

[Sum of two even integers is even]

Also, no element of the subset $\{1, 3, 5\}$ can be related to any element of $\{2, 4\}$ as all elements of $\{1, 3, 5\}$ are odd and all elements of $\{2, 4\}$ are even. Thus, the modulus of the difference between the two elements (from each of these two subsets) will not be even.

Question 9:

Show that each of the relation R in the set $A = \{x \in \mathbb{Z} : 0 \le x \le 12\}$, given by

(i) $R = \{(a, b) : |a-b| \text{ is a multiple of } 4\}$ (ii) $R = \{(a, b) : a = b\}$

is an equivalence relation. Find the set of all elements related to 1 in each case.

Answer

$$A = \{x \in \mathbb{Z} : 0 \le x \le 12\} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$$

(i)
$$R = \{(a, b) : |a-b| \text{ is a multiple of } 4\}$$

For any element $a \in A$, we have $(a, a) \in R$ as |a-a| = 0 is a multiple of 4. $\therefore R$ is reflexive.

Now, let $(a, b) \in \mathbb{R} \Rightarrow \frac{|a-b|}{|a-b|}$ is a multiple of 4.

 $\Rightarrow |-(a-b)| = |b-a|$ is a multiple of 4.

$$\Rightarrow$$
 (*b*, *a*) \in R

 $\therefore R$ is symmetric.

Now, let (a, b), $(b, c) \in \mathbb{R}$.

 $\Rightarrow |a-b|$ is a multiple of 4 and |b-c| is a multiple of 4.

 \Rightarrow (a-b) is a multiple of 4 and (b-c) is a multiple of 4.

 \Rightarrow (a-c) = (a-b) + (b-c) is a multiple of 4.

 $\Rightarrow |a-c|$ is a multiple of 4.

$$\Rightarrow$$
 (*a*, *c*) \in R

 $\mathop{\scriptstyle \stackrel{.}{\scriptstyle \sim}} R$ is transitive.

Hence, R is an equivalence relation.

The set of elements related to 1 is $\{1, 5, 9\}$ since

V

|1-1| = 0 is a multiple of 4, |5-1| = 4 is a multiple of 4, and |9-1| = 8 is a multiple of 4. (ii) $R = \{(a, b): a = b\}$ For any element $a \in A$, we have $(a, a) \in R$, since a = a. \therefore R is reflexive. Now, let $(a, b) \in \mathbb{R}$. $\Rightarrow a = b$ $\Rightarrow b = a$ \Rightarrow (b, a) \in R \therefore R is symmetric. Now, let $(a, b) \in \mathbb{R}$ and $(b, c) \in \mathbb{R}$. $\Rightarrow a = b$ and b = c $\Rightarrow a = c$ \Rightarrow (*a*, *c*) \in R \therefore R is transitive. Hence, R is an equivalence relation. The elements in R that are related to 1 will be those elements from set A which are equal to 1. Hence, the set of elements related to 1 is $\{1\}$.

Question 10:

Given an example of a relation. Which is

- (i) Symmetric but neither reflexive nor transitive.
- (ii) Transitive but neither reflexive nor symmetric.
- (iii) Reflexive and symmetric but not transitive.
- (iv) Reflexive and transitive but not symmetric.
- (v) Symmetric and transitive but not reflexive.

Answer

(i) Let $A = \{5, 6, 7\}$.

Define a relation R on A as $R = \{(5, 6), (6, 5)\}$. Relation R is not reflexive as $(5, 5), (6, 6), (7, 7) \notin R$.

V

Now, as $(5, 6) \in \mathbb{R}$ and also $(6, 5) \in \mathbb{R}$, \mathbb{R} is symmetric. \Rightarrow (5, 6), (6, 5) \in R, but (5, 5) \notin R \therefore R is not transitive. Hence, relation R is symmetric but not reflexive or transitive. (ii)Consider a relation R in **R** defined as: $R = \{(a, b): a < b\}$ For any $a \in \mathbb{R}$, we have $(a, a) \notin \mathbb{R}$ since a cannot be strictly less than a itself. In fact, a =a. \therefore R is not reflexive. Now, $(1, 2) \in \mathbb{R}$ (as 1 < 2) But, 2 is not less than 1. ∴(2, 1) ∉ R \therefore R is not symmetric. Now, let (a, b), $(b, c) \in \mathbb{R}$. $\Rightarrow a < b$ and b < c $\Rightarrow a < c$ \Rightarrow (a, c) \in R ∴R is transitive. Hence, relation R is transitive but not reflexive and symmetric. (iii)Let $A = \{4, 6, 8\}$. Define a relation R on A as: $A = \{(4, 4), (6, 6), (8, 8), (4, 6), (6, 4), (6, 8), (8, 6)\}$ Relation R is reflexive since for every $a \in A$, $(a, a) \in \mathbb{R}$ i.e., (4, 4), (6, 6), $(8, 8) \in \mathbb{R}$. Relation R is symmetric since $(a, b) \in \mathbb{R} \Rightarrow (b, a) \in \mathbb{R}$ for all $a, b \in \mathbb{R}$. Relation R is not transitive since (4, 6), $(6, 8) \in R$, but $(4, 8) \notin R$. Hence, relation R is reflexive and symmetric but not transitive. (iv) Define a relation R in R as: $R = \{a, b\}: a^3 \ge b^3\}$ Clearly $(a, a) \in \mathbb{R}$ as $a^3 = a^3$. \therefore R is reflexive. Now, $(2, 1) \in \mathbb{R}$ (as $2^3 \ge 1^3$)

But, $(1, 2) \notin R$ (as $1^3 < 2^3$) \therefore R is not symmetric. Now, Let (a, b), $(b, c) \in \mathbb{R}$. $\Rightarrow a^3 \ge b^3$ and $b^3 \ge c^3$ $\Rightarrow a^3 \ge c^3$ \Rightarrow (*a*, *c*) \in R ∴R is transitive. Hence, relation R is reflexive and transitive but not symmetric. (v) Let $A = \{-5, -6\}$. Define a relation R on A as: $R = \{(-5, -6), (-6, -5), (-5, -5)\}$ Relation R is not reflexive as $(-6, -6) \notin R$. Relation R is symmetric as $(-5, -6) \in \mathbb{R}$ and $(-6, -5) \in \mathbb{R}$. It is seen that (-5, -6), $(-6, -5) \in \mathbb{R}$. Also, $(-5, -5) \in \mathbb{R}$. . The relation R is transitive. Hence, relation R is symmetric and transitive but not reflexive.

Question 11:

Show that the relation R in the set A of points in a plane given by $R = \{(P, Q): distance of the point P from the origin is same as the distance of the point Q from the origin}, is an equivalence relation. Further, show that the set of all point related to a point P <math>\neq$ (0, 0) is the circle passing through P with origin as centre. Answer

 $R = \{(P, Q): distance of point P from the origin is the same as the distance of point Q from the origin\}$

Clearly, $(P, P) \in R$ since the distance of point P from the origin is always the same as the distance of the same point P from the origin.

 $\therefore R$ is reflexive.

Now,

Let $(P, Q) \in R$.

 \Rightarrow The distance of point P from the origin is the same as the distance of point Q from the origin.

 \Rightarrow The distance of point Q from the origin is the same as the distance of point P from the origin.

 \Rightarrow (Q, P) \in R

 $\therefore R$ is symmetric.

Now,

Let (P, Q), $(Q, S) \in R$.

 \Rightarrow The distance of points P and Q from the origin is the same and also, the distance of points Q and S from the origin is the same.

 \Rightarrow The distance of points P and S from the origin is the same.

 \Rightarrow (P, S) \in R

 $\therefore R$ is transitive.

Therefore, R is an equivalence relation.

The set of all points related to $P \neq (0, 0)$ will be those points whose distance from the origin is the same as the distance of point P from the origin.

In other words, if O (0, 0) is the origin and OP = k, then the set of all points related to P is at a distance of k from the origin.

Hence, this set of points forms a circle with the centre as the origin and this circle passes through point P.

Question 12:

Show that the relation R defined in the set A of all triangles as $R = \{(T_1, T_2): T_1 \text{ is similar}$ to $T_2\}$, is equivalence relation. Consider three right angle triangles T_1 with sides 3, 4, 5, T_2 with sides 5, 12, 13 and T_3 with sides 6, 8, 10. Which triangles among T_1 , T_2 and T_3 are related?

Answer

R = {(T_1 , T_2): T_1 is similar to T_2 } R is reflexive since every triangle is similar to itself. Further, if (T_1 , T_2) ∈ R, then T_1 is similar to T_2 . $\Rightarrow T_2$ is similar to T_1 . $\Rightarrow (T_2, T_1) \in \mathbb{R}$ $\therefore \mathbb{R}$ is symmetric.

Now,

Let (T_1, T_2) , $(T_2, T_3) \in \mathbb{R}$. $\Rightarrow T_1$ is similar to T_2 and T_2 is similar to T_3 . $\Rightarrow T_1$ is similar to T_3 . $\Rightarrow (T_1, T_3) \in \mathbb{R}$ $\therefore \mathbb{R}$ is transitive. Thus, \mathbb{R} is an equivalence relation. Now, we can observe that:

 $\frac{3}{6} = \frac{4}{8} = \frac{5}{10} \left(= \frac{1}{2} \right)$

:. The corresponding sides of triangles T_1 and T_3 are in the same ratio. Then, triangle T_1 is similar to triangle T_3 . Hence, T_1 is related to T_3 .

Question 13:

Show that the relation R defined in the set A of all polygons as $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same number of sides}\}$, is an equivalence relation. What is the set of all elements in A related to the right angle triangle T with sides 3, 4 and 5?

Answer

 $R = \{(P_1, P_2): P_1 \text{ and } P_2 \text{ have same the number of sides}\}$

R is reflexive since $(P_1, P_1) \in \mathbb{R}$ as the same polygon has the same number of sides with itself.

Let $(P_1, P_2) \in \mathbb{R}$.

 \Rightarrow P_1 and P_2 have the same number of sides.

 \Rightarrow P_2 and P_1 have the same number of sides.

 $\Rightarrow (P_2, P_1) \in \mathsf{R}$

∴R is symmetric.

Now,

Let (P_1, P_2) , $(P_2, P_3) \in \mathbb{R}$.

 \Rightarrow P_1 and P_2 have the same number of sides. Also, P_2 and P_3 have the same number of sides.

 \Rightarrow P_1 and P_3 have the same number of sides.

 $\Rightarrow (P_1, P_3) \in \mathsf{R}$

 \therefore R is transitive.

Hence, R is an equivalence relation.

The elements in A related to the right-angled triangle (T) with sides 3, 4, and 5 are those polygons which have 3 sides (since T is a polygon with 3 sides).

Hence, the set of all elements in A related to triangle T is the set of all triangles.

Question 14:

Let *L* be the set of all lines in XY plane and R be the relation in *L* defined as $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$. Show that R is an equivalence relation. Find the set of all lines related to the line y = 2x + 4.

Answer

 $R = \{(L_1, L_2): L_1 \text{ is parallel to } L_2\}$

R is reflexive as any line L_1 is parallel to itself i.e., $(L_1, L_1) \in \mathbb{R}$.

Now,

Let $(L_1, L_2) \in \mathbb{R}$.

 \Rightarrow L_1 is parallel to L_2 .

- \Rightarrow L_2 is parallel to L_1 .
- $\Rightarrow (L_2, L_1) \in \mathbb{R}$
- : R is symmetric.

Now,

Let (L_1, L_2) , $(L_2, L_3) \in \mathbb{R}$.

 \Rightarrow L_1 is parallel to L_2 . Also, L_2 is parallel to L_3 .

 \Rightarrow L_1 is parallel to L_3 .

 $\therefore R$ is transitive.

Hence, R is an equivalence relation.

The set of all lines related to the line y = 2x + 4 is the set of all lines that are parallel to the line y = 2x + 4.

Slope of line y = 2x + 4 is m = 2

It is known that parallel lines have the same slopes.

The line parallel to the given line is of the form y = 2x + c, where $c \in \mathbf{R}$.

Hence, the set of all lines related to the given line is given by y = 2x + c, where $c \in \mathbf{R}$.

Question 15:

Let R be the relation in the set $\{1, 2, 3, 4\}$ given by R = $\{(1, 2), (2, 2), (1, 1), (4, 4)$

(1, 3), (3, 3), (3, 2). Choose the correct answer.

