## Vidya Champ LIMITS AND DERIVATIVE 1

# **Mathematics**

(Chapter – 13) (Limits and Derivatives) (Class – XI)

# Exercise 13.1

#### Question 1:

Evaluate the Given  $\lim_{x\to 3} x+3$  limit:

Answer 1:  $\lim x + 3 = 3 + 3 = 6$ 

## **Question 2:**



#### **Question 4:**

Evaluate the Given limit:  $\lim_{x \to 4} \frac{4x+3}{x-2}$ 

#### Answer 4:

 $\lim_{x \to 4} \frac{4x+3}{x-2} = \frac{4(4)+3}{4-2} = \frac{16+3}{2} = \frac{19}{2}$ 

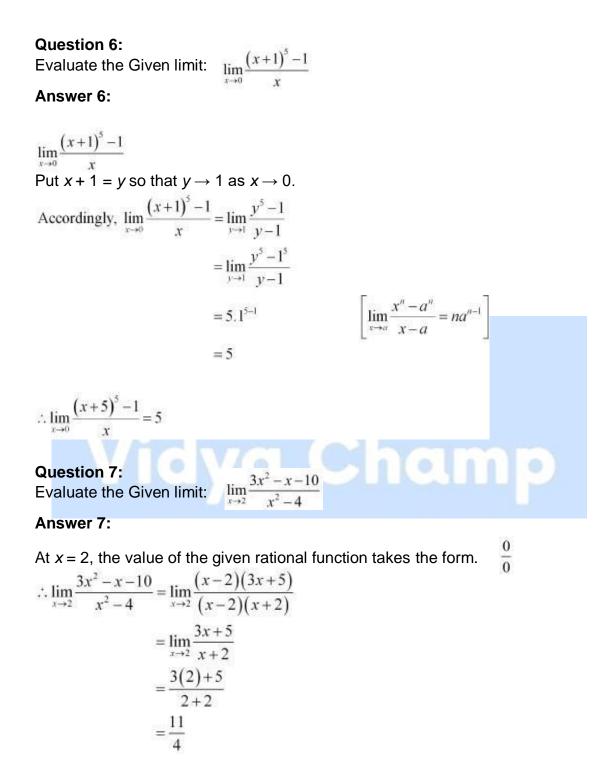
#### **Question 5:**

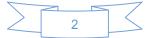
Evaluate the Given limit:  $\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x - 1}$ 

#### Answer 5:

$$\lim_{x \to -1} \frac{x^{10} + x^5 + 1}{x - 1} = \frac{(-1)^{10} + (-1)^5 + 1}{-1 - 1} = \frac{1 - 1 + 1}{-2} = -\frac{1}{2}$$

# Vidya Champ2LIMITS AND DERIVATIVE2





# Vidya Champ3LIMITS AND DERIVATIVE

....

#### **Question 8:**

Evaluate the Given limit:  $\lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3}$ 

#### Answer 8:

At x = 2, the value of the given rational function takes the form.  $\frac{0}{0}$ 

$$\therefore \lim_{x \to 3} \frac{x^4 - 81}{2x^2 - 5x - 3} = \lim_{x \to 3} \frac{(x - 3)(x + 3)(x^2 + 9)}{(x - 3)(2x + 1)}$$
$$= \lim_{x \to 3} \frac{(x + 3)(x^2 + 9)}{2x + 1}$$
$$= \frac{(3 + 3)(3^2 + 9)}{2(3) + 1}$$
$$= \frac{6 \times 18}{7}$$
$$= \frac{108}{7}$$

**Question 9:** 

Evaluate the Given limit:

## Answer 9:

 $\lim_{x \to 0} \frac{ax+b}{cx+1} = \frac{a(0)+b}{c(0)+1} = b$ 

**Question 10:** Evaluate the Given limit:

$$\lim_{z \to 1} \frac{z^{\bar{3}} - 1}{z^{\frac{1}{6}} - 1}$$

1

 $\lim_{x \to 0} \frac{ax+b}{ax+1}$ 

#### Answer 10:

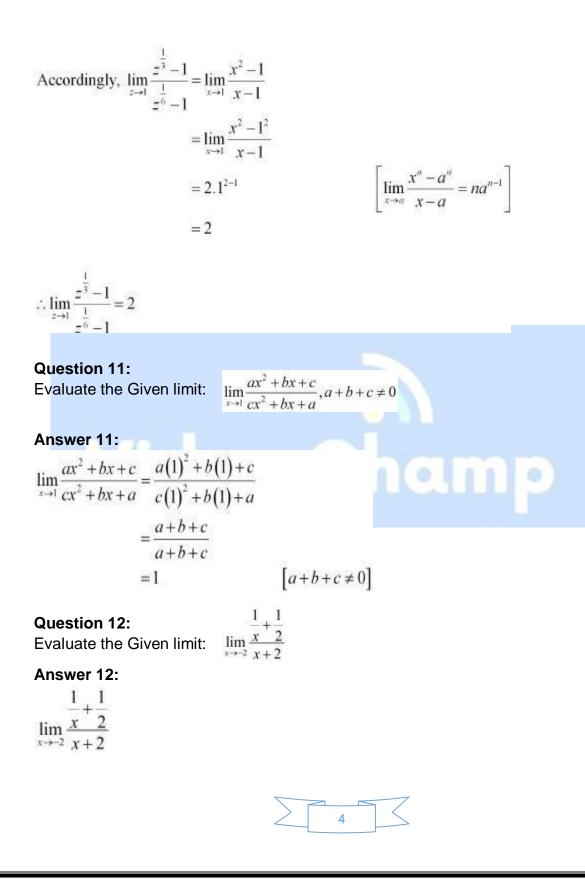
 $\lim_{z \to 1} \frac{z^{\frac{1}{3}} - 1}{z^{\frac{1}{6}} - 1}$ 

At z = 1, the value of the given function takes the form.  $\frac{0}{0}$ 

Put  $z^{\frac{1}{6}} = x$  so that  $z \to 1$  as  $x \to 1$ .



# Vidya Champ LIMITS AND DERIVATIVE



4

# Vidya Champ <sup>5</sup> LIMITS AND DERIVATIVE

# Vidya Champ<sup>6</sup> LIMITS AND DERIVATIVE

**Question 14:** Evaluate the Given limit:  $\lim_{x\to 0} \frac{\sin ax}{\sin bx}$ ,  $a, b \neq 0$ 

#### Answer 14:

 $\lim_{x\to 0} \frac{\sin ax}{\sin bx}, \ a, \ b\neq 0$ 

At x = 0, the value of the given function takes the form  $\frac{0}{0}$ 

Now, 
$$\lim_{x \to 0} \frac{\sin ax}{\sin bx} = \lim_{x \to 0} \frac{\left(\frac{\sin ax}{ax}\right) \times ax}{\left(\frac{\sin bx}{bx}\right) \times bx}$$
$$= \left(\frac{a}{b}\right) \times \frac{\lim_{ax \to 0} \left(\frac{\sin ax}{ax}\right)}{\lim_{bx \to 0} \left(\frac{\sin bx}{bx}\right)} \qquad \qquad \begin{bmatrix} x \to 0 \Rightarrow ax \to 0\\ and x \to 0 \Rightarrow bx \to 0 \end{bmatrix}$$
$$= \left(\frac{a}{b}\right) \times \frac{1}{1} \qquad \qquad \begin{bmatrix}\lim_{y \to 0} \frac{\sin y}{y} = 1\end{bmatrix}$$
$$= \frac{a}{b}$$

Question 15: Evaluate the Given limit:  $\lim_{x \to \pi} \frac{\sin(\pi - x)}{\pi(\pi - x)}$ 

Answer 16:

$$\lim_{x\to\pi}\frac{\sin(\pi-x)}{\pi(\pi-x)}$$

It is seen that  $x \to \pi \Rightarrow (\pi - x) \to 0$ 



# Vidya Champ7LIMITS AND DERIVATIVE7

mp

$$\therefore \lim_{x \to \pi} \frac{\sin(\pi - x)}{\pi(\pi - x)} = \frac{1}{\pi} \lim_{(\pi - x) \to 0} \frac{\sin(\pi - x)}{(\pi - x)}$$
$$= \frac{1}{\pi} \times 1 \qquad \qquad \left[ \lim_{y \to 0} \frac{\sin y}{y} = 1 \right]$$
$$= \frac{1}{\pi}$$

#### **Question 16:**

Evaluate the given limit:

