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Question 1: 

Exercise 4.1 

Prove the following by using the principle of mathematical induction for all 

n N: 

 
Answer 1: 

Let the given statement be P(n), i.e., 

 

P(n): 1 + 3 + 32  + …+ 3n–1 =  

For n = 1, we have 

 
 

P(1):=    , which is true. 

 
Let P(k) be true for some positive integer k, i.e., 

 
 

We shall now prove that P(k + 1) is true. 

Consider 

1 + 3 + 32 + … + 3k–1 + 3(k+1) – 1 
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= (1 + 3 + 32 +… + 3k–1) + 3k
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Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 2: 

Prove the following by using the principle of mathematical induction for all 

n N: 

Answer 2: 

Let the given statement be P(n), i.e., 

P(n):  

For n = 1, we have 

 
P(1): 13 =1= , which is true. 
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Let P(k) be true for some positive integer k, i.e., 
 
 

 
We shall now prove that P(k + 1) is true. 

Consider 

 
13 + 23 + 33 + … + k3 + (k + 1)3

 

= (13 + 23 + 33 + …. + k3) + (k + 1)3
 

 

Thus, P(k + 1) is true whenever P(k) is true. 
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Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 3: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 

 

Answer 3: 

Let the given statement be P(n), i.e., 

 
 

P(n):  

For n = 1, we have 

 

 

P(1): 1 =    , which is true. 

Let P(k) be true for some positive integer k, i.e., 
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We shall now prove that P(k + 1) is true. 

Consider 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 

 

2 
= 

(𝑘 + 1) 

2 

𝑘2 + 2𝑘 + 1 
( ) 

𝑘 + 2 

(𝑘 + 1)2 
= [ 

(𝑘 + 1) 
] 

𝑘 + 2 

2(𝑘 + 1) 
= 

(𝑘 + 2) 
 
 

Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 4: 

Prove the following by using the principle of mathematical induction for all 

n N: 

1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) = 

 
Answer 4: 

Let the given statement be P(n), i.e., 
 

P(n): 1.2.3 + 2.3.4 + … + n(n + 1) (n + 2) =  

For n = 1, we have 
 

P(1): 1.2.3 = 6 =    , which is true. 

Let P(k) be true for some positive integer k, i.e., 

1.2.3 + 2.3.4 + … + k(k + 1) (k + 2)  

We shall now prove that P(k + 1) is true. 

Consider 

1.2.3 + 2.3.4 + … + k(k + 1) (k + 2) + (k + 1) (k + 2) (k + 3) 

= {1.2.3 + 2.3.4 + … + k(k + 1) (k + 2)} + (k + 1) (k + 2) (k + 3) 
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Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 5: 

Prove the following by using the principle of mathematical induction for all 

n N: 

Answer 5: 

Let the given statement be P(n), i.e., 

 

 

P(n) :  

For n = 1, we have 

P(1): 1.3 = 3    , which is true. 

Let P(k) be true for some positive integer k, i.e., 
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We shall now prove that P(k + 1) is true. 

Consider 

 
1.3 + 2.32 + 3.33 + … + k.3k+ (k + 1).3k+1

 

= (1.3 + 2.32 + 3.33 + …+ k.3k) + (k + 1).3k+1
 

 

 

 
Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 



10 

Vidya Champ 
 

PRINCIPLE OF MATHEMATICAL INDUCTION  

10 

 

 

 
 
 

 
 

Question 6: 

Prove the following by using the principle of mathematical induction for all 

n N: 

Answer 6: 

Let the given statement be P(n), i.e., 

P(n):  

For n = 1, we have 

 
 

 

P(1):    , which is true. 

Let P(k) be true for some positive integer k, i.e., 
 
 

 

We shall now prove that P(k + 1) is true. 

Consider 

 
1.2 + 2.3 + 3.4 + … + k.(k + 1) + (k + 1).(k + 2) 

 
= [1.2 + 2.3 + 3.4 + … + k.(k + 1)] + (k + 1).(k + 2) 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 

 
Question 7: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 7: 

 
Let the given statement be P(n), i.e., 

P(n): 
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For n = 1, we have 
 
 
 
 
 

 

, which is true. 
 