(A) R is reflexive and symmetric but not transitive.

(B) R is reflexive and transitive but not symmetric.

(C) R is symmetric and transitive but not reflexive.

(D) R is an equivalence relation.

Answer

 $R = \{(1, 2), (2, 2), (1, 1), (4, 4), (1, 3), (3, 3), (3, 2)\}$

It is seen that $(a, a) \in \mathbf{R}$, for every $a \in \{1, 2, 3, 4\}$.

 \therefore R is reflexive.

It is seen that $(1, 2) \in \mathbb{R}$, but $(2, 1) \notin \mathbb{R}$.

∴R is not symmetric.

Also, it is observed that (a, b), $(b, c) \in \mathbb{R} \Rightarrow (a, c) \in \mathbb{R}$ for all $a, b, c \in \{1, 2, 3, 4\}$.

 \therefore R is transitive.

Hence, R is reflexive and transitive but not symmetric.

The correct answer is B.

Question 16:

Let R be the relation in the set **N** given by $R = \{(a, b): a = b - 2, b > 6\}$. Choose the correct answer. (A) (2, 4) $\in R$ (B) (3, 8) $\in R$ (C) (6, 8) $\in R$ (D) (8, 7) $\in R$ Answer $R = \{(a, b): a = b - 2, b > 6\}$ Now, since b > 6, (2, 4) $\notin R$ Also, as $3 \neq 8 - 2$, (3, 8) $\notin R$ And, as $8 \neq 7 - 2$ $\therefore (8, 7) \notin R$ Now, consider (6, 8). We have 8 > 6 and also, 6 = 8 - 2. $\therefore (6, 8) \in R$ The correct answer is C.

Exercise 1.2

Question 1:

Show that the function $f: \mathbf{R}_* \to \mathbf{R}_*$ defined by $f(x) = \frac{1}{x}$ is one-one and onto, where \mathbf{R}_* is the set of all non-zero real numbers. Is the result true, if the domain \mathbf{R}_* is replaced by \mathbf{N} with co-domain being same as \mathbf{R}_* ?

 $x = \frac{1}{x} \in \mathbb{R}_*$ (Exists as $y \neq 0$)

such that

Answer

It is given that $f: \mathbf{R}_* \to \mathbf{R}_*$ is defined by $f(x) = \frac{1}{x}$. One-one:

f(x) = f(y) $\Rightarrow \frac{1}{x} = \frac{1}{y}$ $\Rightarrow x = y$

:: f is one-one.

Onto:

It is clear that for $y \in \mathbf{R}_*$, there exists

$$f(x) = \frac{1}{\left(\frac{1}{v}\right)} = y$$

:: f is onto.

Thus, the given function (f) is one-one and onto.

Now, consider function $g: \mathbf{N} \to \mathbf{R}$ *defined by

$$g(x) = \frac{1}{x}.$$

We have,

$$g(x_1) = g(x_2) \Longrightarrow \frac{1}{x_1} = \frac{1}{x_2} \Longrightarrow x_1 = x_2$$

∴g is one-one.

Further, it is clear that g is not onto as for $1.2 \in \mathbf{R}_*$ there does not exit any x in **N** such

that $g(x) = \frac{1}{1.2}$.

Hence, function g is one-one but not onto.

Question 2:

Check the injectivity and surjectivity of the following functions:

(i) $f: \mathbf{N} \to \mathbf{N}$ given by $f(x) = x^2$ (ii) $f: \mathbf{Z} \to \mathbf{Z}$ given by $f(x) = x^2$ (iii) $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^2$ (iv) $f: \mathbf{N} \to \mathbf{N}$ given by $f(x) = x^3$ (v) $f: \mathbf{Z} \to \mathbf{Z}$ given by $f(x) = x^3$ Answer (i) $f: \mathbf{N} \to \mathbf{N}$ is given by, $f(x) = x^2$ It is seen that for $x, y \in \mathbb{N}$, $f(x) = f(y) \Rightarrow x^2 = y^2 \Rightarrow x = y$. : f is injective. Now, $2 \in \mathbb{N}$. But, there does not exist any x in N such that $f(x) = x^2 = 2$. $\therefore f$ is not surjective. Hence, function *f* is injective but not surjective. (ii) $f: \mathbf{Z} \rightarrow \mathbf{Z}$ is given by, $f(x) = x^2$ It is seen that f(-1) = f(1) = 1, but $-1 \neq 1$. $\therefore f$ is not injective. Now, $-2 \in \mathbf{Z}$. But, there does not exist any element $x \in \mathbf{Z}$ such that $f(x) = x^2 = -2$. $\therefore f$ is not surjective. Hence, function *f* is neither injective nor surjective. (iii) $f: \mathbf{R} \to \mathbf{R}$ is given by, $f(x) = x^2$ It is seen that f(-1) = f(1) = 1, but $-1 \neq 1$. $\therefore f$ is not injective. Now, $-2 \in \mathbf{R}$. But, there does not exist any element $x \in \mathbf{R}$ such that $f(x) = x^2 = -2$.

 $\therefore f$ is not surjective. Hence, function *f* is neither injective nor surjective. (iv) $f: \mathbf{N} \to \mathbf{N}$ given by, $f(x) = x^3$ It is seen that for $x, y \in \mathbb{N}$, $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$. $\therefore f$ is injective. Now, $2 \in \mathbb{N}$. But, there does not exist any element x in domain N such that $f(x) = x^3 = x^3$ 2. $\therefore f$ is not surjective Hence, function *f* is injective but not surjective. (v) $f: \mathbf{Z} \to \mathbf{Z}$ is given by, $f(x) = x^3$ It is seen that for $x, y \in \mathbb{Z}$, $f(x) = f(y) \Rightarrow x^3 = y^3 \Rightarrow x = y$. $\therefore f$ is injective. Now, $2 \in \mathbf{Z}$. But, there does not exist any element x in domain **Z** such that $f(x) = x^3 = 2$. $\therefore f$ is not surjective. Hence, function *f* is injective but not surjective. **Question 3:** Prove that the Greatest Integer Function f: $\mathbf{R} \to \mathbf{R}$ given by f(x) = [x], is neither oneonce nor onto, where [x] denotes the greatest integer less than or equal to x. Answer *f*: $\mathbf{R} \rightarrow \mathbf{R}$ is given by, f(x) = [x]It is seen that f(1.2) = [1.2] = 1, f(1.9) = [1.9] = 1. $\therefore f(1.2) = f(1.9)$, but $1.2 \neq 1.9$. $\therefore f$ is not one-one. Now, consider $0.7 \in \mathbf{R}$. It is known that f(x) = [x] is always an integer. Thus, there does not exist any element x $\in \mathbf{R}$ such that f(x) = 0.7. $\therefore f$ is not onto. Hence, the greatest integer function is neither one-one nor onto.

Question 4:

Show that the Modulus Function $f: \mathbf{R} \to \mathbf{R}$ given by f(x) = |x|, is neither one-one nor onto, where |x| is x, if x is positive or 0 and |x| is -x, if x is negative. Answer

f: $\mathbf{R} \rightarrow \mathbf{R}$ is given by,

$$f(x) = |x| = \begin{cases} x, \text{ if } x \ge 0\\ -x, \text{ if } x < 0 \end{cases}$$

It is seen that f(-1) = |-1| = 1, f(1) = |1| = 1. ::f(-1) = f(1), but $-1 \neq 1$.

 $\therefore f$ is not one-one.

Now, consider $-1 \in \mathbf{R}$.

It is known that $f(x) = \frac{|x|}{|x|}$ is always non-negative. Thus, there does not exist any

element x in domain **R** such that $f(x) = \frac{|x|}{|x|} = -1$. $\therefore f$ is not onto.

Hence, the modulus function is neither one-one nor onto.

Question 5:

Show that the Signum Function $f: \mathbf{R} \rightarrow \mathbf{R}$, given by

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

is neither one-one nor onto.

Answer

f: $\mathbf{R} \rightarrow \mathbf{R}$ is given by,

$$f(x) = \begin{cases} 1, & \text{if } x > 0 \\ 0, & \text{if } x = 0 \\ -1, & \text{if } x < 0 \end{cases}$$

It is seen that f(1) = f(2) = 1, but $1 \neq 2$.

:: f is not one-one.

Now, as f(x) takes only 3 values (1, 0, or -1) for the element -2 in co-domain **R**, there does not exist any x in domain **R** such that f(x) = -2. $\therefore f$ is not onto.

Hence, the signum function is neither one-one nor onto.

Question 6:

Let $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}$ and let $f = \{(1, 4), (2, 5), (3, 6)\}$ be a function from A to B. Show that f is one-one.

Answer

It is given that $A = \{1, 2, 3\}, B = \{4, 5, 6, 7\}.$ $f: A \to B$ is defined as $f = \{(1, 4), (2, 5), (3, 6)\}.$ $\therefore f(1) = 4, f(2) = 5, f(3) = 6$ It is seen that the images of distinct elements of A under f are distinct.

Hence, function *f* is one-one.

Question 7:

In each of the following cases, state whether the function is one-one, onto or bijective.

Justify your answer.

(*i*) $f: \mathbf{R} \to \mathbf{R}$ defined by f(x) = 3 - 4x(*ii*) $f: \mathbf{R} \to \mathbf{R}$ defined by $f(x) = 1 + x^2$

Answer

(i) $f: \mathbf{R} \to \mathbf{R}$ is defined as f(x) = 3 - 4x.

Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$

$$\Rightarrow 3 - 4x_1 = 3 - 4x_2$$
$$\Rightarrow -4x_1 = -4x_2$$
$$\Rightarrow x_1 = x_2$$

 $\therefore f$ is one-one.

3-y

For any real number (y) in **R**, there exists 4 in **R** such that

$$f\left(\frac{3-y}{4}\right) = 3 - 4\left(\frac{3-y}{4}\right) = y.$$

 $\therefore f$ is onto.

(ii) $f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x) = 1 + x^2$ Let $x_1, x_2 \in \mathbf{R}$ such that $f(x_1) = f(x_2)$ \Rightarrow 1 + x_1^2 = 1 + x_2^2 $\Rightarrow x_1^2 = x_2^2$ $\Rightarrow x_1 = \pm x_2$ $\therefore f(x_1) = f(x_2)$ does not imply that $x_1 = x_2$. For instance, f(1) = f(-1) = 2 $\therefore f$ is not one-one. Consider an element -2 in co-domain **R**. It is seen that $f(x) = 1 + x^2$ is positive for all $x \in \mathbf{R}$. Thus, there does not exist any x in domain **R** such that f(x) = -2. ∴ *f* is not onto. Hence, *f* is neither one-one nor onto. **Question 8:** Let A and B be sets. Show that $f: A \times B \rightarrow B \times A$ such that (a, b) = (b, a) is bijective function. Answer f: $A \times B \rightarrow B \times A$ is defined as f(a, b) = (b, a). Let (a_1, b_1) , $(a_2, b_2) \in A \times B$ such that $f(a_1, b_1) = f(a_2, b_2)$ \Rightarrow $(b_1, a_1) = (b_2, a_2)$ $\Rightarrow b_1 = b_2$ and $a_1 = a_2$ \Rightarrow $(a_1, b_1) = (a_2, b_2)$:: f is one-one. Now, let $(b, a) \in B \times A$ be any element. Then, there exists $(a, b) \in A \times B$ such that f(a, b) = (b, a). [By definition of f]

Hence, *f* is bijective.

V

 $\therefore f$ is onto.

Hence, *f* is bijective.

Question 9:

$$f(n) = \begin{cases} \frac{n+1}{2}, \text{ if } n \text{ is odd} \\ & \text{for all } n \in \mathbf{N}. \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

Let $f: \mathbb{N} \to \mathbb{N}$ be defined by State whether the function f is bijective. Justify your answer. Answer

$$T(n) = \begin{cases} \frac{n+1}{2}, & \text{if } n \text{ is odd} \\ & \text{for all } n \in \mathbf{N}. \\ \frac{n}{2}, & \text{if } n \text{ is even} \end{cases}$$

 $f: \mathbf{N} \to \mathbf{N}$ is defined as It can be observed that:

$$\frac{f(1) = \frac{1+1}{2} = 1 \text{ and } f(2) = \frac{2}{2} = 1 \qquad \text{[By definition of f]}$$

$$\therefore f(1) = f(2), \text{ where } 1 \neq 2.$$

 $\therefore f$ is not one-one.