 $\lim_{x\to 0}\frac{\cos x}{\pi-x}$ 

#### Answer 16:

 $\lim_{x \to 0} \frac{\cos x}{\pi - x} = \frac{\cos 0}{\pi - 0} = \frac{1}{\pi}$ 

 $\lim_{x\to 0} \frac{\cos 2x - 1}{\cos x - 1}$ 

#### Answer 17:

**Question 17:** 

Evaluate the Given limit:

 $\lim_{x\to 0} \frac{\cos 2x - 1}{\cos x - 1}$ 

At x = 0, the value of the given function takes the form.  $\frac{0}{0}$ Now,

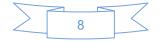


# Vidya Champ<sup>8</sup> LIMITS AND DERIVATIVE<sup>8</sup>

$$\begin{split} \lim_{x \to 0} \frac{\cos 2x - 1}{\cos x - 1} &= \lim_{x \to 0} \frac{1 - 2\sin^2 x - 1}{1 - 2\sin^2 \frac{x}{2} - 1} \qquad \left[ \cos x = 1 - 2\sin^2 \frac{x}{2} \right] \\ &= \lim_{x \to 0} \frac{\sin^2 x}{\sin^2 \frac{x}{2}} = \lim_{x \to 0} \frac{\left(\frac{\sin^2 x}{x^2}\right) \times x^2}{\left(\frac{x}{2}\right)^2} \\ &= 4 \frac{\lim_{x \to 0} \left(\frac{\sin^2 x}{x^2}\right)}{\lim_{x \to 0} \left(\frac{\sin^2 \frac{x}{2}}{\left(\frac{x}{2}\right)^2}\right)} \\ &= 4 \frac{\left(\lim_{x \to 0} \frac{\sin x}{x}\right)^2}{\left(\frac{\lim_{x \to 0} \frac{\sin x}{x}}{2}\right)^2} \qquad \left[ x \to 0 \Rightarrow \frac{x}{2} \to 0 \right] \\ &= 4 \frac{1^2}{1^2} \qquad \left[\lim_{y \to 0} \frac{\sin y}{y} = 1\right] \\ &= 4 \end{split}$$

**Question 18:** Evaluate the Given limit:

 $\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}$ 

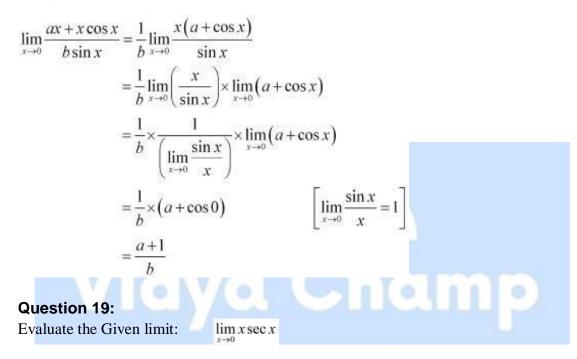


# Vidya Champ 9 LIMITS AND DERIVATIVE

#### Answer 18:

 $\lim_{x \to 0} \frac{ax + x \cos x}{b \sin x}$ 

At x = 0, the value of the given function takes the form.  $\frac{0}{0}$ Now,



#### Answer 19:

$$\lim_{x \to 0} x \sec x = \lim_{x \to 0} \frac{x}{\cos x} = \frac{0}{\cos 0} = \frac{0}{1} = 0$$



# Vidya Champ10LIMITS AND DERIVATIVE10

# Question 20:

Evaluate the Given limit:

 $\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx} \ a, b, a + b \neq 0$ 

#### Answer 20:

At x = 0, the value of the given function takes the form.  $\frac{0}{0}$ Now,

$$\lim_{x \to 0} \frac{\sin ax + bx}{ax + \sin bx}$$

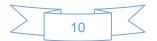
$$= \lim_{x \to 0} \frac{\left(\frac{\sin ax}{ax}\right)ax + bx}{ax + bx\left(\frac{\sin bx}{bx}\right)}$$

$$= \frac{\left(\lim_{ax \to 0} \frac{\sin ax}{ax}\right) \times \lim_{x \to 0} (ax) + \lim_{x \to 0} bx}{\lim_{x \to 0} x + \lim_{x \to 0} bx\left(\lim_{bx \to 0} \frac{\sin bx}{bx}\right)} \qquad [As \ x \to 0 \Rightarrow ax \to 0 \text{ and } bx \to 0]$$

$$= \frac{\lim_{x \to 0} (ax) + \lim_{x \to 0} bx}{\lim_{x \to 0} ax + \lim_{x \to 0} bx} \qquad \left[\lim_{x \to 0} \frac{\sin x}{x} = 1\right]$$

$$= \frac{\lim_{x \to 0} (ax + bx)}{\lim_{x \to 0} (ax + bx)}$$

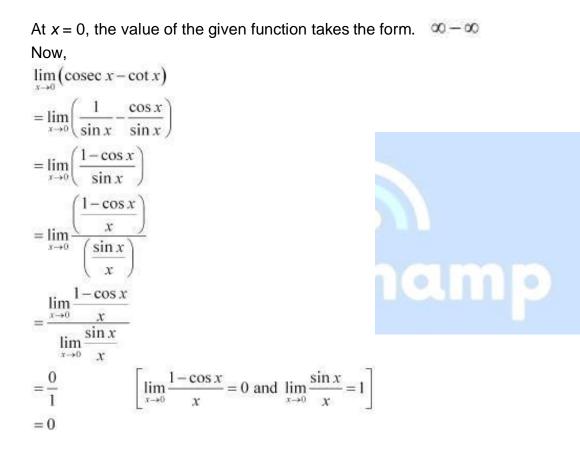
$$= \lim_{x \to 0} (1)$$



# Vidya Champ11LIMITS AND DERIVATIVE11

# **Question 21:** Evaluate the Given limit: $\lim_{x\to 0} (\operatorname{cosec} x - \cot x)$

#### Answer 21:





## **Vidya Champ** <sup>12</sup> LIMITS AND DERIVATIVE

# $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}}$ Answer 22: $\lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}}$ At $x = \frac{\pi}{2}$ , the value of the given function takes the form $x - \frac{\pi}{2} = y$ and $x \to \frac{\pi}{2}$ , $y \to 0$ . Now, put so that $\frac{0}{0}$ $\therefore \lim_{x \to \frac{\pi}{2}} \frac{\tan 2x}{x - \frac{\pi}{2}} = \lim_{y \to 0} \frac{\tan 2\left(y + \frac{\pi}{2}\right)}{y}$ $=\lim_{y\to 0}\frac{\tan\left(\pi+2y\right)}{y}$ $= \lim_{y \to 0} \frac{\tan 2y}{y} \qquad \left[ \tan \left( \pi + 2y \right) = \tan 2y \right]$ $= \lim_{y \to 0} \frac{\sin 2y}{y \cos 2y}$ $= \lim_{y \to 0} \left( \frac{\sin 2y}{2y} \times \frac{2}{\cos 2y} \right)$ $= \left(\lim_{2y \to 0} \frac{\sin 2y}{2y}\right) \times \lim_{y \to 0} \left(\frac{2}{\cos 2y}\right) \qquad \qquad [y \to 0 \Rightarrow 2y \to 0]$ $=1\times\frac{2}{\cos\theta}$ $\left[\lim_{x \to 0} \frac{\sin x}{x} = 1\right]$ $=1\times\frac{2}{1}$ = 2

**Question 22:** 



# Vidya Champ13LIMITS AND DERIVATIVE

## **Question 23:**

Find 
$$\lim_{x \to 0} f(x) \text{ and } \lim_{x \to 1} f(x), \text{ where } f(x) = \begin{cases} 2x+3, & x \le 0\\ 3(x+1), & x > 0 \end{cases}$$

Answer 23:

The given function is 
$$f(x) = \begin{cases} 2x+3, & x \le 0\\ 3(x+1), & x > 0 \end{cases}$$
  
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} [2x+3] = 2(0) + 3 = 3$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} 3(x+1) = 3(0+1) = 3$$
$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} f(x) = 2$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} 3(x+1) = 3(0+1) = 3$$
  

$$\therefore \lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{+}} f(x) = \lim_{x \to 0} f(x) = 3$$
  

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} 3(x+1) = 3(1+1) = 6$$
  

$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} 3(x+1) = 3(1+1) = 6$$
  

$$\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = 6$$
  
Question 24:

Find  $\lim_{x \to 1} f(x)$ , where  $f(x) = \begin{cases} x^2 - 1, & x \le 1 \\ -x^2 - 1, & x > 1 \end{cases}$ 