 
 
 

 

Let P(k) be true for some positive integer k, i.e., 
 

 
 
 

 

 

We shall now prove that P(k + 1) is true. 

 

Consider 

 

 

(1.3 + 3.5 + 5.7 + … + (2k – 1) (2k + 1) + {2(k + 1) – 1}{2(k + 1) + 

1} 
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Thus, P(k + 1) is true whenever P(k) is true. 

 
 

 

 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 8: 

Prove the following by using the principle of mathematical induction for all 

n N: 1.2 + 

2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2 

 

 
Answer 8: 

Let the given statement be P(n), i.e., 

P(n): 1.2 + 2.22 + 3.22 + … + n.2n = (n – 1) 2n+1 + 2 

For n = 1, we have 

P(1): 1.2 = 2 = (1 – 1) 21+1 + 2 = 0 + 2 = 2, which is true. 

Let P(k) be true for some positive integer k, i.e., 

1.2 + 2.22 + 3.22 + … + k.2k = (k – 1) 2k + 1 + 2 … (i) 

We shall now prove that P(k + 1) is true. 

Consider 

 

 

Thus, P(k + 1) is true whenever P(k) is true. 
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Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 9: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 9: 

Let the given statement be P(n), i.e., 

P(n):  

For n = 1, we have 
 

P(1):    , which is true. 

 
Let P(k) be true for some positive integer k, i.e., 

 
 

 

 
We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 10: 

Prove the following by using the principle of mathematical induction for all 

n N: 

 
Answer 10: 

Let the given statement be P(n), i.e., 

P(n): 

For n = 1, we have 
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, which is true. 
 

 

Let P(k) be true for some positive integer k, i.e., 
 
 

 
We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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(Chapter – 4) (Principle of Mathematical Induction)) 

(Class – XI) 
 

Exercise 4.1 

 
Question 11: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 11: 

Let the given statement be P(n), i.e., 

 
 

P(n):  

For n = 1, we have 

 

      , which is true. 

Let P(k) be true for some positive integer k, i.e., 

 

 
We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 12: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 12: 

Let the given statement be P(n), i.e., 
 
 

 

 

 
For n = 1, we have 

 
 

    , which is true. 

Let P(k) be true for some positive integer k, i.e., 
 
 

 
We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 13: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 

Answer 13: 

Let the given statement be P(n), i.e., 
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For n = 1, we have 
 
 

 
Let P(k) be true for some positive integer k, i.e., 

 
 

 

We shall now prove that P(k + 1) is true. 

Consider 

 

 

Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 14: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 14: 

Let the given statement be P(n), i.e., 
 
 

 

 

 
For n = 1, we have 

 
 

    , which is true. 

 
Let P(k) be true for some positive integer k, i.e., 

 
 

 
We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 

 

 
Question 15: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 

 

Answer 15: 

Let the given statement be P(n), i.e., 
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Let P(k) be true for some positive integer k, i.e., 
 
 

 

 

 

We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 16: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 16: 

Let the given statement be P(n), i.e., 
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Let P(k) be true for some positive integer k, i.e., 
 
 
 
 
 

 

 

We shall now prove that P(k + 1) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 17: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 

 
Answer 17: 

Let the given statement be P(n), i.e., 
 
 

 
For n = 1, we have 

 

    , which is true. 

Let P(k) be true for some positive integer k, i.e., 
 
 

 

 

 

We shall now prove that P(k + 1) is true. Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 



14 

Vidya Champ 

PRINCIPAL OF MATHEMATICAL INDUCTION 

14 

 

 

 
 
 

 
 

Question 18: 

Prove the following by using the principle of mathematical induction for all 

n N: 
 
 

 
Answer 18: 

Let the given statement be P(n), i.e., 
 
 

 
It can be noted that P(n) is true for n = 1 since 

 

. 

Let P(k) be true for some positive integer k, i.e., 
 
 

 

 

 
 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

Consider 
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Hence, 

 
 
 

Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 19: 

Prove the following by using the principle of mathematical induction for all 

n ∈ N: 

 
 

n (n + 1) (n + 5) is a multiple of 3. 

 

Answer 19: 

Let the given statement be P(n), i.e., 

P(n): n (n + 1) (n + 5), which is a multiple of 3. 