Consider a natural number (n) in co-domain **N**.

Case I: n is odd

:= 2r + 1 for some $r \in \mathbf{N}$. Then, there exists $4r + 1 \in \mathbf{N}$ such that

$$f(4r+1) = \frac{4r+1+1}{2} = 2r+1$$

Case **II:** *n* is even

$$f\left(4r\right) = \frac{4r}{2} = 2r$$

:n = 2r for some $r \in \mathbf{N}$. Then, there exists $4r \in \mathbf{N}$ such that

 $\therefore f$ is onto.

Hence, *f* is not a bijective function.

Question 10: Let A = $\mathbf{R} - \{3\}$ and B = $\mathbf{R} - \{1\}$. Consider the function *f*: A \rightarrow B defined by

$$f(x) = \left(\frac{x-2}{x-3}\right)$$
. Is *f* one-one and onto? Justify your answer.

Answer

 $A = \mathbf{R} - \{3\}, B = \mathbf{R} - \{1\}$ $f(x) = \left(\frac{x-2}{x-3}\right)$ f: A \rightarrow B is defined as Let $x, y \in A$ such that f(x) = f(y) $\Rightarrow \frac{x-2}{x-3} = \frac{y-2}{y-3}$ $\Rightarrow (x-2)(y-3) = (y-2)(x-3)$ $\Rightarrow xy - 3x - 2y + 6 = xy - 3y - 2x + 6$ $\Rightarrow -3x - 2y = -3y - 2x$ $\Rightarrow 3x - 2x = 3y - 2y$ $\Rightarrow x = y$ $\therefore f$ is one-one. Let $y \in B = \mathbf{R} - \{1\}$. Then, $y \neq 1$. The function f is onto if there exists $x \in A$ such that f(x) = y. Now, f(x) = y $\Rightarrow \frac{x-2}{x-3} = y$ $\Rightarrow x - 2 = xy - 3y$ $\Rightarrow x(1-y) = -3y+2$ $\Rightarrow x = \frac{2-3y}{1-y} \in A$ $[y \neq 1]$ $\frac{2-3y}{1-y} \in \mathbf{A}$ such that Thus, for any $y \in B$, there exists

$$f\left(\frac{2-3y}{1-y}\right) = \frac{\left(\frac{2-3y}{1-y}\right)-2}{\left(\frac{2-3y}{1-y}\right)-3} = \frac{2-3y-2+2y}{2-3y-3+3y} = \frac{-y}{-1} = y.$$

 $\therefore f$ is onto.

Hence, function *f* is one-one and onto.

Question 11:

Let $f: \mathbf{R} \to \mathbf{R}$ be defined as $f(x) = x^4$. Choose the correct answer.

(A) *f* is one-one onto (B) *f* is many-one onto

(C) *f* is one-one but not onto (D) *f* is neither one-one nor onto Answer

f: $\mathbf{R} \to \mathbf{R}$ is defined as $f(x) = x^4$. Let $x, y \in \mathbf{R}$ such that f(x) = f(y).

$$\Rightarrow x^4 = y^4$$

$$\Rightarrow x = \pm y$$

$$f(x_1) = f(x_2)$$
 does not imply that $x_1 = x_1$

For instance,

$$f(1) = f(-1) = 1$$

 $\therefore f$ is not one-one.

Consider an element 2 in co-domain **R**. It is clear that there does not exist any *x* in

domain **R** such that f(x) = 2.

 $\therefore f$ is not onto.

Hence, function *f* is neither one-one nor onto.

The correct answer is D.

Question 12:

Let $f: \mathbf{R} \to \mathbf{R}$ be defined as f(x) = 3x. Choose the correct answer.

(A) *f* is one-one onto (B) *f* is many-one onto

(C) *f* is one-one but not onto (D) *f* is neither one-one nor onto

Answer

V

f: **R** → **R** is defined as f(x) = 3x. Let *x*, *y* ∈ **R** such that f(x) = f(y). $\Rightarrow 3x = 3y$ $\Rightarrow x = y$ $\therefore f$ is one-one.

Also, for any real number (y) in co-domain **R**, there exists $\frac{y}{3}$ in **R** such that $f\left(\frac{y}{3}\right) = 3\left(\frac{y}{3}\right) = y$

Hence, function *f* is one-one and onto. The correct answer is A.

Exercise 1.3

Question 1: Let f: {1, 3, 4} \rightarrow {1, 2, 5} and g: {1, 2, 5} \rightarrow {1, 3} be given by f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. Write down gof. Answer The functions f: {1, 3, 4} \rightarrow {1, 2, 5} and g: {1, 2, 5} \rightarrow {1, 3} are defined as f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}. gof (1) = g(f(1)) = g(2) = 3 [f(1) = 2 and g(2) = 3] gof (3) = g(f(3)) = g(5) = 1 [f(3) = 5 and g(5) = 1] gof (4) = g(f(4)) = g(1) = 3 [f(4) = 1 and g(1) = 3] \therefore gof = {(1,3), (3,1), (4,3)}

Question 2:

Let f, g and h be functions from **R** to **R**. Show that

(f+g)oh = foh+goh $(f \cdot g)oh = (foh) \cdot (goh)$

Answer

To prove:

(f+g)oh = foh + goh

Consider:

$$((f+g)\circ h)(x)$$

$$= (f+g)(h(x))$$

$$= f(h(x)) + g(h(x))$$

$$= (f\circ h)(x) + (g\circ h)(x)$$

$$= \{(f\circ h) + (g\circ h)\}(x)$$

$$\therefore ((f+g)\circ h)(x) = \{(f\circ h) + (g\circ h)\}(x) \quad \forall x \in \mathbf{R}$$
Hence, $(f+g)\circ h = f\circ h + g\circ h$.

To prove: $(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$ Consider: $((f \cdot g) \circ h)(x)$ $= (f \cdot g)(h(x))$ $= f(h(x)) \cdot g(h(x))$ $= (f \circ h)(x) \cdot (g \circ h)(x)$ $= \{(f \circ h) \cdot (g \circ h)\}(x)$ $\therefore ((f \cdot g) \circ h)(x) = \{(f \circ h) \cdot (g \circ h)\}(x) \forall x \in \mathbb{R}$ Hence, $(f \cdot g) \circ h = (f \circ h) \cdot (g \circ h)$.

```
Question 3:
Find gof and fog, if
(i) f(x) = |x| and g(x) = |5x-2|
```

(ii)
$$f(x) = 8x^3$$
 and $g(x) = x^{\overline{3}}$

Answer

(i)
$$f(x) = |x| \text{ and } g(x) = |5x-2|$$

 $\therefore (gof)(x) = g(f(x)) = g(|x|) = |5|x|-2|$
 $(fog)(x) = f(g(x)) = f(|5x-2|) = ||5x-2|| = |5x-2|$
(ii) $f(x) = 8x^3 \text{ and } g(x) = x^{\frac{1}{3}}$
 $\therefore (gof)(x) = g(f(x)) = g(8x^3) = (8x^3)^{\frac{1}{3}} = 2x$
 $(fog)(x) = f(g(x)) = f(x^{\frac{1}{3}}) = 8(x^{\frac{1}{3}})^3 = 8x$

Question 4:

$$f(x) = \frac{(4x+3)}{(6x-4)}, x \neq \frac{2}{3}$$
, show that $f \circ f(x) = x$, for all $x \neq \frac{2}{3}$. What is the inverse of f ?

Answer

$$f(x) = \frac{(4x+3)}{(6x-4)}, x \neq \frac{2}{3}$$

It is given that

$$(fof)(x) = f(f(x)) = f\left(\frac{4x+3}{6x-4}\right)$$
$$= \frac{4\left(\frac{4x+3}{6x-4}\right)+3}{6\left(\frac{4x+3}{6x-4}\right)-4} = \frac{16x+12+18x-12}{24x+18-24x+16} = \frac{34x}{34} = x$$

Therefore, for f(x) = x, for all $x \neq \frac{2}{3}$.

$$\Rightarrow$$
 fof = I

Hence, the given function *f* is invertible and the inverse of *f* is *f* itself.

Question 5:

State with reason whether following functions have inverse (i) f: {1, 2, 3, 4} \rightarrow {10} with f = {(1, 10), (2, 10), (3, 10), (4, 10)} (ii) g: {5, 6, 7, 8} \rightarrow {1, 2, 3, 4} with g = {(5, 4), (6, 3), (7, 4), (8, 2)} (iii) h: {2, 3, 4, 5} \rightarrow {7, 9, 11, 13} with h = {(2, 7), (3, 9), (4, 11), (5, 13)} Answer (i) f: {1, 2, 3, 4} \rightarrow {10}defined as: f = {(1, 10), (2, 10), (3, 10), (4, 10)} From the given definition of f, we can see that f is a many one function as: f(1) = f(2) = f(3) = f(4) = 10 \therefore f is not one-one. Hence, function f does not have an inverse. (ii) g: {5, 6, 7, 8} \rightarrow {1, 2, 3, 4} defined as:

 $\overline{(1-y)}$

V

 $g = \{(5, 4), (6, 3), (7, 4), (8, 2)\}$

From the given definition of g, it is seen that g is a many one function as: g(5) = g(7) = 4.

::g is not one-one,

Hence, function g does not have an inverse.

(iii) $h: \{2, 3, 4, 5\} \rightarrow \{7, 9, 11, 13\}$ defined as:

 $h=\{(2,\,7),\,(3,\,9),\,(4,\,11),\,(5,\,13)\}$

It is seen that all distinct elements of the set $\{2, 3, 4, 5\}$ have distinct images under *h*. \therefore Function *h* is one-one.

Also, *h* is onto since for every element *y* of the set $\{7, 9, 11, 13\}$, there exists an element *x* in the set $\{2, 3, 4, 5\}$ such that h(x) = y. Thus, *h* is a one-one and onto function. Hence, *h* has an inverse.

Question 6:

Show that $f: [-1, 1] \to \mathbf{R}$, given by $f(x) = \frac{x}{(x+2)}$ is one-one. Find the inverse of the function $f: [-1, 1] \to \text{Range } f$.

(Hint: For $y \in \text{Range } f, y = \frac{f(x) = \frac{x}{x+2}}{x+2}$, for some x in [-1, 1], i.e., x = Answer

$$f(x) = \frac{x}{(x+2)}.$$

 $f: [-1, 1] \rightarrow R$ is given as Let f(x) = f(y).

$$\Rightarrow \frac{x}{x+2} = \frac{y}{y+2}$$
$$\Rightarrow xy + 2x = xy + 2y$$
$$\Rightarrow 2x = 2y$$
$$\Rightarrow x = y$$

 $\therefore f$ is a one-one function.