## Answer 24:

The given function is



## Vidya Champ LIMITS AND DERIVATIVE

$$f(x) = \begin{cases} x^2 - 1, \ x \le 1 \\ -x^2 - 1, \ x > 1 \end{cases}$$

 $\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{-}} \left[ x^2 - 1 \right] = 1^2 - 1 = 1 - 1 = 0$  $\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1^{-}} \left[ -x^2 - 1 \right] = -1^2 - 1 = -1 - 1 = -2$ It is observed that  $\lim_{x \to 1^-} f(x) \neq \lim_{x \to 1^+} f(x)$ . Hence,  $\lim f(x)$  does not exist. **Question 25:**  $\lim_{x \to 0} \quad f(x), \text{ where } f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$ Evaluate Answer 25: The given function is  $f(x) = \begin{cases} \frac{|x|}{x}, & x \neq 0\\ 0, & x = 0 \end{cases}$  $\lim_{x \to 0^{-}} f(x) = \lim_{x \to 0^{-}} \left| \frac{|x|}{x} \right|$  $= \lim_{x \to 0} \left( \frac{-x}{x} \right) \qquad \qquad \left[ \text{When } x \text{ is negative, } |x| = -x \right]$  $=\lim_{x\to 0}(-1)$ = -1  $\lim_{x \to 0^+} f(x) = \lim_{x \to 0^+} \left\lceil \frac{|x|}{x} \right\rceil$  $= \lim_{x \to 0} \left[ \frac{x}{x} \right] \qquad \qquad \left[ \text{When } x \text{ is positive, } |x| = x \right]$  $=\lim_{x\to 0}(1)$ =1

It is observed that  $\lim_{x\to 0^-} f(x) \neq \lim_{x\to 0^+} f(x)$ . Hence,  $\lim_{x\to 0} f(x)$  does not exist.



#### 14

# Vidya Champ15LIMITS AND DERIVATIVE15

## **Question 26:**

Find 
$$\lim_{x \to 0} f(x)$$
, where  $f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$ 

## Answer 26:

The given function is

$$f(x) = \begin{cases} \frac{x}{|x|}, & x \neq 0\\ 0, & x = 0 \end{cases}$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[ \frac{x}{|x|} \right]$$

$$= \lim_{x \to 0} \left[ \frac{x}{-x} \right]$$

$$= \lim_{x \to 0} (-1)$$

$$= -1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} \left[ \frac{x}{|x|} \right]$$

$$= \lim_{x \to 0} \left[ \frac{x}{x} \right]$$

$$= \lim_{x \to 0} \left[ \frac{x}{x} \right]$$

$$[ When x > 0, |x| = x ]$$

$$= \lim_{x \to 0} (1)$$

$$= 1$$
It is observed that  $\lim_{x \to 0} f(x) \neq \lim_{x \to 0} f(x)$ 

It is observed that  $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^+} f(x)$ . Hence,  $\lim_{x\to 0} f(x)$  does not exist.



# **Vidya Champ** <sup>16</sup> LIMITS AND DERIVATIVE

#### **Question 27:**

Find  $\lim_{x \to 5} f(x)$ , where f(x) = |x| - 5

# Answer 27: The given function is f(x) = |x| - 5. $\lim_{x \to 5^+} f(x) = \lim_{x \to 5^-} [|x| - 5]$ $= \lim_{x \to 5^+} (x - 5)$ = 0 $\lim_{x \to 5^+} f(x) = \lim_{x \to 5^+} (|x| - 5)$ $= \lim_{x \to 5^+} (x - 5)$ = 0 $\therefore \lim_{x \to 5^-} f(x) = \lim_{x \to 5^+} f(x) = 0$ Hence, $\lim_{x \to 5^-} f(x) = 0$

|        |    | 57 |
|--------|----|----|
| $\geq$ | 16 |    |

# **Vidya Champ** <sup>17</sup> LIMITS AND DERIVATIVE

**Question 28:** 

a + bx, if x < 1Suppose  $f(x) = \{4, \quad if x = 0, \\ b - ax, \quad if x > 1\}$ 

and  $\lim_{x\to 1} f(x) = f(1)$  what are possible values of *a* and *b*?

#### Answer 28:

# The given function is $f(x) = \begin{cases} a+bx, \ x < 1 \\ 4, \ x = 1 \\ b-ax \ x > 1 \end{cases}$

$$\lim_{x \to 1^{-}} f(x) = \lim_{x \to 1} (a + bx) = a + b$$
$$\lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} (b - ax) = b - a$$
$$f(1) = 4$$

It is given that  $\lim_{x \to 1} f(x) = f(1)$ .

 $\therefore \lim_{x \to 1^{-}} f(x) = \lim_{x \to 1^{+}} f(x) = \lim_{x \to 1} f(x) = f(1)$ 

 $\Rightarrow a+b=4 \text{ and } b-a=4$ 



On solving these two equations, we obtain a = 0 and b = 4.

Thus, the respective possible values of *a* and *b* are 0 and 4.



# Vidya Champ18LIMITS AND DERIVATIVE18

#### **Question 29:**

Let  $a_1, a_2, \ldots, a_n$  be fixed real numbers and define a function

 $f(x) = (x - a_1) (x - a_2)...(x - a_n)$ .

What is  $\lim_{x \to a_1} f(x)$ ? For some  $a \neq a_1, a_2... a_n$ , compute  $\lim_{x \to a} f(x)$ .

#### Answer 29:

The given function is  

$$\begin{aligned}
f(x) &= (x - a_1)(x - a_2)...(x - a_n) \\
\lim_{x \to a_1} f(x) &= \lim_{x \to a_1} \left[ (x - a_1)(x - a_2)...(x - a_n) \right] \\
&= \left[ \lim_{x \to a_1} (x - a_1) \right] \left[ \lim_{x \to a_1} (x - a_2) \right] ... \left[ \lim_{x \to a_1} (x - a_n) \right] \\
&= (a_1 - a_1)(a_1 - a_2)...(a_1 - a_n) = 0
\end{aligned}$$

 $\therefore \lim_{x\to a_1} f(x) = 0$ 

Now, 
$$\lim_{x \to a} f(x) = \lim_{x \to a} [(x - a_1)(x - a_2)...(x - a_n)]$$
  

$$= [\lim_{x \to a} (x - a_1)] [\lim_{x \to a} (x - a_2)]...[\lim_{x \to a} (x - a_n)]$$

$$= (a - a_1)(a - a_2)....(a - a_n)$$

$$\therefore \lim_{x \to a} f(x) = (a - a_1)(a - a_2)...(a - a_n)$$

#### **Question 30:**

If 
$$f(x) = \begin{cases} |x|+1, & x < 0\\ 0, & x = 0\\ |x|-1, & x > 0 \end{cases}$$

For what value(s) of a does  $\lim_{x \to a} f(x)$  exists?

#### Answer 30:

The given function is



# **Vidya Champ** <sup>19</sup> LIMITS AND DERIVATIVE

$$f(x) = \begin{cases} |x|+1, & x < 0\\ 0, & x = 0\\ |x|-1, & x > 0 \end{cases}$$

When 
$$a = 0$$
,  

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (|x|+1)$$

$$= \lim_{x \to 0^{+}} (-x+1) \qquad [If x < 0, |x| = -x]$$

$$= -0+1$$

$$= 1$$

$$\lim_{x \to 0^{+}} f(x) = \lim_{x \to 0^{+}} (|x|-1)$$

$$= \lim_{x \to 0^{+}} (x-1) \qquad [If x > 0, |x| = x]$$

$$= 0-1$$

$$= -1$$

Here, it is observed that  $\lim_{x\to 0^+} f(x) \neq \lim_{x\to 0^+} f(x)$ .  $\therefore \lim_{x\to 0} f(x)$  does not exist.

When a < 0,  $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} (|x|+1)$   $= \lim_{x \to a^{+}} (-x+1) \qquad [x < a < 0 \Rightarrow |x| = -x]$  = -a+1  $\lim_{x \to a^{+}} f(x) = \lim_{x \to a^{+}} (|x|+1)$   $= \lim_{x \to a} (-x+1) \qquad [a < x < 0 \Rightarrow |x| = -x]$  = -a+1  $\therefore \lim_{x \to a} f(x) = \lim_{x \to a^{+}} f(x) = -a+1$ Thus, limit of f(x) exists at x = a, where a < 0.