It can be noted that P(n) is true for n = 1 since 1 (1 + 1) (1 + 5) = 12, 

which is a multiple of 3. 
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Let P(k) be true for some positive integer k, i.e., 

k (k + 1) (k + 5) is a multiple of 3. 

∴ k (k + 1) (k + 5) = 3m, where m ∈ N … (1) 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

Consider 

 
 

 
Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 20: 

Prove the following by using the principle of mathematical induction for all 

n ∈ N: 

102n – 1 + 1 is divisible by 11. 

 
 
Answer 20: 

Let the given statement be P(n), i.e., 

 
 

P(n): 102n – 1 + 1 is divisible by 11. 

 
 
It can be observed that P(n) is true for n = 1 

 
 
since P(1) = 102.1 – 1 + 1 = 11, which is divisible by 11. 

 

 
Let P(k) be true for some positive integer k, 

 

 
i.e., 102k – 1 + 1 is divisible by 11. 

 

 
∴ 102k – 1 + 1 = 11m, where m ∈ N … (1) 

 
 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

 

 

 
Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Mathematics 

(Chapter – 4) (Principle of Mathematical Induction)) 

(Class – XI) 
 

Exercise 4.1 

 

 

Question 21: 

Prove the following by using the principle of mathematical induction for all 

n ∈ N: 

 
 
x2n – y2n is divisible by x + y. 

 
 

Answer 21: 

Let the given statement be P(n), i.e., 

P(n): x2n – y2n is divisible by x + y. 

It can be observed that P(n) is true for n = 1. 

 

 

 
This is so because x2 × 1 – y2 × 1 = x2 – y2 = (x + y) (x – y) is divisible by 

(x + y). 

 

Let P(k) be true for some positive integer k, i.e., 

 
 

x2k – y2k is divisible by x + y. 

 
 

∴ Let x2k – y2k = m (x + y), where m ∈ N … (1) 

 
 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 

 

 
 

Question 22: 

Prove the following by using the principle of mathematical induction for all 

n ∈ N: 32n + 2 – 8n – 9 is divisible by 8. 

 
 

Answer 22: 

Let the given statement be P(n), i.e., 

P(n): 32n + 2 – 8n – 9 is divisible by 8. 

It can be observed that P(n) is true for n = 1 



3 

Vidya Champ 

PRINCIPAL OF MATHEMATICAL INDUCTION 

3 

 

 

 
 
 

 
 

since 32 × 1 + 2 – 8 × 1 – 9 = 64, which is divisible by 8. 

 

 
Let P(k) be true for some positive integer 

k, i.e., 32k + 2 – 8k – 9 is divisible by 8. 

∴ 32k + 2 – 8k – 9 = 8m; where m ∈ N … (1) 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

Consider 

 
 

 
Thus, P(k + 1) is true whenever P(k) is true. 

 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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Question 23: 

Prove the following by using the principle of mathematical induction for all 

n ∈ N: 

 
 

41n – 14n is a multiple of 27. 

 
 

Answer 23: 

Let the given statement be P(n), i.e., 

 
 

P(n):41n – 14nis a multiple of 27. 

 

It can be observed that P(n) is true for n = 1 

since     , which is a multiple of 27. 

Let P(k) be true for some positive integer k, i.e., 

41k – 14k is a multiple of 27 

 
 

∴ 41k – 14k = 27m, where m ∈ N ............................. (1) 

 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

Consider 
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Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 

 
Question 24: 

Prove the following by using the principle of mathematical induction for all 

(2n +7) < (n + 3)2
 

Answer 24: 

Let the given statement be P(n), i.e., 

P(n): (2n +7) < (n + 3)2
 

It can be observed that P(n) is true for n = 1 

since 2.1 + 7 = 9 < (1 + 3)2 = 16, which is true. 

Let P(k) be true for some positive integer k, i.e., 
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(2k + 7) < (k + 3)2 … (1) 

We shall now prove that P(k + 1) is true whenever P(k) is true. 

Consider 

 
 

 
Thus, P(k + 1) is true whenever P(k) is true. 

Hence, by the principle of mathematical induction, statement P(n) is true 

for all natural numbers i.e., N. 
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