It is clear that $f: [-1, 1] \rightarrow \text{Range } f \text{ is onto.}$

 $:: f: [-1, 1] \rightarrow \text{Range } f \text{ is one-one and onto and therefore, the inverse of the function:}$

V

f: [-1, 1] → Range f exists. Let g: Range $f \to [-1, 1]$ be the inverse of f. Let y be an arbitrary element of range f. Since f: [-1, 1] → Range f is onto, we have: y = f(x) for same $x \in [-1, 1]$ $\Rightarrow y = \frac{x}{x+2}$ $\Rightarrow xy+2y = x$ $\Rightarrow x(1-y) = 2y$ $\Rightarrow x = \frac{2y}{1-y}, y \neq 1$

Now, let us define g: Range $f \rightarrow [-1, 1]$ as

$$g(y) = \frac{2y}{1-y}, y \neq 1.$$

Now, $(gof)(x) = g(f(x)) = g\left(\frac{x}{x+2}\right) = \frac{2\left(\frac{x}{x+2}\right)}{1-\frac{x}{x+2}} = \frac{2x}{x+2-x} = \frac{2x}{2} = x$
 $(fog)(y) = f(g(y)) = f\left(\frac{2y}{1-y}\right) = \frac{\frac{2y}{1-y}}{\frac{2y}{1-y}+2} = \frac{2y}{2y+2-2y} = \frac{2y}{2} = y$

∴gof =
$$I_{[-1, 1]}$$
 and fog = $I_{Range f}$
∴ $f^{-1} = g$
 $f^{-1}(y) = \frac{2y}{1-y}, y \neq 1$

Question 7:

Consider *f*: $\mathbf{R} \to \mathbf{R}$ given by f(x) = 4x + 3. Show that *f* is invertible. Find the inverse of *f*. Answer *f*: $\mathbf{R} \to \mathbf{R}$ is given by

f: $\mathbf{R} \rightarrow \mathbf{R}$ is given by, f(x) = 4x + 3One-one:

Let f(x) = f(y). $\Rightarrow 4x + 3 = 4y + 3$ $\Rightarrow 4x = 4v$ $\Rightarrow x = y$ \therefore *f* is a one-one function. Onto: For $y \in \mathbf{R}$, let y = 4x + 3. $\Rightarrow x = \frac{y-3}{A} \in \mathbf{R}$ Therefore, for any $y \in \mathbf{R}$, there exists $x = \frac{y-3}{4} \in \mathbf{R}$ such that $f(x) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y.$ $\therefore f$ is onto. Thus, *f* is one-one and onto and therefore, f^{-1} exists. Let us define $g: \mathbf{R} \to \mathbf{R}$ by $g(x) = \frac{y-3}{4}$ Now, $(gof)(x) = g(f(x)) = g(4x+3) = \frac{(4x+3)-3}{4} = x$ $(f \circ g)(y) = f(g(y)) = f\left(\frac{y-3}{4}\right) = 4\left(\frac{y-3}{4}\right) + 3 = y-3+3 = y$ $gof = fog = I_R$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \frac{y-3}{4}$$

Question 8:

Consider $f: \mathbf{R}_+ \to [4, \infty)$ given by $f(x) = x^2 + 4$. Show that f is invertible with the inverse f^{-1} of given f by $f^{-1}(y) = \sqrt{y-4}$, where \mathbf{R}_+ is the set of all non-negative real numbers. Answer

f: $\mathbf{R}_+ \rightarrow [4, \infty)$ is given as $f(x) = x^2 + 4$.

V

One-one:

Let
$$f(x) = f(y)$$
.
 $\Rightarrow x^2 + 4 = y^2 + 4$
 $\Rightarrow x^2 = y^2$
 $\Rightarrow x = y$ [as $x = y \in \mathbf{R}_+$]
 $\therefore f$ is a one-one function.

Onto:

For $y \in [4, \infty)$, let $y = x^2 + 4$. $\Rightarrow x^2 = y - 4 \ge 0 \qquad [as \ y \ge 4]$ $\Rightarrow x = \sqrt{y - 4} \ge 0$

Therefore, for any $y \in \mathbf{R}$, there exists $x = \sqrt{y-4} \in \mathbf{R}$ such that

$$f(x) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = y - 4 + 4 = y$$

 \therefore *f* is onto.

Thus, *f* is one-one and onto and therefore, f^{-1} exists.

Let us define $g: [4, \infty) \rightarrow \mathbf{R}_+$ by,

$$g(y) = \sqrt{y-4}$$

Now, gof
$$(x) = g(f(x)) = g(x^2 + 4) = \sqrt{x^2 + 4} = \sqrt{x^2} = x$$

And, fog $(y) = f(g(y)) = f(\sqrt{y-4}) = (\sqrt{y-4})^2 + 4 = (y-4) + 4 = y$

$$gof = fo g = I_{\mathbf{R}+}$$

Hence, f is invertible and the inverse of f is given by

$$f^{-1}(y) = g(y) = \sqrt{y-4}.$$

Question 21:

Find the values of $\tan^{-1}\sqrt{3} - \cot^{-1}\left(-\sqrt{3}\right)$ is equal to

(A)
$$\sqcap$$
 (B) $-\frac{\pi}{2}$ (C) 0 (D) $2\sqrt{3}$
Answer

Let
$$\tan^{-1}\sqrt{3} = x$$
. Then, $\tan x = \sqrt{3} = \tan\frac{\pi}{3}$ where $\frac{\pi}{3} \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

tan⁻¹ is
$$\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$$
.
We know that the range of the principal value branch of

 $\therefore \tan^{-1} \sqrt{3} = \frac{\pi}{3}$ $\cot^{-1} \left(-\sqrt{3} \right) = y$ Let

Then,
$$\cot y = -\sqrt{3} = -\cot\left(\frac{\pi}{6}\right) = \cot\left(\pi - \frac{\pi}{6}\right) = \cot\frac{5\pi}{6}$$
 where $\frac{5\pi}{6} \in (0, \pi)$.

The range of the principal value branch of \cot^{-1} is $(0, \pi)$.

$$\therefore \cot^{-1} \left(-\sqrt{3} \right) = \frac{5\pi}{6}$$

$$\therefore \tan^{-1} \sqrt{3} - \cot^{-1} \left(-\sqrt{3} \right) = \frac{\pi}{3} - \frac{5\pi}{6} = \frac{2\pi - 5\pi}{6} = \frac{-3\pi}{6} = -\frac{\pi}{2}$$

The correct answer is B.

Question 9:

Consider *f*: $\mathbf{R}_+ \rightarrow [-5, \infty)$ given by $f(x) = 9x^2 + 6x - 5$. Show that *f* is invertible with

$$f^{-1}(y) = \left(\frac{\left(\sqrt{y+6}\right) - 1}{3}\right)$$

Answer

f:
$$\mathbf{R}_+ \rightarrow [-5, \infty)$$
 is given as $f(x) = 9x^2 + 6x - 5$.
Let y be an arbitrary element of $[-5, \infty)$.
Let $y = 9x^2 + 6x - 5$.
 $\Rightarrow y = (3x+1)^2 - 1 - 5 = (3x+1)^2 - 6$
 $\Rightarrow (3x+1)^2 = y + 6$
 $\Rightarrow 3x + 1 = \sqrt{y+6}$ [as $y \ge -5 \Rightarrow y+6 > 0$]
 $\Rightarrow x = \frac{\sqrt{y+6}-1}{3}$

∴ *f* is onto, thereby range $f = [-5, \infty)$.

$$g(y) = \frac{\sqrt{y+6}-1}{3}.$$

= y

Let us define $g: [-5, \infty) \rightarrow \mathbf{R}_+$ as We now have:

$$(gof)(x) = g(f(x)) = g(9x^{2} + 6x - 5)$$

$$= g((3x+1)^{2} - 6)$$

$$= \frac{\sqrt{(3x+1)^{2} - 6 + 6} - 1}{3}$$

$$= \frac{3x+1-1}{3} = x$$

And, $(fog)(y) = f(g(y)) = f(\frac{\sqrt{y+6} - 1}{3})$
$$= \left[3\left(\frac{\sqrt{y+6} - 1}{3}\right) + 1\right]^{2} - 6$$

$$= (\sqrt{y+6})^{2} - 6 = y + 6 - 6$$

 $gof = I_{\mathbf{R}_+}$ and for $g = I_{[-5,\infty)}$

Hence, *f* is invertible and the inverse of *f* is given by

$$f^{-1}(y) = g(y) = \frac{\sqrt{y+6}-1}{3}.$$

Question 10:

Let $f: X \to Y$ be an invertible function. Show that f has unique inverse. (Hint: suppose g_1 and g_2 are two inverses of f. Then for all $y \in Y$, $fog_1(y) = I_Y(y) = fog_2(y)$. Use one-one ness of f). Answer Let $f: X \to Y$ be an invertible function.

Also, suppose *f* has two inverses (say g_1 and g_2). Then, for all $y \in Y$, we have:

$$fog_1(y) = I_y(y) = fog_2(y)$$

$$\Rightarrow f(g_1(y)) = f(g_2(y))$$

$$\Rightarrow g_1(y) = g_2(y) \qquad [f \text{ is invertible} \Rightarrow f \text{ is one-one}]$$

$$\Rightarrow g_1 = g_2 \qquad [g \text{ is one-one}]$$

Hence, *f* has a unique inverse.

Question 11: Consider *f*: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c. Find f^{-1} and show that $(f^{-1})^{-1} = f$. Answer Function f: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ is given by, f(1) = a, f(2) = b, and f(3) = cIf we define $g: \{a, b, c\} \to \{1, 2, 3\}$ as g(a) = 1, g(b) = 2, g(c) = 3, then we have: (fog)(a) = f(g(a)) = f(1) = a $(f \circ g)(b) = f(g(b)) = f(2) = b$ (fog)(c) = f(g(c)) = f(3) = cAnd, (gof)(1) = g(f(1)) = g(a) = 1(gof)(2) = g(f(2)) = g(b) = 2(gof)(3) = g(f(3)) = g(c) = 3 $gof = I_X$ and $fog = I_Y$, where $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$. Thus, the inverse of *f* exists and $f^{-1} = q$. ∴ f^{-1} : {*a*, *b*, *c*} → {1, 2, 3} is given by, $f^{-1}(a) = 1, f^{-1}(b) = 2, f^{-1}(c) = 3$ Let us now find the inverse of f^{-1} i.e., find the inverse of g. If we define $h: \{1, 2, 3\} \rightarrow \{a, b, c\}$ as h(1) = a, h(2) = b, h(3) = c, then we have:

V

 $(g \circ h)(1) = g(h(1)) = g(a) = 1$ $(g \circ h)(2) = g(h(2)) = g(b) = 2$ $(g \circ h)(3) = g(h(3)) = g(c) = 3$ And. $(h \circ g)(a) = h(g(a)) = h(1) = a$ $(h \circ g)(b) = h(g(b)) = h(2) = b$ $(h \circ g)(c) = h(g(c)) = h(3) = c$ $goh = I_{\chi}$ and $hog = I_{\gamma}$, where $X = \{1, 2, 3\}$ and $Y = \{a, b, c\}$. Thus, the inverse of g exists and $g^{-1} = h \Rightarrow (f^{-1})^{-1} = h$. It can be noted that h = f. Hence, $(f^{-1})^{-1} = f$. **Ouestion 12:** Let $f: X \to Y$ be an invertible function. Show that the inverse of f^{-1} is f, i.e., $(f^{-1})^{-1} = f.$ Answer Let $f: X \to Y$ be an invertible function. Then, there exists a function $q: Y \rightarrow X$ such that $gof = I_X$ and $foq = I_Y$. Here, $f^{-1} = g$. Now, $gof = I_X$ and $fog = I_Y$ \Rightarrow $f^{-1}of = I_X$ and $fof^{-1} = I_Y$ Hence, f^{-1} : $Y \rightarrow X$ is invertible and f is the inverse of f^{-1} i.e., $(f^{-1})^{-1} = f$. **Question 13:**

If f: $\mathbf{R} \to \mathbf{R}$ be given by $f(x) = (3 - x^3)^{\frac{1}{3}}$, then fof(x) is (A) $\frac{1}{x^3}$ (B) x^3 (C) x (D) $(3 - x^3)$ Answer

f: **R** → **R** is given as
$$f(x) = (3 - x^3)^{\frac{1}{3}}$$
.
 $f(x) = (3 - x^3)^{\frac{1}{3}}$
 \therefore fof $(x) = f(f(x)) = f((3 - x^3)^{\frac{1}{3}}) = \left[3 - ((3 - x^3)^{\frac{1}{3}})^3\right]^{\frac{1}{3}}$
 $= \left[3 - (3 - x^3)\right]^{\frac{1}{3}} = (x^3)^{\frac{1}{3}} = x$

$$\therefore$$
 fof $(x) = x$

V

The correct answer is C.

Question 14:

Let
$$f: \mathbf{R} - \left\{-\frac{4}{3}\right\} \to \mathbf{R}$$
 be a function defined as $f(x) = \frac{4x}{3x+4}$. The inverse of f is map g :
Range $f \to \mathbf{R} - \left\{-\frac{4}{3}\right\}$ given by
(A) $g(y) = \frac{3y}{3-4y}$ (B) $g(y) = \frac{4y}{4-3y}$
(C) $g(y) = \frac{4y}{3-4y}$ (D) $g(y) = \frac{3y}{4-3y}$
Answer

$$f: \mathbf{R} - \left\{-\frac{4}{3}\right\} \rightarrow \mathbf{R} \text{ is defined as } f(x) = \frac{4x}{3x+4}.$$

It is given that $\begin{bmatrix} 3 \end{bmatrix}$ Let *y* be an arbitrary element of Range *f*.