When *a* > 0



## Vidya Champ <sup>2</sup> LIMITS AND DERIVATIVE

 $\lim_{x \to a^-} f(x) = \lim_{x \to a^-} \left( |x| - 1 \right)$  $= \lim_{x \to a} (x-1) \qquad [0 < x < a \Longrightarrow |x| = x]$ =a-1 $\lim_{x \to a^+} f(x) = \lim_{x \to a^+} \left( |x| - 1 \right)$  $= \lim_{x \to a} (x-1) \qquad [0 < a < x \Longrightarrow |x| = x]$ = a - 1 $\therefore \lim_{x \to a^-} f(x) = \lim_{x \to a^+} f(x) = a - 1$ Thus, limit of f(x) exists at x = a, where a > 0. Thus,  $\lim_{x \to a} f(x)$  exists for all  $a \neq 0$ . **Question 31:** If the function f(x) satisfies,  $\lim_{x \to 1} \frac{f(x) - 2}{x^2 - 1} = \pi$  evaluate  $\lim_{x \to 1} f(x)$ Answer 31: Champ  $\lim_{x \to 1} \frac{f(x) - 2}{x^2 - 1} = \pi$  $\Rightarrow \frac{\lim_{x \to 1} (f(x) - 2)}{\lim_{x \to 1} (x^2 - 1)} = \pi$  $\Rightarrow \lim_{x \to 1} (f(x) - 2) = \pi \lim_{x \to 1} (x^2 - 1)$  $\Rightarrow \lim_{x \to 1} (f(x) - 2) = \pi (1^2 - 1)$  $\Rightarrow \lim(f(x)-2)=0$  $\Rightarrow \lim_{x \to 1} f(x) - \lim_{x \to 1} 2 = 0$  $\Rightarrow \lim_{x \to 1} f(x) - 2 = 0$  $\therefore \lim_{x \to 1} f(x) = 2$ 20

20

# Vidya Champ LIMITS AND DERIVATIVE 21

## Question 32:

If.  $f(x) = \begin{cases} mx^2 + n, & x < 0\\ nx + m, & 0 \le x \le 1 \\ nx^3 + m, & x > 1 \end{cases}$  For what integers *m* and *n* does

 $\lim_{x\to 0} f(x)$  and  $\lim_{x\to 1} f(x)$  exist?

Answer 32: The given function is

$$f(x) = \begin{cases} mx^{2} + n, & x < 0\\ nx + m, & 0 \le x \le 1\\ nx^{3} + m, & x > 1 \end{cases}$$

$$\lim_{x \to 0^{n}} f(x) = \lim_{x \to 0} (mx^{2} + n)$$

$$= m(0)^{2} + n$$

$$= n$$

$$\lim_{x \to 0^{n}} f(x) = \lim_{x \to 0} (nx + m)$$

$$= n(0) + m$$

$$= m.$$
Thus, 
$$\lim_{x \to 0} f(x) \text{ exists if } m = n.$$

$$\lim_{x \to 1^{n}} f(x) = \lim_{x \to 1} (nx + m)$$

$$= n(1) + m$$

$$= m + n$$

$$\lim_{x \to 1^{n}} f(x) = \lim_{x \to 1} (nx^{3} + m)$$

$$= n(1)^{3} + m$$

$$= m + n$$

$$\lim_{x \to 1^{n}} f(x) = \lim_{x \to 1} f(x) = \lim_{x \to 1^{n}} f(x).$$

Thus  $\lim_{x \to 1} f(x)$  exist for any integral value of m and n.



# **Mathematics**

#### (Chapter – 13) (Limits and Derivatives) (Class XI) Exercise 13.2

**Question 1:** Find the derivative of  $x^2 - 2$  at x = 10. **Answer 1:** Let  $f(x) = x^2 - 2$ . Accordingly,

$$f'(10) = \lim_{h \to 0} \frac{f(10+h) - f(10)}{h}$$
$$= \lim_{h \to 0} \frac{\left[ (10+h)^2 - 2 \right] - (10^2 - 2)}{h}$$
$$= \lim_{h \to 0} \frac{10^2 + 2.10 \cdot h + h^2 - 2 - 10^2 + 2}{h}$$
$$= \lim_{h \to 0} \frac{20h + h^2}{h}$$
$$= \lim_{h \to 0} (20+h) = (20+0) = 20$$

Thus, the derivative of  $x^2 - 2$  at x = 10 is 20.

**Question 2:** Find the derivative of 99x at x = 100. **Answer 2:** 

Let f(x) = 99x. Accordingly,

$$f'(100) = \lim_{h \to 0} \frac{f(100+h) - f(100)}{h}$$
$$= \lim_{h \to 0} \frac{99(100+h) - 99(100)}{h}$$
$$= \lim_{h \to 0} \frac{99 \times 100 + 99h - 99 \times 100}{h}$$
$$= \lim_{h \to 0} \frac{99h}{h}$$
$$= \lim_{h \to 0} (99) = 99$$

Shamp

Thus, the derivative of 99x at x = 100 is 99.

**Question 3:** Find the derivative of x at x = 1. **Answer 3:** Let f(x) = x. Accordingly,

$$f'(1) = \lim_{h \to 0} \frac{f(1+h) - f(1)}{h}$$
$$= \lim_{h \to 0} \frac{(1+h) - 1}{h}$$
$$= \lim_{h \to 0} \frac{h}{h}$$
$$= \lim_{h \to 0} (1)$$
$$= 1$$

(iv)  $\frac{x+1}{x-1}$ 

Thus, the derivative of x at x = 1 is 1.

#### **Question 4:**

Find the derivative of the following functions from first principle. (i)  $x^3 - 27$  (ii) (x - 1)(x - 2)

#### (iii)

#### Answer 4:

1

(i) Let  $f(x) = x^3 - 27$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{\left[ (x+h)^3 - 27 \right] - (x^3 - 27) \right]}{h}$$
$$= \lim_{h \to 0} \frac{x^3 + h^3 + 3x^2h + 3xh^2 - x^3}{h}$$
$$= \lim_{h \to 0} \frac{h^3 + 3x^2h + 3xh^2}{h}$$
$$= \lim_{h \to 0} \left( h^2 + 3x^2 + 3xh \right)$$
$$= 0 + 3x^2 + 0 = 3x^2$$

(ii) Let f(x) = (x - 1) (x - 2). Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{(x+h-1)(x+h-2) - (x-1)(x-2)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{(x^2 + hx - 2x + hx + h^2 - 2h - x - h + 2) - (x^2 - 2x - x + 2)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{(hx + hx + h^2 - 2h - h)}{h}$$
  
= 
$$\lim_{h \to 0} \frac{2hx + h^2 - 3h}{h}$$
  
= 
$$\lim_{h \to 0} (2x + h - 3)$$
  
= 
$$(2x + 0 - 3)$$
  
= 
$$2x - 3$$

(iii) Let  $f(x) = \frac{1}{x^2}$ 

Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\frac{1}{(x+h)^2} - \frac{1}{x^2}}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{x^2 - (x+h)^2}{x^2(x+h)^2} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{x^2 - x^2 - h^2 - 2hx}{x^2(x+h)^2} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-h^2 - 2hx}{x^2(x+h)^2} \right]$$

$$= \lim_{h \to 0} \left[ \frac{-h - 2x}{x^2(x+h)^2} \right]$$

$$= \frac{0 - 2x}{x^2(x+h)^2} = \frac{-2}{x^3}$$
(iv) Let  $f(x) = \frac{x+1}{x-1}$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{\left(\frac{x+h+1}{x+h-1} - \frac{x+1}{x-1}\right)}{h}$$
$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{(x-1)(x+h+1) - (x+1)(x+h-1)}{(x-1)(x+h-1)}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{(x^2 + hx + x - x - h - 1) - (x^2 + hx - x + x + h - 1)}{(x - 1)(x + h - 1)} \right]$$
  

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2h}{(x - 1)(x + h - 1)} \right]$$
  

$$= \lim_{h \to 0} \left[ \frac{-2}{(x - 1)(x + h - 1)} \right]$$
  

$$= \frac{-2}{(x - 1)(x - 1)} = \frac{-2}{(x - 1)^2}$$
  
**Question 5:**  
For the function  

$$f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$$
  
Prove that  $f'(1) = 100f'(0)$ 

Answer 5:

The given function is

$$f(x) = \frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1$$
  

$$\frac{d}{dx}f(x) = \frac{d}{dx}\left[\frac{x^{100}}{100} + \frac{x^{99}}{99} + \dots + \frac{x^2}{2} + x + 1\right]$$
  

$$\frac{d}{dx}f(x) = \frac{d}{dx}\left(\frac{x^{100}}{100}\right) + \frac{d}{dx}\left(\frac{x^{99}}{99}\right) + \dots + \frac{d}{dx}\left(\frac{x^2}{2}\right) + \frac{d}{dx}(x) + \frac{d}{dx}(1)$$
  