Then, there exists
$$x \in \left\{-\frac{4}{3}\right\}$$
 such that $y = f(x)$.

$$\Rightarrow y = \frac{4x}{3x+4}$$

$$\Rightarrow 3xy+4y = 4x$$

$$\Rightarrow x(4-3y) = 4y$$
 Let us define g: Range $f \rightarrow \mathbf{R} - \left\{-\frac{4}{3}\right\}_{as} g(y) = \frac{4y}{4-3y}$

$$\Rightarrow x = \frac{4y}{4-3y}$$

$$(g \circ f)(x) = g(f(x)) = g\left(\frac{4x}{3x+4}\right)$$

Now,

$$=\frac{4\left(\frac{4x}{3x+4}\right)}{4-3\left(\frac{4x}{3x+4}\right)} = \frac{16x}{12x+16-12x} = \frac{16x}{16} = x$$

And, $(f \circ g)(y) = f(g(y)) = f\left(\frac{4y}{4-3y}\right)$
$$=\frac{4\left(\frac{4y}{4-3y}\right)}{3\left(\frac{4y}{4-3y}\right)+4} = \frac{16y}{12y+16-12y} = \frac{16y}{16} = \frac{16y}{16}$$

y

 $f \rightarrow \mathbf{R} - \left\{-\frac{4}{3}\right\}$, which is given by

 $gof = I_{R-\left\{-\frac{4}{3}\right\}}$ and $fog = I_{Rangef}$

Thus, *g* is the inverse of *f* i.e., $f^{-1} = g$.

Hence, the inverse of *f* is the map *g*: Range

$$g(y) = \frac{4y}{4-3y}$$

The correct answer is B.

Exercise 1.4

Question 1:

Determine whether or not each of the definition of given below gives a binary operation.

In the event that * is not a binary operation, give justification for this.

(i) On \mathbf{Z}^+ , define * by a * b = a - b(ii) On \mathbf{Z}^+ , define * by a * b = ab(iii) On **R**, define * by $a * b = ab^2$ (iv) On \mathbf{Z}^+ , define * by a * b = |a - b|(v) On \mathbf{Z}^+ , define * by a * b = aAnswer (i) On \mathbf{Z}^+ , * is defined by a * b = a - b. It is not a binary operation as the image of (1, 2) under * is 1 * 2 = 1 - 2 $= -1 \notin \mathbf{Z}^+$. (ii) On \mathbf{Z}^+ , * is defined by a * b = ab. It is seen that for each $a, b \in \mathbf{Z}^+$, there is a unique element ab in \mathbf{Z}^+ . This means that * carries each pair (a, b) to a unique element a * b = ab in \mathbf{Z}^+ . Therefore, * is a binary operation. (iii) On **R**, * is defined by $a * b = ab^2$. It is seen that for each $a, b \in \mathbf{R}$, there is a unique element ab^2 in **R**. This means that * carries each pair (a, b) to a unique element $a * b = ab^2$ in **R**. Therefore, * is a binary operation. (iv) On \mathbf{Z}^+ , * is defined by a * b = |a - b|. It is seen that for each $a, b \in \mathbf{Z}^+$, there is a unique element |a - b| in \mathbf{Z}^+ . This means that * carries each pair (a, b) to a unique element a * b =|a - b| in \mathbf{Z}^+ . Therefore, * is a binary operation. (v) On \mathbf{Z}^+ , * is defined by a * b = a. * carries each pair (a, b) to a unique element a * b = a in \mathbf{Z}^+ . Therefore, * is a binary operation.

Question 2:

For each binary operation * defined below, determine whether * is commutative or associative.

(i) On **Z**, define a * b = a - b(ii) On \mathbf{Q} , define a * b = ab + 1ab 2 (iii) On **O**, define *a* * *b* (iv) On \mathbf{Z}^+ , define $a * b = 2^{ab}$ (v) On \mathbf{Z}^+ , define $a * b = a^b$ $a * b = \frac{a}{b+1}$ (vi) On $\mathbf{R} - \{-1\}$, define Answer (i) On **Z**, * is defined by a * b = a - b. It can be observed that 1 * 2 = 1 - 2 = 1 and 2 * 1 = 2 - 1 = 1. $\therefore 1 * 2 \neq 2 * 1$; where 1, 2 $\in \mathbf{Z}$ Hence, the operation * is not commutative. Also we have: (1 * 2) * 3 = (1 - 2) * 3 = -1 * 3 = -1 - 3 = -41 * (2 * 3) = 1 * (2 - 3) = 1 * -1 = 1 - (-1) = 2 $(1 * 2) * 3 \neq 1 * (2 * 3)$; where 1, 2, 3 \in **Z** Hence, the operation * is not associative. (ii) On \mathbf{Q} , * is defined by a * b = ab + 1. It is known that: $ab = ba \Box a, b \in \mathbf{Q}$ \Rightarrow *ab* + 1 = *ba* + 1 \square *a*, *b* \in **Q** $\Rightarrow a * b = a * b \Box a, b \in \mathbf{Q}$ Therefore, the operation * is commutative. It can be observed that: $(1 * 2) * 3 = (1 \times 2 + 1) * 3 = 3 * 3 = 3 \times 3 + 1 = 10$ $1 * (2 * 3) = 1 * (2 \times 3 + 1) = 1 * 7 = 1 \times 7 + 1 = 8$ \therefore (1 * 2) * 3 \neq 1 * (2 * 3) ; where 1, 2, 3 \in **Q** Therefore, the operation * is not associative.

V

(*iii*) On **Q**, * is defined by $a * b = \frac{ab}{2}$. It is known that: $ab = ba \Box a, b \in \mathbf{Q}$ $\underline{ab} = \underline{ba}$

$$\Rightarrow 2 \quad 2 \quad \Box a, b \in \mathbf{Q}$$
$$\Rightarrow a * b = b * a \Box a, b \in \mathbf{Q}$$

Therefore, the operation * is commutative.

/ .>

For all $a, b, c \in \mathbf{Q}$, we have:

$$(a*b)*c = \left(\frac{ab}{2}\right)*c = \frac{\left(\frac{ab}{2}\right)c}{2} = \frac{abc}{4}$$
$$a*(b*c) = a*\left(\frac{bc}{2}\right) = \frac{a\left(\frac{bc}{2}\right)}{2} = \frac{abc}{4}$$
$$(a*b)*c = a*(b*c)$$

Therefore, the operation * is associative. (iv) On Z^+ , * is defined by $a * b = 2^{ab}$. It is known that: $ab = ba \square a, b \in Z^+$ $\Rightarrow 2^{ab} = 2^{ba} \square a, b \in Z^+$ $\Rightarrow a * b = b * a \square a, b \in Z^+$ Therefore, the operation * is commutative. It can be observed that:

 $(1*2)*3 = 2^{(1\times2)}*3 = 4*3 = 2^{4\times3} = 2^{12}$

 $1*(2*3) = 1*2^{2\times 3} = 1*2^{6} = 1*64 = 2^{64}$

 \therefore (1 * 2) * 3 ≠ 1 * (2 * 3) ; where 1, 2, 3 ∈ **Z**⁺

Therefore, the operation * is not associative.

(v) On \mathbf{Z}^+ , * is defined by $a * b = a^b$.

It can be observed that:

 $1 * 2 = 1^2 = 1$ and $2 * 1 = 2^1 = 2$

 $\therefore 1 * 2 \neq 2 * 1$; where 1, 2 $\in \mathbb{Z}^+$ Therefore, the operation * is not commutative. It can also be observed that: $(2*3)*4 = 2^3*4 = 8*4 = 8^4 = (2^3)^4 = 2^{12}$ $2*(3*4) = 2*3^4 = 2*81 = 2^{81}$ \therefore (2 * 3) * 4 ≠ 2 * (3 * 4) ; where 2, 3, 4 ∈ **Z**⁺ Therefore, the operation * is not associative. $a * b = \frac{a}{b+1}.$ (vi) On **R**, $* - \{-1\}$ is defined by It can be observed that $1*2 = \frac{1}{2+1} = \frac{1}{3}$ and $2*1 = \frac{2}{1+1} = \frac{2}{2} = 1$. $\therefore 1 * 2 \neq 2 * 1$; where 1, $2 \in \mathbf{R} - \{-1\}$ Therefore, the operation * is not commutative. It can also be observed that: $(1*2)*3 = \frac{1}{3}*3 = \frac{\frac{1}{3}}{3+1} = \frac{1}{12}$ $1*(2*3) = 1*\frac{2}{3+1} = 1*\frac{2}{4} = 1*\frac{1}{2} = \frac{1}{\frac{1}{2}+1} = \frac{1}{\frac{3}{2}} = \frac{2}{3}$ ∴ $(1 * 2) * 3 \neq 1 * (2 * 3)$; where 1, 2, 3 ∈ **R** - {-1} Therefore, the operation * is not associative.

Question 3:

Consider the binary operation v on the set $\{1, 2, 3, 4, 5\}$ defined by $a \lor b = \min \{a, b\}$. Write the operation table of the operation v.

Answer

The binary operation v on the set $\{1, 2, 3, 4, 5\}$ is defined as $a \lor b = \min \{a, b\}$ $\Box a, b \in \{1, 2, 3, 4, 5\}.$

Thus, the operation table for the given operation v can be given as:

1	1	1	1	1	1
2	1	2	2	2	2
3	1	2	3	3	3
4	1	2	3	4	4
5	1	2	3	4	5

Question 4:

Consider a binary operation * on the set $\{1, 2, 3, 4, 5\}$ given by the following multiplication table.

- (i) Compute (2 * 3) * 4 and 2 * (3 * 4)
- (ii) Is * commutative?
- (iii) Compute (2 * 3) * (4 * 5).

(Hint: use the following table)

*	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

Answer

(i) (2 * 3) * 4 = 1 * 4 = 1

2 * (3 * 4) = 2 * 1 = 1

(ii) For every $a, b \in \{1, 2, 3, 4, 5\}$, we have a * b = b * a. Therefore, the operation * is commutative.

(iii) (2 * 3) = 1 and (4 * 5) = 1

 \therefore (2 * 3) * (4 * 5) = 1 * 1 = 1

Question 5:

Let*' be the binary operation on the set $\{1, 2, 3, 4, 5\}$ defined by a *' b = H.C.F. of a and b. Is the operation *' same as the operation * defined in Exercise 4 above? Justify your answer.

Answer

The binary operation *' on the set $\{1, 2, 3, 4, 5\}$ is defined as a *' b = H.C.F of a and b. The operation table for the operation *' can be given as:

*'	1	2	3	4	5
1	1	1	1	1	1
2	1	2	1	2	1
3	1	1	3	1	1
4	1	2	1	4	1
5	1	1	1	1	5

We observe that the operation tables for the operations * and *' are the same. Thus, the operation *' is same as the operation*.

Question 6:

Let * be the binary operation on **N** given by a * b = L.C.M. of a and b. Find

(i) 5 * 7, 20 * 16 (ii) Is * commutative?

(iii) Is * associative? (iv) Find the identity of * in ${\bf N}$

(v) Which elements of \mathbf{N} are invertible for the operation *?

Answer

The binary operation * on **N** is defined as a * b = L.C.M. of a and b.

(i) 5 * 7 = L.C.M. of 5 and 7 = 35

20 * 16 = L.C.M of 20 and 16 = 80

(ii) It is known that:

L.C.M of a and b = L.C.M of b and $a \square a, b \in \mathbf{N}$.

V

a * b = b * aThus, the operation * is commutative. (iii) For *a*, *b*, $c \in \mathbf{N}$, we have: (a * b) * c = (L.C.M of a and b) * c = LCM of a, b, and ca * (b * c) = a * (LCM of b and c) = L.C.M of a, b, and c(a * b) * c = a * (b * c)Thus, the operation * is associative. (iv) It is known that: L.C.M. of a and 1 = a = L.C.M. 1 and $a \square a \in \mathbf{N}$ $\Rightarrow a * 1 = a = 1 * a \Box a \in \mathbf{N}$ Thus, 1 is the identity of * in **N**. (v) An element a in **N** is invertible with respect to the operation * if there exists an element *b* in **N**, such that a * b = e = b * a. Here, e = 1This means that: L.C.M of a and b = 1 = L.C.M of b and aThis case is possible only when *a* and *b* are equal to 1. Thus, 1 is the only invertible element of \mathbf{N} with respect to the operation *.

Question 7:

Is * defined on the set {1, 2, 3, 4, 5} by a * b = L.C.M. of a and b a binary operation? Justify your answer.

Answer

The operation * on the set A = {1, 2, 3, 4, 5} is defined as

a * b = L.C.M. of a and b.

Then, the operation table for the given operation * can be given as:

*	1	2	3	4	5
1	1	2	3	4	5
2	2	2	6	4	10
3	3	6	3	12	15

4	4	4	12	4	20
5	5	10	15	20	5

It can be observed from the obtained table that: $3 * 2 = 2 * 3 = 6 \notin A, 5 * 2 = 2 * 5 = 10 \notin A, 3 * 4 = 4 * 3 = 12 \notin A$ $3 * 5 = 5 * 3 = 15 \notin A, 4 * 5 = 5 * 4 = 20 \notin A$

Hence, the given operation * is not a binary operation.

Question 8:

Let * be the binary operation on **N** defined by a * b = H.C.F. of a and b. Is * commutative? Is * associative? Does there exist identity for this binary operation on N? Answer The binary operation * on **N** is defined as: a * b = H.C.F. of a and b It is known that: H.C.F. of *a* and *b* = H.C.F. of *b* and *a* \Box *a*, *b* \in **N**. a * b = b * aThus, the operation * is commutative. For *a*, *b*, $c \in \mathbf{N}$, we have: (a * b)* c = (H.C.F. of a and b) * c = H.C.F. of a, b, and ca * (b * c) = a * (H.C.F. of b and c) = H.C.F. of a, b, and c(a * b) * c = a * (b * c)Thus, the operation * is associative. Now, an element $e \in \mathbf{N}$ will be the identity for the operation * if $a * e = a = e^* a \forall a \in \mathbf{N}$ Ν. But this relation is not true for any $a \in \mathbf{N}$.

Thus, the operation * does not have any identity in **N**.

Question 9:

Let * be a binary operation on the set ${f Q}$ of rational numbers as follows:

(i) a * b = a - b (ii) $a * b = a^2 + b^2$

(iii) a * b = a + ab (iv) $a * b = (a - b)^2$

(v)
$$a * b = \frac{ab}{4}$$
 (vi) $a * b = ab^2$

Find which of the binary operations are commutative and which are associative.

Answer

(i) On **Q**, the operation * is defined as a * b = a - b.

It can be observed that:

$$\frac{1}{2} * \frac{1}{3} = \frac{1}{2} - \frac{1}{3} = \frac{3-2}{6} = \frac{1}{6} \text{ and } \frac{1}{3} * \frac{1}{2} = \frac{1}{3} - \frac{1}{2} = \frac{2-3}{6} = \frac{-1}{6}$$

$$\frac{1}{2} * \frac{1}{3} \neq \frac{1}{3} * \frac{1}{2} \text{ , where } \frac{1}{2}, \frac{1}{3} \in \mathbf{Q}$$

Thus, the operation * is not commutative.

It can also be observed that:

$$\left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} = \left(\frac{1}{2} - \frac{1}{3}\right) * \frac{1}{4} = \frac{1}{6} * \frac{1}{4} = \frac{1}{6} - \frac{1}{4} = \frac{2-3}{12} = \frac{-1}{12}$$
$$\frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) = \frac{1}{2} * \left(\frac{1}{3} - \frac{1}{4}\right) = \frac{1}{2} * \frac{1}{12} = \frac{1}{2} - \frac{1}{12} = \frac{6-1}{12} = \frac{5}{12}$$
$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right) ; \text{ where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in \mathbf{Q}$$

Thus, the operation * is not associative.

(ii) On **Q**, the operation * is defined as $a * b = a^2 + b^2$. For $a, b \in \mathbf{Q}$, we have:

$$a * b = a^{2} + b^{2} = b^{2} + a^{2} = b * a$$

: $a * b = b * a$

Thus, the operation * is commutative.

It can be observed that:

$$(1*2)*3 = (1^2 + 2^2)*3 = (1+4)*4 = 5*4 = 5^2 + 4^2 = 41$$

 $1*(2*3) = 1*(2^2 + 3^2) = 1*(4+9) = 1*13 = 1^2 + 13^2 = 169$

 $(1*2)*3 \neq 1*(2*3)$; where 1, 2, 3 $\in \mathbf{Q}$

Thus, ,the operation * is not associative.

(iii) On **Q**, the operation * is defined as a * b = a + ab.

V

It can be observed that:

 $1*2 = 1+1 \times 2 = 1+2=3$ $2*1 = 2+2 \times 1 = 2+2=4$

 $\therefore 1^*2 \neq 2^*1$; where $1, 2 \in \mathbf{Q}$

Thus, the operation * is not commutative.

It can also be observed that:

 $(1*2)*3 = (1+1\times 2)*3 = 3*3 = 3+3\times 3 = 3+9 = 12$ $1*(2*3) = 1*(2+2\times 3) = 1*8 = 1+1\times 8 = 9$

 $(1*2)*3 \neq 1*(2*3)$; where 1, 2, 3 $\in \mathbf{Q}$

Thus, the operation * is not associative. (iv) On **Q**, the operation * is defined by $a * b = (a - b)^2$. For $a, b \in \mathbf{Q}$, we have: $a * b = (a - b)^2$ $b * a = (b - a)^2 = [-(a - b)]^2 = (a - b)^2$ $\therefore a * b = b * a$ Thus, the operation * is commutative. It can be observed that: $(1*2)*3 = (1-2)^2 * 3 = (-1)^2 * 3 = 1*3 = (1-3)^2 = (-2)^2 = 4$

$$1*(2*3) = 1*(2-3)^2 = 1*(-1)^2 = 1*1 = (1-1)^2 = 0$$

 $(1*2)*3 \neq 1*(2*3)$; where 1, 2, 3 $\in \mathbf{Q}$

Thus, the operation * is not associative.

(v) On **Q**, the operation * is defined as
$$a * b = \frac{ab}{4}$$
.

For $a, b \in \mathbf{Q}$, we have:

$$a * b = \frac{ab}{4} = \frac{ba}{4} = b * a$$

$$\therefore a * b = b * a$$

Thus, the operation * is commutative.

For $a, b, c \in \mathbf{Q}$, we have:

$$(a*b)*c = \frac{ab}{4}*c = \frac{\frac{ab}{4} \cdot c}{4} = \frac{abc}{16}$$
$$a*(b*c) = a*\frac{bc}{4} = \frac{a \cdot \frac{bc}{4}}{4} = \frac{abc}{16}$$

(a * b) * c = a * (b * c)

Thus, the operation * is associative.

(vi) On **Q**, the operation * is defined as $a * b = ab^2$

1	1	$(1)^2$	_ 1 _ 1	_ 1
2	3	$=\frac{1}{2}\cdot\left(\frac{1}{3}\right)^2$	2.9	18
$\frac{1}{3}$	∗ <u>1</u> =	$=\frac{1}{3}\cdot\left(\frac{1}{2}\right)^2$	$=\frac{1}{3}.\frac{1}{4}=$	$\frac{1}{12}$

$$\therefore \frac{1}{2} * \frac{1}{3} \neq \frac{1}{3} * \frac{1}{2}$$
; where $\frac{1}{2}, \frac{1}{3} \in \mathbf{Q}$

Thus, the operation * is not commutative. It can also be observed that:

$$\left(\frac{1}{2}*\frac{1}{3}\right)*\frac{1}{4} = \left[\frac{1}{2}\cdot\left(\frac{1}{3}\right)^2\right]*\frac{1}{4} = \frac{1}{18}*\frac{1}{4} = \frac{1}{18}\cdot\left(\frac{1}{4}\right)^2 = \frac{1}{18\times16}$$
$$\frac{1}{2}*\left(\frac{1}{3}*\frac{1}{4}\right) = \frac{1}{2}*\left[\frac{1}{3}\cdot\left(\frac{1}{4}\right)^2\right] = \frac{1}{2}*\frac{1}{48} = \frac{1}{2}\cdot\left(\frac{1}{48}\right)^2 = \frac{1}{2\times(48)^2}$$

$$\therefore \left(\frac{1}{2} * \frac{1}{3}\right) * \frac{1}{4} \neq \frac{1}{2} * \left(\frac{1}{3} * \frac{1}{4}\right); \text{ where } \frac{1}{2}, \frac{1}{3}, \frac{1}{4} \in \mathbf{Q}$$

Thus, the operation * is not associative.

Hence, the operations defined in (ii), (iv), (v) are commutative and the operation defined in (v) is associative.

Question 10:

Find which of the operations given above has identity.

Answer

An element $e \in \mathbf{Q}$ will be the identity element for the operation * if

 $a * e = a = e * a, \forall a \in \mathbf{Q}.$

However, there is no such element $e \in \mathbf{Q}$ with respect to each of the six operations satisfying the above condition.

Thus, none of the six operations has identity.

Question 11:

Let $A = \mathbf{N} \times \mathbf{N}$ and * be the binary operation on A defined by (*a*, *b*) * (*c*, *d*) = (*a* + *c*, *b* + *d*) Show that * is commutative and associative. Find the identity element for * on A, if any. Answer

$A = \mathbf{N} \times \mathbf{N}$

* is a binary operation on A and is defined by: (a, b) * (c, d) = (a + c, b + d)Let $(a, b), (c, d) \in A$ Then, $a, b, c, d \in \mathbf{N}$ We have: (a, b) * (c, d) = (a + c, b + d) (c, d) * (a, b) = (c + a, d + b) = (a + c, b + d)[Addition is commutative in the set of natural numbers] $\therefore (a, b) * (c, d) = (c, d) * (a, b)$ Therefore, the operation * is commutative. Now, let $(a, b), (c, d), (e, f) \in A$ Then, $a, b, c, d, e, f \in \mathbf{N}$ We have:

((a,b)*(c,d))*(e,f) = (a+c, b+d)*(e,f) = (a+c+e, b+d+f)

$$(a,b)*((c,d)*(e,f))=(a,b)*(c+e, d+f)=(a+c+e, b+d+f)$$

 $\therefore ((a,b)*(c,d))*(e,f) = (a,b)*((c,d)*(e,f))$

Therefore, the operation * is associative.

An element $e = (e_1, e_2) \in A$ will be an identity element for the operation * if $a * e = a = e * a \forall a = (a_1, a_2) \in A$, i.e., $(a_1 + e_1, a_2 + e_2) = (a_1, a_2) = (e_1 + a_1, e_2 + a_2)$, which is

not true for any element in A.

Therefore, the operation * does not have any identity element.

Question 12:

State whether the following statements are true or false. Justify.

(i) For an arbitrary binary operation * on a set **N**, $a * a = a \forall a * N$.

(ii) If * is a commutative binary operation on **N**, then a * (b * c) = (c * b) * a

Answer

(i) Define an operation * on **N** as:

$$a * b = a + b \forall a, b \in \mathbf{N}$$

Then, in particular, for b = a = 3, we have:

 $3 * 3 = 3 + 3 = 6 \neq 3$

Therefore, statement (i) is false.

(*ii*) R.H.S. = (c * b) * a

= (b * c) * a [* is commutative]

= a * (b * c) [Again, as * is commutative]

 $a^{*}(b^{*}c) = (c^{*}b)^{*}a$

Therefore, statement (ii) is true.

Question 13:

Consider a binary operation * on **N** defined as $a * b = a^3 + b^3$. Choose the correct answer.

(A) Is * both associative and commutative?

(B) Is * commutative but not associative?

(C) Is * associative but not commutative? (D) Is * neither commutative nor associative? Answer On **N**, the operation * is defined as $a * b = a^3 + b^3$. For, $a, b, \in \mathbf{N}$, we have: $a * b = a^3 + b^3 = b^3 + a^3 = b * a$ [Addition is commutative in **N**] Therefore, the operation * is commutative. It can be observed that: $(1*2)*3=(1^3+2^3)*3=9*3=9^3+3^3=729+27=756$ $1*(2*3)=1*(2^3+3^3)=1*(8+27)=1\times35=1^3+35^3=1+(35)^3=1+42875=42876$ $\therefore (1*2)*3 \neq 1*(2*3)$; where 1, 2, 3 $\in \mathbf{N}$ Therefore, the operation * is not associative. Hence, the operation * is commutative, but not associative. Thus, the correct answer is B.