On using theorem  $\frac{d}{dx}(x^a) = nx^{n-1}$ , we obtain  

$$\frac{d}{dx}f(x) = \frac{100x^{99}}{100} + \frac{99x^{98}}{99} + \dots + \frac{2x}{2} + 1 + 0$$
  

$$= x^{99} + x^{98} + \dots + x + 1$$
  

$$\therefore f'(x) = x^{99} + x^{98} + \dots + x + 1$$
  
At  $x = 0$ ,  

$$f'(0) = 1$$
  
At  $x = 1$ ,  

$$f'(1) = 1^{99} + 1^{98} + \dots + 1 + 1 = [1 + 1 + \dots + 1 + 1]_{100 \text{ terms}} = 1 \times 100 = 100$$
  
Thus,  $f'(1) = 100 \times f^1(0)$ 

#### **Question 6:**

Find the derivative of  $x^n + ax^{n-1} + a^2x^{n-2} + ... + a^{n-1}x + a^n$  for some fixed real number *a*. **Answer 6**:

Let 
$$f(x) = x^n + ax^{n-1} + a^2x^{n-2} + \dots + a^{n-1}x + a^n$$

$$\therefore f'(x) = \frac{d}{dx} \left( x'' + a x''^{-1} + a^2 x''^{-2} + \dots + a''^{-1} x + a'' \right)$$
$$= \frac{d}{dx} \left( x'' \right) + a \frac{d}{dx} \left( x''^{-1} \right) + a^2 \frac{d}{dx} \left( x''^{-2} \right) + \dots + a''^{-1} \frac{d}{dx} \left( x \right) + a'' \frac{d}{dx} (1)$$

On using theorem  $\frac{d}{dx}x^n = nx^{n-1}$ , we obtain  $f'(x) = nx^{n-1} + a(n-1)x^{n-2} + a^2(n-2)x^{n-3} + ... + a^{n-1} + a^n(0)$  $= nx^{n-1} + a(n-1)x^{n-2} + a^2(n-2)x^{n-3} + ... + a^{n-1}$ 

#### **Question 7:**

For some constants *a* and *b*, find the derivative of

(i) (x - a) (x - b) (ii)  $(ax^2 + b)^2$  (iii)  $\frac{x - a}{x - b}$  **Answer 7:** (i) Let f(x) = (x - a) (x - b)

$$\Rightarrow f(x) = x^{2} - (a+b)x + ab$$
  

$$\therefore f'(x) = \frac{d}{dx} (x^{2} - (a+b)x + ab)$$
  

$$= \frac{d}{dx} (x^{2}) - (a+b)\frac{d}{dx} (x) + \frac{d}{dx} (ab)$$
  
On using theorem  $\frac{d}{dx} (x^{n}) = nx^{n-1}$ , we obtain  
 $f'(x) = 2x - (a+b) + 0 = 2x - a - b$ 

11.

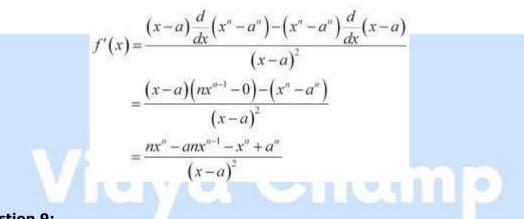
(ii) Let 
$$f(x) = (ax^2 + b)^2$$
  
 $\Rightarrow f(x) = a^2x^4 + 2abx^2 + b^2$   
 $\therefore f'(x) = \frac{d}{dx}(a^2x^4 + 2abx^2 + b^2) = a^2\frac{d}{dx}(x^4) + 2ab\frac{d}{dx}(x^2) + \frac{d}{dx}(b^2)$   
On using theorem  $\frac{d}{dx}x^a = nx^{n-4}$ , we obtain  
 $f'(x) = a^2(4x^3) + 2ab(2x) + b^2(0)$   
 $= 4a^2x^3 + 4abx$   
 $= 4ax(ax^2 + b)$   
(iii) Let  $f(x) = \frac{(x-a)}{(x-b)}$   
 $\Rightarrow f'(x) = \frac{d}{dx}\left(\frac{x-a}{x-b}\right)$   
By quotient rule,  
 $f'(x) = \frac{(x-b)\frac{d}{dx}(x-a) - (x-a)\frac{d}{dx}(x-b)}{(x-b)^2}$   
 $= \frac{(x-b)(1) - (x-a)(1)}{(x-b)^2}$   
 $= \frac{(x-b-x+a)}{(x-b)^2}$   
 $= \frac{(x-b)x+a}{(x-b)^2}$ 

#### **Question 8:**

Find the derivative of  $\frac{x^n - a^n}{x - a}$  for some constant *a*. **Answer 8:** 

Let 
$$f(x) = \frac{x^n - a^n}{x - a}$$
  
 $\Rightarrow f'(x) = \frac{d}{dx} \left( \frac{x^n - a^n}{x - a} \right)$ 

By quotient rule,



#### Question 9:

Find the derivative of

(i) 
$$2x - \frac{3}{4}$$
  
(ii)  $(5x^3 + 3x - 1) (x - 1)$   
(iii)  $x^{-3} (5 + 3x)$   
(iv)  $x^5 (3 - 6x^{-9})$   
(v)  $x^{-4} (3 - 4x^{-5})$   
(vi)  $\frac{2}{x+1} - \frac{x^2}{3x-1}$ 

#### Answer 9:

(i) Let 
$$f(x) = 2x - \frac{3}{4}$$
  
$$f'(x) = \frac{d}{dx} \left( 2x - \frac{3}{4} \right)$$
$$= 2\frac{d}{dx} \left( x \right) - \frac{d}{dx} \left( \frac{3}{4} \right)$$
$$= 2 - 0$$
$$= 2$$

(ii) Let  $f(x) = (5x^3 + 3x - 1)(x - 1)$ 

By Leibnitz product rule,

$$f'(x) = (5x^3 + 3x - 1)\frac{d}{dx}(x - 1) + (x - 1)\frac{d}{dx}(5x^3 + 3x - 1)$$
  
=  $(5x^3 + 3x - 1)(1) + (x - 1)(5.3x^2 + 3 - 0)$   
=  $(5x^3 + 3x - 1) + (x - 1)(15x^2 + 3)$   
=  $5x^3 + 3x - 1 + 15x^3 + 3x - 15x^2 - 3$   
=  $20x^3 - 15x^2 + 6x - 4$ 

(iii) Let  $f(x) = x^{-3}(5 + 3x)$ 

By Leibnitz product rule,

$$f'(x) = x^{-3} \frac{d}{dx} (5+3x) + (5+3x) \frac{d}{dx} (x^{-3})$$
$$= x^{-3} (0+3) + (5+3x) (-3x^{-3-1})$$
$$= x^{-3} (3) + (5+3x) (-3x^{-4})$$
$$= 3x^{-3} - 15x^{-4} - 9x^{-3}$$
$$= -6x^{-3} - 15x^{-4}$$
$$= -3x^{-3} \left(2 + \frac{5}{x}\right)$$
$$= \frac{-3x^{-3}}{x} (2x+5)$$
$$= \frac{-3}{x^{4}} (5+2x)$$

(iv) Let  $f(x) = x^5 (3 - 6x^{-9})$ 

By Leibnitz product rule,

$$f'(x) = x^{5} \frac{d}{dx} (3 - 6x^{-9}) + (3 - 6x^{-9}) \frac{d}{dx} (x^{5})$$
  

$$= x^{5} \{0 - 6(-9)x^{-9-1}\} + (3 - 6x^{-9})(5x^{4})$$
  

$$= x^{5} (54x^{-10}) + 15x^{4} - 30x^{-5}$$
  

$$= 54x^{-5} + 15x^{4} - 30x^{-5}$$
  

$$= 24x^{-5} + 15x^{4}$$
  

$$= 15x^{4} + \frac{24}{x^{5}}$$
  
(v) Let  $f(x) = x^{-4} (3 - 4x^{-5})$ 

By Leibnitz product rule,

$$f'(x) = x^{-4} \frac{d}{dx} (3 - 4x^{-5}) + (3 - 4x^{-5}) \frac{d}{dx} (x^{-4})$$
  

$$= x^{-4} \{0 - 4(-5)x^{-5-1}\} + (3 - 4x^{-5})(-4)x^{-4-1}$$
  

$$= x^{-4} (20x^{-6}) + (3 - 4x^{-5})(-4x^{-5})$$
  

$$= 20x^{-10} - 12x^{-5} + 16x^{-10}$$
  

$$= 36x^{-10} - 12x^{-5}$$
  

$$= -\frac{12}{x^5} + \frac{36}{x^{10}}$$
  
(vi) Let  $f(x) = \frac{2}{x+1} - \frac{x^2}{3x-1}$ 

$$f'(x) = \frac{d}{dx} \left(\frac{2}{x+1}\right) - \frac{d}{dx} \left(\frac{x^2}{3x-1}\right)$$

By quotient rule,

$$f'(x) = \left[\frac{(x+1)\frac{d}{dx}(2) - 2\frac{d}{dx}(x+1)}{(x+1)^2}\right] - \left[\frac{(3x-1)\frac{d}{dx}(x^2) - x^2\frac{d}{dx}(3x-1)}{(3x-1)^2}\right]$$
$$= \left[\frac{(x+1)(0) - 2(1)}{(x+1)^2}\right] - \left[\frac{(3x-1)(2x) - (x^2)(3)}{(3x-1)^2}\right]$$
$$= \frac{-2}{(x+1)^2} - \left[\frac{6x^2 - 2x - 3x^2}{(3x-1)^2}\right]$$
$$= \frac{-2}{(x+1)^2} - \left[\frac{3x^2 - 2x^2}{(3x-1)^2}\right]$$
$$= \frac{-2}{(x+1)^2} - \left[\frac{3x^2 - 2x^2}{(3x-1)^2}\right]$$

#### Question 10:

Find the derivative of  $\cos x$  from first principle.