Miscellaneous Questions:

Question 1: Let $f: \mathbf{R} \to \mathbf{R}$ be defined as f(x) = 10x + 7. Find the function $g: \mathbf{R} \to \mathbf{R}$ such that $g \circ f = f$ $0 g = 1_{R}$. Answer It is given that $f: \mathbf{R} \to \mathbf{R}$ is defined as f(x) = 10x + 7. One-one: Let f(x) = f(y), where $x, y \in \mathbf{R}$. $\Rightarrow 10x + 7 = 10y + 7$ $\Rightarrow x = y$ \therefore *f* is a one-one function. Onto: For $y \in \mathbf{R}$, let y = 10x + 7. $\Rightarrow x = \frac{y-7}{10} \in \mathbf{R}$ $x = \frac{y - 7}{10}$ ∈R Therefore, for any $y \in \mathbf{R}$, there exists such that $f(x) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y-7 + 7 = y.$

 $\therefore f$ is onto. Therefore, f is one-one and onto.

Thus, *f* is an invertible function.

$$g(y) = \frac{y-7}{10}.$$

Let us define $g: \mathbf{R} \to \mathbf{R}$ as Now, we have:

$$gof(x) = g(f(x)) = g(10x+7) = \frac{(10x+7)-7}{10} = \frac{10x}{10} = 10$$

And,

$$fog(y) = f(g(y)) = f\left(\frac{y-7}{10}\right) = 10\left(\frac{y-7}{10}\right) + 7 = y-7 + 7 = y$$

$$\therefore gof = I_{\mathbf{R}} \text{ and } fog = I_{\mathbf{R}}$$

Hence, the required function $g: \mathbf{R} \to \mathbf{R}$ is defined as $g(y) = \frac{y-7}{10}$.

Question 2:

Let $f: W \to W$ be defined as f(n) = n - 1, if is odd and f(n) = n + 1, if n is even. Show that f is invertible. Find the inverse of f. Here, W is the set of all whole numbers. Answer

It is given that:

 $f(n) = \begin{cases} n-1, \text{ if } n \text{ is odd} \\ n+1, \text{ if } n \text{ is even} \end{cases}$

 $f: W \rightarrow W$ is defined as One-one:

Let f(n) = f(m).

It can be observed that if *n* is odd and *m* is even, then we will have n - 1 = m + 1.

 $\Rightarrow n - m = 2$

However, this is impossible.

Similarly, the possibility of *n* being even and *m* being odd can also be ignored under a similar argument.

 \therefore Both *n* and *m* must be either odd or even.

Now, if both *n* and *m* are odd, then we have:

 $f(n)=f(m) \Rightarrow n-1=m-1 \Rightarrow n=m$

Again, if both *n* and *m* are even, then we have:

 $f(n) = f(m) \Rightarrow n + 1 = m + 1 \Rightarrow n = m$

 $\therefore f$ is one-one.

It is clear that any odd number 2r + 1 in co-domain **N** is the image of 2r in domain **N** and any even number 2r in co-domain **N** is the image of 2r + 1 in domain **N**.

 $\therefore f$ is onto.

Hence, *f* is an invertible function.

Let us define $g: W \to W$ as:

 $g(m) = \begin{cases} m+1, \text{ if } m \text{ is even} \\ m-1, \text{ if } m \text{ is odd} \end{cases}$

V

Now, when *n* is odd:

gof(n) = g(f(n)) = g(n-1) = n-1+1 = n

And, when *n* is even:

gof(n) = g(f(n)) = g(n+1) = n+1-1 = n

Similarly, when *m* is odd:

$$fog(m) = f(g(m)) = f(m-1) = m-1+1 = m$$

When *m* is even:

$$fog(m) = f(g(m)) = f(m+1) = m+1-1 = m$$

 \therefore gof = I_w and fog = I_w

Thus, *f* is invertible and the inverse of *f* is given by $f^{-1} = g$, which is the same as *f*. Hence, the inverse of *f* is *f* itself.

Question 3:

If $f: \mathbf{R} \to \mathbf{R}$ is defined by $f(x) = x^2 - 3x + 2$, find f(f(x)). Answer It is given that $f: \mathbf{R} \to \mathbf{R}$ is defined as $f(x) = x^2 - 3x + 2$. $f(f(x)) = f(x^2 - 3x + 2)$ $= (x^2 - 3x + 2)^2 - 3(x^2 - 3x + 2) + 2$

$$= (x - 5x + 2) - 5(x - 5x + 2) + 2$$

= $x^{4} + 9x^{2} + 4 - 6x^{3} - 12x + 4x^{2} - 3x^{2} + 9x - 6 + 2$
= $x^{4} - 6x^{3} + 10x^{2} - 3x$

Question 4:

Show that function $f: \mathbb{R} \to \{x \in \mathbb{R}: -1 < x < 1\}$ defined by $f(x) = \overline{1+|x|}$, $x \in \mathbb{R}$ is one-one and onto function.

Answer

It is given that $f: \mathbb{R} \to \{x \in \mathbb{R}: -1 < x < 1\}$ is defined as $f(x) = \frac{x}{1+|x|}$, $x \in \mathbb{R}$. Suppose f(x) = f(y), where $x, y \in \mathbb{R}$.

 $\Rightarrow \frac{x}{1+|x|} = \frac{y}{1+|y|}$

It can be observed that if *x* is positive and *y* is negative, then we have:

$$\frac{x}{1+x} = \frac{y}{1-y} \Longrightarrow 2xy = x-y$$

Since *x* is positive and *y* is negative:

$$x > y \Rightarrow x - y > 0$$

But, 2xy is negative.

Then, $2xy \neq x - y$.

Thus, the case of x being positive and y being negative can be ruled out.

Under a similar argument, x being negative and y being positive can also be ruled out

x and y have to be either positive or negative.

When x and y are both positive, we have:

$$f(x) = f(y) \Rightarrow \frac{x}{1+x} = \frac{y}{1+y} \Rightarrow x + xy = y + xy \Rightarrow x = y$$

When *x* and *y* are both negative, we have:

$$f(x) = f(y) \Rightarrow \frac{x}{1-x} = \frac{y}{1-y} \Rightarrow x - xy = y - yx \Rightarrow x = y$$

∴*f* is one-one.

Now, let $y \in \mathbf{R}$ such that -1 < y < 1.

If y is negative, then there exists
$$x = \frac{y}{1+y} \in \mathbf{R}$$
 such that

$$f(x) = f\left(\frac{y}{1+y}\right) = \frac{\left(\frac{y}{1+y}\right)}{1+\left|\frac{y}{1+y}\right|} = \frac{\frac{y}{1+y}}{1+\left(\frac{-y}{1+y}\right)} = \frac{y}{1+y-y} = y.$$

If *y* is positive, then there exists $x = \frac{y}{1-y} \in \mathbf{R}$ such that

$$f(x) = f\left(\frac{y}{1-y}\right) = \frac{\left(\frac{y}{1-y}\right)}{1+\left|\left(\frac{y}{1-y}\right)\right|} = \frac{\frac{y}{1-y}}{1+\frac{y}{1-y}} = \frac{y}{1-y+y} = y.$$

$\therefore f$ is onto.

Hence, *f* is one-one and onto.

Question 5:

Show that the function $f: \mathbf{R} \to \mathbf{R}$ given by $f(x) = x^3$ is injective.

Answer $f: \mathbf{R} \to \mathbf{R}$ is given as $f(x) = x^3$. Suppose f(x) = f(y), where $x, y \in \mathbf{R}$. $\Rightarrow x^3 = y^3 \dots (1)$ Now, we need to show that x = y. Suppose $x \neq y$, their cubes will also not be equal. $\Rightarrow x^3 \neq y^3$ However, this will be a contradiction to (1). $\therefore x = y$ Hence, f is injective.

Question 6:

Give examples of two functions $f: \mathbb{N} \to \mathbb{Z}$ and $g: \mathbb{Z} \to \mathbb{Z}$ such that g o f is injective but g is not injective.

(Hint: Consider f(x) = x and g(x) = |x|) Answer

Define $f: \mathbf{N} \to \mathbf{Z}$ as f(x) = x and $g: \mathbf{Z} \to \mathbf{Z}$ as g(x) = |x|. We first show that g is not injective. It can be observed that:

g(-1) = |-1| = 1

V

 $g(1) = |\mathbf{l}| = 1$ $\therefore g(-1) = g(1), \text{ but } -1 \neq 1.$ $\therefore g \text{ is not injective.}$

Now, gof: $\mathbf{N} \to \mathbf{Z}$ is defined as gof(x) = g(f(x)) = g(x) = |x|. Let $x, y \in \mathbf{N}$ such that gof(x) = gof(y).

$$\Rightarrow |x| = |y|$$

Since x and $y \in \mathbf{N}$, both are positive.

$$\therefore |x| = |y| \Rightarrow x = y$$

Hence, *gof* is injective

Question 7:

Given examples of two functions $f: \mathbb{N} \to \mathbb{N}$ and $g: \mathbb{N} \to \mathbb{N}$ such that *g*of is onto but *f* is not onto.

$$g(x) = \begin{cases} x-1 & \text{if } x > 1 \\ 1 & \text{if } x = 1 \end{cases}$$

(Hint: Consider f(x) = x + 1 and Answer Define $f: \mathbb{N} \to \mathbb{N}$ by, f(x) = x + 1And, $g: \mathbb{N} \to \mathbb{N}$ by,

$$g(x) = \begin{cases} x-1 & \text{if } x > 1\\ 1 & \text{if } x = 1 \end{cases}$$

We first show that g is not onto.

For this, consider element 1 in co-domain N. It is clear that this element is not an image of any of the elements in domain N.

 $\therefore f$ is not onto.

Now, gof: $\mathbf{N} \rightarrow \mathbf{N}$ is defined by,

$$gof(x) = g(f(x)) = g(x+1) = (x+1) - 1 \qquad \left[x \in \mathbf{N} \Rightarrow (x+1) > 1\right]$$
$$= x$$

Then, it is clear that for $y \in \mathbf{N}$, there exists $x = y \in \mathbf{N}$ such that gof(x) = y. Hence, *gof* is onto.

Question 8:

Given a non empty set X, consider P(X) which is the set of all subsets of X.

Define the relation R in P(X) as follows:

For subsets A, B in P(X), ARB if and only if $A \subset B$. Is R an equivalence relation on P(X)?

Justify you answer:

Answer

Since every set is a subset of itself, ARA for all $A \in P(X)$.

 \therefore R is reflexive.

Let $ARB \Rightarrow A \subset B$.

This cannot be implied to $B \subset A$.

For instance, if $A = \{1, 2\}$ and $B = \{1, 2, 3\}$, then it cannot be implied that B is related to A.

 $\therefore R$ is not symmetric.

Further, if ARB and BRC, then $A \subset B$ and $B \subset C$.

 $\Rightarrow A \subset C$

 $\Rightarrow ARC$

 \therefore R is transitive.

Hence, R is not an equivalence relation since it is not symmetric.

Question 9:

Given a non-empty set X, consider the binary operation *: $P(X) \times P(X) \rightarrow P(X)$ given by $A * B = A \cap B \square A$, B in P(X) is the power set of X. Show that X is the identity element for this operation and X is the only invertible element in P(X) with respect to the operation*.

Answer

It is given that $*: P(X) \times P(X) \to P(X)$ is defined as $A * B = A \cap B \forall A, B \in P(X)$. We know that $A \cap X = A = X \cap A \forall A \in P(X)$. $\Rightarrow A * X = A = X * A \forall A \in P(X)$.

Thus, X is the identity element for the given binary operation *.

Now, an element $A \in P(X)$ is invertible if there exists $B \in P(X)$ such that

V

A * B = X = B * A. (As X is the identity element)

i.e.,

$$A \cap B = X = B \cap A$$

This case is possible only when A = X = B.

Thus, X is the only invertible element in P(X) with respect to the given operation^{*}. Hence, the given result is proved.

Question 10:

Find the number of all onto functions from the set $\{1, 2, 3, ..., n\}$ to itself.

Answer

Onto functions from the set $\{1, 2, 3, ..., n\}$ to itself is simply a permutation on n symbols 1, 2, ..., n.

Thus, the total number of onto maps from $\{1, 2, ..., n\}$ to itself is the same as the total number of permutations on *n* symbols 1, 2, ..., *n*, which is *n*.

Question 11:

Let $S = \{a, b, c\}$ and $T = \{1, 2, 3\}$. Find F^{-1} of the following functions F from S to T, if it exists. (i) $F = \{(a, 3), (b, 2), (c, 1)\}$ (ii) $F = \{(a, 2), (b, 1), (c, 1)\}$

Answer

S = {a, b, c}, T = {1, 2, 3} (i) F: S → T is defined as: F = {(a, 3), (b, 2), (c, 1)} ⇒ F (a) = 3, F (b) = 2, F(c) = 1 Therefore, F⁻¹: T → S is given by F⁻¹ = {(3, a), (2, b), (1, c)}. (ii) F: S → T is defined as: F = {(a, 2), (b, 1), (c, 1)} Since F (b) = F (c) = 1, F is not one-one. Hence, F is not invertible i.e., F⁻¹ does not exist.

Question 12:

Consider the binary operations*: $\mathbf{R} \times \mathbf{R} \rightarrow \text{and o: } \mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ defined as a * b = |a-b| and $a \circ b = a$, $\Box a$, $b \in \mathbf{R}$. Show that * is commutative but not associative, \circ is associative but not commutative. Further, show that $\Box a, b, c \in \mathbf{R}$, $a^*(b \circ c) = (a * b) \circ (a * c)$. [If it is so, we say that the operation * distributes over the operation o]. Does o distribute over *? Justify your answer.

Answer

It is given that *: $\mathbf{R} \times \mathbf{R} \rightarrow$ and o: $\mathbf{R} \times \mathbf{R} \rightarrow \mathbf{R}$ is defined as

$$a * b = |a - b|$$
 and $a \circ b = a$, $\Box a, b \in \mathbf{R}$.

For $a, b \in \mathbf{R}$, we have:

$$a * b = |a - b|$$

$$b * a = |b - a| = |-(a - b)| = |a - b|$$

a * b = b * a

 \therefore The operation * is commutative.

13

It can be observed that,

$$(1*2)*3 = (|1-2|)*3 = 1*3 = |1-3| = 2$$

 $1*(2*3) = 1*(|2-3|) = 1*1 = |1-1| = 0$

 $(1*2)*3 \neq 1*(2*3)$ (where 1, 2, 3 $\in \mathbf{R}$)

∴The operation * is not associative. Now, consider the operation o:

It can be observed that $1 \circ 2 = 1$ and $2 \circ 1 = 2$.

 \therefore 1 o 2 \neq 2 o 1 (where 1, 2 \in **R**)

. The operation o is not commutative.

Let $a, b, c \in \mathbf{R}$. Then, we have:

$$(a \circ b) \circ c = a \circ c = a$$

 $\Rightarrow a \circ b) \circ c = a \circ (b \circ c)$

 \therefore The operation o is associative.

Now, let $a, b, c \in \mathbf{R}$, then we have:

$$a * (b \circ c) = a * b = |a - b|$$

V

 $(a * b) \circ (a * c) = (|a-b|) \circ (|a-c|) = |a-b|$ Hence, $a * (b \circ c) = (a * b) \circ (a * c)$. Now,

1 o (2 * 3) =
$$1 \circ (|2-3|) = 1 \circ 1 = 1$$

(1 o 2) * (1 o 3) = 1 * 1 = $|1-1| = 0$
∴1 o (2 * 3) ≠ (1 o 2) * (1 o 3) (where 1, 2, 3 ∈ **R**)
∴ The operation o does not distribute over *.

Question 13:

Given a non-empty set X, let *: $P(X) \times P(X) \rightarrow P(X)$ be defined as $A * B = (A - B) \cup (B - A)$, $\Box A, B \in P(X)$. Show that the empty set Φ is the identity for the operation * and all the elements A of P(X) are invertible with $A^{-1} = A$. (Hint: $(A - \Phi) \cup (\Phi - A) = A$ and $(A - A) \cup (A - A) = A * A = \Phi$).

Answer

It is given that *: $P(X) \times P(X) \rightarrow P(X)$ is defined as $A * B = (A - B) \cup (B - A) \Box A, B \in P(X).$ Let $A \in P(X)$. Then, we have: $A * \Phi = (A - \Phi) \cup (\Phi - A) = A \cup \Phi = A$ $\Phi * A = (\Phi - A) \cup (A - \Phi) = \Phi \cup A = A$ $\therefore A * \Phi = A = \Phi * A. \Box A \in P(X)$

Thus, ϕ is the identity element for the given operation*.

Now, an element $A \in P(X)$ will be invertible if there exists $B \in P(X)$ such that

 $A * B = \Phi = B * A$. (As Φ is the identity element)

Now, we observed that $A * A = (A - A) \cup (A - A) = \phi \cup \phi = \phi \quad \forall A \in P(X)$.

Hence, all the elements A of P(X) are invertible with $A^{-1} = A$.

Question 14:

Define a binary operation *on the set {0, 1, 2, 3, 4, 5} as

$$a * b = \begin{cases} a+b, & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$$

Show that zero is the identity for this operation and each element $a \neq 0$ of the set is invertible with 6 – a being the inverse of a.

Answer

Let $X = \{0, 1, 2, 3, 4, 5\}.$

The operation * on X is defined as:

 $a * b = \begin{cases} a+b & \text{if } a+b < 6\\ a+b-6 & \text{if } a+b \ge 6 \end{cases}$

An element $e \in X$ is the identity element for the operation *, if $a * e = a = e * a \quad \forall a \in X$.

For $a \in X$, we observed that:

$$a * 0 = a + 0 = a \qquad [a \in X \Longrightarrow a + 0 < 6]$$

$$0 * a = 0 + a = a \qquad [a \in X \Longrightarrow 0 + a < 6]$$

$$\therefore a * 0 = a = 0 * a \forall a \in X$$

Thus, 0 is the identity element for the given operation *.

An element $a \in X$ is invertible if there exists $b \in X$ such that a * b = 0 = b * a.

i.e.,
$$\begin{cases} a+b=0=b+a, & \text{if } a+b<6\\ a+b-6=0=b+a-6, & \text{if } a+b \ge 6 \end{cases}$$

i.e.,

a = -b or b = 6 - a

But, $X = \{0, 1, 2, 3, 4, 5\}$ and $a, b \in X$. Then, $a \neq -b$.

 $\therefore b = 6 - a$ is the inverse of $a \square a \in X$.

Hence, the inverse of an element $a \in X$, $a \neq 0$ is 6 - a i.e., $a^{-1} = 6 - a$.

Question 15:

Let $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}$ and $f, g: A \to B$ be functions defined by f(x) =

$$g(x) = 2\left|x - \frac{1}{2}\right| - 1, x \in A$$

 $x^2 - x, x \in A$ and $x \in A$. Are f and g equal?

Justify your answer. (Hint: One may note that two function $f: A \to B$ and $g: A \to B$ such that $f(a) = g(a) \square a \in A$, are called equal functions). Answer

It is given that $A = \{-1, 0, 1, 2\}, B = \{-4, -2, 0, 2\}.$ Also, it is given that $f, g: A \to B$ are defined by $f(x) = x^2 - x, x \in A$ and

$$g(x) = 2\left|x - \frac{1}{2}\right| - 1, x \in A$$

It is observed that:

$$f(-1) = (-1)^{2} - (-1) = 1 + 1 = 2$$

$$g(-1) = 2 \left| (-1) - \frac{1}{2} \right| - 1 = 2 \left(\frac{3}{2} \right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(-1) = g(-1)$$

$$f(0) = (0)^{2} - 0 = 0$$

$$g(0) = 2 \left| 0 - \frac{1}{2} \right| - 1 = 2 \left(\frac{1}{2} \right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(0) = g(0)$$

$$f(1) = (1)^{2} - 1 = 1 - 1 = 0$$

$$g(1) = 2 \left| 1 - \frac{1}{2} \right| - 1 = 2 \left(\frac{1}{2} \right) - 1 = 1 - 1 = 0$$

$$\Rightarrow f(1) = g(1)$$

$$f(2) = (2)^{2} - 2 = 4 - 2 = 2$$

$$g(2) = 2 \left| 2 - \frac{1}{2} \right| - 1 = 2 \left(\frac{3}{2} \right) - 1 = 3 - 1 = 2$$

$$\Rightarrow f(2) = g(2)$$

$$\therefore f(a) = g(a) \quad \forall a \in A$$

Hence, the functions f and g are equal.

Question 16:

Let $A = \{1, 2, 3\}$. Then number of relations containing (1, 2) and (1, 3) which are reflexive and symmetric but not transitive is (A) 1 (B) 2 (C) 3 (D) 4 Answer The given set is $A = \{1, 2, 3\}$. The smallest relation containing (1, 2) and (1, 3) which is reflexive and symmetric, but not transitive is given by:

 $R = \{(1, 1), (2, 2), (3, 3), (1, 2), (1, 3), (2, 1), (3, 1)\}$ This is because relation R is reflexive as $(1, 1), (2, 2), (3, 3) \in R$. Relation R is symmetric since $(1, 2), (2, 1) \in R$ and $(1, 3), (3, 1) \in R$. But relation R is not transitive as $(3, 1), (1, 2) \in R$, but $(3, 2) \notin R$. Now, if we add any two pairs (3, 2) and (2, 3) (or both) to relation R, then relation R will become transitive. Hence, the total number of desired relations is one. The correct answer is A.

Question 17:

Let $A = \{1, 2, 3\}$. Then number of equivalence relations containing (1, 2) is (A) 1 (B) 2 (C) 3 (D) 4

Answer

It is given that $A = \{1, 2, 3\}$.

The smallest equivalence relation containing (1, 2) is given by,

 $\mathsf{R}_1 = \{(1, 1), (2, 2), (3, 3), (1, 2), (2, 1)\}$

Now, we are left with only four pairs i.e., (2, 3), (3, 2), (1, 3), and (3, 1).

If we odd any one pair [say (2, 3)] to R₁, then for symmetry we must add (3, 2). Also, for transitivity we are required to add (1, 3) and (3, 1).

Hence, the only equivalence relation (bigger than R_1) is the universal relation. This shows that the total number of equivalence relations containing (1, 2) is two. The correct answer is B.

Question 18:

Let $f: \mathbf{R} \to \mathbf{R}$ be the Signum Function defined as

$$f(x) = \begin{cases} 1, \ x > 0\\ 0, \ x = 0\\ -1, \ x < 0 \end{cases}$$

and $g: \mathbf{R} \to \mathbf{R}$ be the Greatest Integer Function given by g(x) = [x], where [x] is greatest integer less than or equal to x. Then does *fog* and *gof* coincide in (0, 1]? Answer

It is given that,

$f(x) = \begin{cases} 1, \ x > 0\\ 0, \ x = 0\\ -1, \ x < 0 \end{cases}$

f: $\mathbf{R} \rightarrow \mathbf{R}$ is defined as

Also, $g: \mathbf{R} \to \mathbf{R}$ is defined as g(x) = [x], where [x] is the greatest integer less than or equal to x.

Now, let $x \in (0, 1]$.

Then, we have:

[x] = 1 if x = 1 and [x] = 0 if 0 < x < 1.

$$\therefore fog(x) = f(g(x)) = f([x]) = \begin{cases} f(1), & \text{if } x = 1 \\ f(0), & \text{if } x \in (0,1) \end{cases} = \begin{cases} 1, & \text{if } x = 1 \\ 0, & \text{if } x \in (0,1) \end{cases}$$
$$gof(x) = g(f(x))$$

g(y = g(1) = g(1) = [1] = 1[x > 0]

Thus, when $x \in (0, 1)$, we have fog(x) = 0 and gof(x) = 1. Hence, fog and gof do not coincide in (0, 1].

Question 19:

Number of binary operations on the set $\{a, b\}$ are (A) 10 (B) 16 (C) 20 (D) 8

Answer

A binary operation * on $\{a, b\}$ is a function from $\{a, b\} \times \{a, b\} \rightarrow \{a, b\}$ i.e., * is a function from $\{(a, a), (a, b), (b, a), (b, b)\} \rightarrow \{a, b\}$. Hence, the total number of binary operations on the set $\{a, b\}$ is 2⁴i.e., 16. The correct answer is B.