#### Answer 10:

Let  $f(x) = \cos x$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

$$= \lim_{h \to 0} \left[ \frac{\cos x \cos h - \sin x \sin h - \cos x}{h} \right]$$

$$= \lim_{h \to 0} \left[ \frac{-\cos x (1 - \cos h) - \sin x \sin h}{h} \right]$$

$$= \lim_{h \to 0} \left[ \frac{-\cos x (1 - \cos h) - \sin x \sin h}{h} \right]$$

$$= -\cos x \left( \lim_{h \to 0} \frac{1 - \cos h}{h} \right) - \sin x \lim_{h \to 0} \left( \frac{\sin h}{h} \right)$$

$$= -\cos x (0) - \sin x (1) \qquad \left[ \lim_{h \to 0} \frac{1 - \cos h}{h} = 0 \text{ and } \lim_{h \to 0} \frac{\sin h}{h} = 1 \right]$$

 $\therefore f'(x) = -\sin x$ 

#### Question 11:

Find the derivative of the following functions:

| (i) sin <i>x</i> cos <i>x</i>       | (ii) sec <i>x</i>     | (iii) 5 sec $x$ + 4 cos $x$  |
|-------------------------------------|-----------------------|------------------------------|
| (iv) cosec x                        | (v) 3cot x + 5cosec x | (vi) $5\sin x - 6\cos x + 7$ |
| (vii) 2tan <i>x</i> – 7sec <i>x</i> |                       |                              |

#### Answer 11:

(i) Let  $f(x) = \sin x \cos x$ .

Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
=  $\lim_{h \to 0} \frac{\sin(x+h)\cos(x+h) - \sin x \cos x}{h}$   
=  $\lim_{h \to 0} \frac{1}{2h} [2\sin(x+h)\cos(x+h) - 2\sin x \cos x]$   
=  $\lim_{h \to 0} \frac{1}{2h} [\sin 2(x+h) - \sin 2x]$   
=  $\lim_{h \to 0} \frac{1}{2h} [2\cos \frac{2x+2h+2x}{2} \cdot \sin \frac{2x+2h-2x}{2}]$   
=  $\lim_{h \to 0} \frac{1}{h} [\cos \frac{4x+2h}{2} \sin \frac{2h}{2}]$   
=  $\lim_{h \to 0} \frac{1}{h} [\cos(2x+h)\sin h]$   
=  $\lim_{h \to 0} \cos(2x+h) \cdot \lim_{h \to 0} \frac{\sin h}{h}$   
=  $\cos(2x+0) \cdot 1$   
=  $\cos 2x$ 

(ii) Let  $f(x) = \sec x$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sec(x+h) - \sec x}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-1}{\cos(x+h)} - \frac{1}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\cos x - \cos(x+h)}{\cos x \cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2\sin\left(\frac{x+x+h}{2}\right)\sin\left(\frac{x-x-h}{2}\right)}{\cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2\sin\left(\frac{2x+h}{2}\right)\sin\left(-\frac{h}{2}\right)}{\cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin\left(\frac{2x+h}{2}\right)\frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\cos(x+h)} \right]$$

(iii) Let  $f(x) = 5 \sec x + 4 \cos x$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
=  $\lim_{h \to 0} \frac{5 \sec(x+h) + 4 \cos(x+h) - [5 \sec x + 4 \cos x]}{h}$   
=  $5 \lim_{h \to 0} \frac{[\sec(x+h) - \sec x]}{h} + 4 \lim_{h \to 0} \frac{[\cos(x+h) - \cos x]}{h}$   
=  $5 \lim_{h \to 0} \frac{1}{h} \left[ \frac{1}{\cos(x+h)} - \frac{1}{\cos x} \right] + 4 \lim_{h \to 0} \frac{1}{h} \left[ \cos(x+h) - \cos x \right]$   
=  $5 \lim_{h \to 0} \frac{1}{h} \left[ \frac{\cos x - \cos(x+h)}{\cos x \cos(x+h)} \right] + 4 \lim_{h \to 0} \frac{1}{h} \left[ \cos x \cos h - \sin x \sin h - \cos x \right]$   
=  $\frac{5}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2 \sin\left(\frac{x+x+h}{2}\right) \sin\left(\frac{x-x-h}{2}\right)}{\cos(x+h)} \right] + 4 \lim_{h \to 0} \frac{1}{h} \left[ -\cos x (1 - \cos h) - \sin x \sin h \right]$   
=  $\frac{5}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2 \sin\left(\frac{2x+h}{2}\right) \sin\left(-\frac{h}{2}\right)}{\cos(x+h)} \right] + 4 \left[ -\cos x \lim_{h \to 0} \frac{(1 - \cos h)}{h} - \sin x \lim_{h \to 0} \frac{\sin h}{h} \right]$   
=  $\frac{5}{\cos x} \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin\left(\frac{2x+h}{2}\right) \cdot \frac{\sin\left(\frac{h}{2}\right)}{\cos(x+h)}}{\cos(x+h)} \right] + 4 \left[ (-\cos x) (0) - (\sin x) \cdot 1 \right]$   
=  $\frac{5}{\cos x} \left[ \lim_{h \to 0} \frac{\sin\left(\frac{2x+h}{2}\right)}{\cos(x+h)} \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \right] - 4 \sin x$   
=  $\frac{5}{\cos x} \frac{\sin x}{\cos x} \cdot 1 - 4\sin x$   
=  $5 \sec x \tan x - 4 \sin x$ 

(iv) Let  $f(x) = \operatorname{cosec} x$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$f'(x) = \lim_{h \to 0} \frac{1}{h} \left[ \operatorname{cosec}(x+h) - \operatorname{cosecx} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{1}{\sin(x+h)} - \frac{1}{\sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\frac{\sin x - \sin(x+h)}{\sin(x+h)\sin x}}{\sin(x+h)\sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{2 \cos\left(\frac{x+x+h}{2}\right) \cdot \sin\left(\frac{x-x-h}{2}\right)}{\sin(x+h)\sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{2 \cos\left(\frac{2x+h}{2}\right) \sin\left(-\frac{h}{2}\right)}{\sin(x+h)\sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{\sin(x+h)\sin x}$$

$$= \lim_{h \to 0} \frac{-\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h)\sin x} \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}$$

$$= \left[\lim_{h \to 0} \frac{-\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h)\sin x} \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}$$

$$= \left(\frac{-\cos x}{\sin x \sin x}\right) \cdot 1$$

$$= -\operatorname{cosecx \cot x}$$

(v) Let 
$$f(x) = 3\cot x + 5\csc x$$
.

Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{3\cot(x+h) + 5\csc(x+h) - 3\cot x - 5\csc x}{h}$$

$$= 3\lim_{h \to 0} \frac{1}{h} \left[\cot(x+h) - \cot x\right] + 5\lim_{h \to 0} \frac{1}{h} \left[\csc(x+h) - \csc x\right] \qquad \dots (1)$$
Now, 
$$\lim_{h \to 0} \frac{1}{h} \left[\cot(x+h) - \cot x\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\cos(x+h)}{\sin(x+h)} - \frac{\cos x}{\sin x}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\cos(x+h)\sin x - \cos x\sin(x+h)}{\sin x\sin(x+h)}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(x-x-h)}{\sin x\sin(x+h)}\right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[\frac{\sin(-h)}{\sin x\sin(x+h)}\right]$$

$$= -\left(\lim_{h \to 0} \frac{\sin h}{h}\right) \cdot \left(\lim_{h \to 0} \frac{1}{\sin x \cdot \sin(x+h)}\right)$$

$$= -1, \frac{1}{\sin x \cdot \sin(x+0)} = \frac{-1}{\sin^2 x} = -\csc^2 x \qquad \dots (2)$$

$$\lim_{h \to 0} \frac{1}{h} \left[ \operatorname{cosec}(x+h) - \operatorname{cosecx} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{1}{\sin(x+h)} - \frac{1}{\sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin x - \sin(x+h)}{\sin(x+h) \sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{2 \cos\left(\frac{x+x+h}{2}\right) \cdot \sin\left(\frac{x-x-h}{2}\right)}{\sin(x+h) \sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{2 \cos\left(\frac{2x+h}{2}\right) \sin\left(-\frac{h}{2}\right)}{\sin(x+h) \sin x} \right]$$

$$= \lim_{h \to 0} \frac{-\cos\left(\frac{2x+h}{2}\right) \cdot \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}}{\sin(x+h) \sin x}$$

$$= \lim_{h \to 0} \left( \frac{-\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h) \sin x} \right) \lim_{\frac{h}{2} \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}$$

$$= \left( \frac{-\cos x}{\sin x \sin x} \right) .1$$

$$= -\operatorname{cosecct} x \qquad ...(3)$$
From (1), (2), and (3), we obtain  $f'(x) = -3\operatorname{cosec}^2 x - 5\operatorname{cosec} x \cot x$ 

(vi) Let  $f(x) = 5\sin x - 6\cos x + 7$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \Big[ 5\sin(x+h) - 6\cos(x+h) + 7 - 5\sin x + 6\cos x - 7 \Big]$$

$$= \lim_{h \to 0} \frac{1}{h} \Big[ 5\{\sin(x+h) - \sin x\} - 6\{\cos(x+h) - \cos x\} \Big]$$

$$= 5\lim_{h \to 0} \frac{1}{h} \Big[ \sin(x+h) - \sin x] - 6\lim_{h \to 0} \frac{1}{h} \Big[ \cos(x+h) - \cos x \Big]$$

$$= 5\lim_{h \to 0} \frac{1}{h} \Big[ 2\cos\left(\frac{x+h+x}{2}\right) \sin\left(\frac{x+h-x}{2}\right) \Big] - 6\lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= 5\lim_{h \to 0} \frac{1}{h} \Big[ 2\cos\left(\frac{2x+h}{2}\right) \sin\frac{h}{2} \Big] - 6\lim_{h \to 0} \Big[ \frac{-\cos x(1 - \cos h) - \sin x \sin h}{h} \Big]$$

$$= 5\lim_{h \to 0} \Big( \cos\left(\frac{2x+h}{2}\right) \frac{\sin\frac{h}{2}}{\frac{h}{2}} \Big) - 6\lim_{h \to 0} \Big[ \frac{-\cos x(1 - \cos h) - \sin x \sin h}{h} \Big]$$

$$= 5 \Big[ \lim_{h \to 0} \cos\left(\frac{2x+h}{2}\right) \frac{\sin\frac{h}{2}}{\frac{h}{2}} \Big] - 6 \Big[ (-\cos x) \Big( \lim_{h \to 0} \frac{1 - \cos h}{h} - \sin x \lim_{h \to 0} \left(\frac{\sin h}{h}\right) \Big]$$

$$= 5 \cos x \cdot 1 - 6 \Big[ (-\cos x) \cdot (0) - \sin x \cdot 1 \Big]$$

$$= 5 \cos x + 6 \sin x$$

(vii) Let  $f(x) = 2 \tan x - 7 \sec x$ . Accordingly, from the first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  

$$= \lim_{h \to 0} \frac{1}{h} \Big[ 2 \{ \tan(x+h) - 7 \sec(x+h) - 2 \tan x + 7 \sec x \Big]$$
  

$$= \lim_{h \to 0} \frac{1}{h} \Big[ 2 \{ \tan(x+h) - \tan x \} - 7 \{ \sec(x+h) - \sec x \} \Big]$$
  

$$= 2 \lim_{h \to 0} \frac{1}{h} \Big[ \tan(x+h) - \tan x \Big] - 7 \lim_{h \to 0} \frac{1}{h} \Big[ \sec(x+h) - \sec x \Big]$$
  

$$= 2 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \Big] - 7 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{1}{\cos(x+h)} - \frac{1}{\cos x} \Big]$$
  

$$= 2 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{\sin(x+h)\cos x - \sin x\cos(x+h)}{\cos x\cos(x+h)} \Big] - 7 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{\cos x - \cos(x+h)}{\cos x\cos(x+h)} \Big]$$
  

$$= 2 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{\sin(x+h-x)}{\cos x\cos(x+h)} \Big] - 7 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{-2\sin\left(\frac{x+x+h}{2}\right)\sin\left(\frac{x-x-h}{2}\right)}{\cos x\cos(x+h)} \Big]$$
  

$$= 2 \lim_{h \to 0} \Big[ \Big( \frac{\sin h}{h} \Big) \frac{1}{\cos x\cos(x+h)} \Big] - 7 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{-2\sin\left(\frac{2x+h}{2}\right)\sin\left(-\frac{h}{2}\right)}{\cos x\cos(x+h)} \Big]$$
  

$$= 2 \lim_{h \to 0} \frac{\sin h}{h} \Big[ \lim_{h \to 0} \frac{1}{\cos x\cos(x+h)} \Big] - 7 \lim_{h \to 0} \frac{1}{h} \Big[ \frac{-2\sin\left(\frac{2x+h}{2}\right)\sin\left(-\frac{h}{2}\right)}{\cos x\cos(x+h)} \Big]$$
  

$$= 2 (\lim_{h \to 0} \frac{\sin h}{h}) \Big[ \lim_{h \to 0} \frac{1}{\cos x\cos(x+h)} \Big] - 7 \Big[ \lim_{h \to 0} \frac{\sin h}{h} \Big] \Big[ \lim_{h \to 0} \frac{\sin(2x+h)}{\cos x\cos(x+h)} \Big]$$
  

$$= 2 (1 \cdot \frac{1}{\cos x\cos x} - 7 \cdot 1 \Big( \frac{\sin x}{\cos x\cos x} \Big)$$
  

$$= 2 \sec^{2} x - 7 \sec x \tan x$$

## **Mathematics**

#### (Chapter – 13) (Limits and Derivatives) (Class XI) Miscellaneous Exercise

#### **Question 1:**

Find the derivative of the following functions from first principle:

(i) -x (ii)  $(-x)^{-1}$ (iii)  $\sin (x + 1)$  (iv)  $\cos \left( x - \frac{\pi}{8} \right)$ 

#### Answer 1:

(i) Let 
$$f(x) = -x$$
. Accordingly,  $f(x+h) = -(x+h)$ 

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{-(x+h) - (-x)}{h}$$
$$= \lim_{h \to 0} \frac{-x - h + x}{h}$$
$$= \lim_{h \to 0} \frac{-h}{h}$$
$$= \lim_{h \to 0} (-1) = -1$$

Champ

(ii) Let 
$$f(x) = (-x)^{-1} = \frac{1}{-x} = \frac{-1}{x}$$
. Accordingly,  $f(x+h) = \frac{-1}{(x+h)}$ 

By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-1}{x+h} - \left( \frac{-1}{x} \right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-1}{x+h} + \frac{1}{x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-x + (x+h)}{x(x+h)} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{-x + x + h}{x(x+h)} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{h}{x(x+h)} \right]$$

$$= \lim_{h \to 0} \frac{1}{x(x+h)}$$

$$= \lim_{h \to 0} \frac{1}{x(x+h)}$$

(iii) Let  $f(x) = \sin (x + 1)$ . Accordingly,  $f(x+h) = \sin(x+h+1)$ By first principle,

$$f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
  
=  $\lim_{h \to 0} \frac{1}{h} \Big[ \sin(x+h+1) - \sin(x+1) \Big]$   
=  $\lim_{h \to 0} \frac{1}{h} \Big[ 2\cos\left(\frac{x+h+1+x+1}{2}\right) \sin\left(\frac{x+h+1-x-1}{2}\right) \Big]$   
=  $\lim_{h \to 0} \frac{1}{h} \Big[ 2\cos\left(\frac{2x+h+2}{2}\right) \sin\left(\frac{h}{2}\right) \Big]$   
=  $\lim_{h \to 0} \cos\left(\frac{2x+h+2}{2}\right) \cdot \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \Big]$   
=  $\lim_{h \to 0} \cos\left(\frac{2x+h+2}{2}\right) \cdot \lim_{\frac{h}{2} \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \qquad \left[ As \ h \to 0 \Rightarrow \frac{h}{2} \to 0 \right]$   
=  $\cos\left(\frac{2x+0+2}{2}\right) \cdot 1 \qquad \left[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$   
=  $\cos(x+1)$   
(iv) Let  $f(x) = \cos\left(x - \frac{\pi}{8}\right)$ . Accordingly,  $f(x+h) = \cos\left(x+h - \frac{\pi}{8}\right)$ 

By first principle,

$$f'(x) = \lim_{b \to 0} \frac{f(x+h) - f(x)}{h}$$
  
=  $\lim_{b \to 0} \frac{1}{h} \left[ \cos\left(x+h-\frac{\pi}{8}\right) - \cos\left(x-\frac{\pi}{8}\right) \right]$   
=  $\lim_{b \to 0} \frac{1}{h} \left[ -2\sin\left(\frac{x+h-\frac{\pi}{8}+x-\frac{\pi}{8}}{2}\right)\sin\left(\frac{x+h-\frac{\pi}{8}-x+\frac{\pi}{8}}{2}\right) \right]$   
=  $\lim_{b \to 0} \frac{1}{h} \left[ -2\sin\left(\frac{2x+h-\frac{\pi}{4}}{2}\right)\sin\frac{h}{2} \right]$   
=  $\lim_{b \to 0} \left[ -\sin\left(\frac{2x+h-\frac{\pi}{4}}{2}\right)\frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right]$   
=  $\lim_{b \to 0} \left[ -\sin\left(\frac{2x+h-\frac{\pi}{4}}{2}\right) \right] \cdot \lim_{\frac{h}{2} \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)}$  [As  $h \to 0 \Rightarrow \frac{h}{2} \to 0$ ]

#### **Question 2:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + a)

#### Answer 2:

Let f(x) = x + a. Accordingly, f(x+h) = x+h+aBy first principle,  $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$   $= \lim_{h \to 0} \frac{x+h+a-x-a}{h}$   $= \lim_{h \to 0} \left(\frac{h}{h}\right)$  $= \lim_{h \to 0} (1)$ 

#### Question 3:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and s are fixed non-zero constants and m and n are integers):  $(px+q)\left(\frac{r}{x}+s\right)$ Answer 3: Let  $f(x) = (px+q)\left(\frac{r}{x}+s\right)$   $f'(x) = (px+q)\left(\frac{r}{x}+s\right)' + \left(\frac{r}{x}+s\right)(px+q)'$   $= (px+q)(rx^{-1}+s)' + \left(\frac{r}{x}+s\right)(p)$   $= (px+q)\left(-rx^{-2}\right) + \left(\frac{r}{x}+s\right)p$   $= (px+q)\left(\frac{-r}{x^2}\right) + \left(\frac{r}{x}+s\right)p$   $= \frac{-pr}{x} - \frac{qr}{x^2} + \frac{pr}{x} + ps$  $= ps - \frac{qr}{x^2}$ 

#### **Question 4:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers)

#### Answer 4:

Let  $f(x) = (ax+b)(cx+d)^2$ By product rule,

$$f'(x) = (ax+b)\frac{d}{dx}(cx+d)^{2} + (cx+d)^{2}\frac{d}{dx}(ax+b)$$
  
=  $(ax+b)\frac{d}{dx}(c^{2}x^{2} + 2cdx + d^{2}) + (cx+d)^{2}\frac{d}{dx}(ax+b)$   
=  $(ax+b)\left[\frac{d}{dx}(c^{2}x^{2}) + \frac{d}{dx}(2cdx) + \frac{d}{dx}d^{2}\right] + (cx+d)^{2}\left[\frac{d}{dx}ax + \frac{d}{dx}b\right]$   
=  $(ax+b)(2c^{2}x+2cd) + (cx+d^{2})a$   
=  $2c(ax+b)(cx+d) + a(cx+d)^{2}$ 

#### **Question 5:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{ax+b}{cx+d}$ 

Let

$$f(x) = \frac{ax+b}{cx+d}$$

$$f'(x) = \frac{(cx+d)\frac{d}{dx}(ax+b) - (ax+b)\frac{d}{dx}(cx+d)}{(cx+d)^2}$$
$$= \frac{(cx+d)(a) - (ax+b)(c)}{(cx+d)^2}$$
$$= \frac{acx+ad-acx-bc}{(cx+d)^2}$$
$$= \frac{ad-bc}{(cx+d)^2}$$

#### **Question 6:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):



Answer 6:

Let 
$$f(x) = \frac{1 + \frac{1}{x}}{1 - \frac{1}{x}} = \frac{\frac{x+1}{x}}{\frac{x-1}{x}} = \frac{x+1}{x-1}$$
, where  $x \neq 0$ 

$$f'(x) = \frac{(x-1)\frac{d}{dx}(x+1) - (x+1)\frac{d}{dx}(x-1)}{(x-1)^2}, x \neq 0, 1$$
$$= \frac{(x-1)(1) - (x+1)(1)}{(x-1)^2}, x \neq 0, 1$$
$$= \frac{x-1-x-1}{(x-1)^2}, x \neq 0, 1$$
$$= \frac{-2}{(x-1)^2}, x \neq 0, 1$$

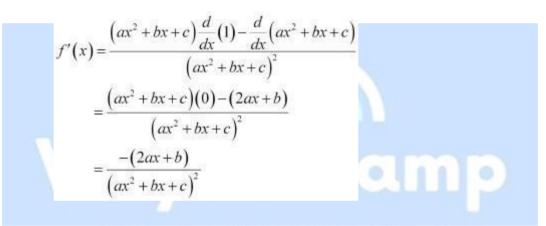
#### **Question 7:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{1}{ax^2 + bx + c}$ 

#### Answer 7:

Let 
$$f(x) = \frac{1}{ax^2 + bx + c}$$

By quotient rule,



#### **Question 8:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{ax+b}{px^2+qx+r}$ 

$$\operatorname{Let} f(x) = \frac{ax+b}{px^2+qx+r}$$

$$f'(x) = \frac{\left(px^2 + qx + r\right)\frac{d}{dx}(ax + b) - (ax + b)\frac{d}{dx}(px^2 + qx + r)}{\left(px^2 + qx + r\right)^2}$$
$$= \frac{\left(px^2 + qx + r\right)(a) - (ax + b)(2px + q)}{\left(px^2 + qx + r\right)^2}$$
$$= \frac{apx^2 + aqx + ar - 2apx^2 - aqx - 2bpx - bq}{\left(px^2 + qx + r\right)^2}$$
$$= \frac{-apx^2 - 2bpx + ar - bq}{\left(px^2 + qx + r\right)^2}$$

#### **Question 9:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{px^2 + qx + r}{ax + b}$ Answer 9: <sup>t</sup>ya Champ

$$\operatorname{Let} f(x) = \frac{px^2 + qx + qx}{ax + b}$$

$$f'(x) = \frac{(ax+b)\frac{d}{dx}(px^2+qx+r) - (px^2+qx+r)\frac{d}{dx}(ax+b)}{(ax+b)^2}$$
$$= \frac{(ax+b)(2px+q) - (px^2+qx+r)(a)}{(ax+b)^2}$$
$$= \frac{2apx^2 + aqx + 2bpx + bq - apx^2 - aqx - ar}{(ax+b)^2}$$
$$= \frac{apx^2 + 2bpx + bq - ar}{(ax+b)^2}$$

#### **Question 10:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* 

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{a}{x^4} - \frac{b}{x^2} + \cos x$ Answer 10:

Let 
$$f(x) = \frac{a}{x^4} - \frac{b}{x^2} + \cos x$$
  
 $f'(x) = \frac{d}{dx} \left(\frac{a}{x^4}\right) - \frac{d}{dx} \left(\frac{b}{x^2}\right) + \frac{d}{dx} (\cos x)$   
 $= a \frac{d}{dx} (x^{-4}) - b \frac{d}{dx} (x^{-2}) + \frac{d}{dx} (\cos x)$   
 $= a (-4x^{-5}) - b (-2x^{-3}) + (-\sin x) \qquad \left[\frac{d}{dx} (x^n) = nx^{n-1} \text{and } \frac{d}{dx} (\cos x) = -\sin x\right]$   
 $= \frac{-4a}{x^5} + \frac{2b}{x^3} - \sin x$ 

#### **Question 11:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $4\sqrt{x}-2$ 

Let 
$$f(x) = 4\sqrt{x} - 2$$
  
 $f'(x) = \frac{d}{dx} (4\sqrt{x} - 2) = \frac{d}{dx} (4\sqrt{x}) - \frac{d}{dx} (2)$   
 $= 4\frac{d}{dx} (x^{\frac{1}{2}}) - 0 = 4 (\frac{1}{2}x^{\frac{1}{2}-1})$   
 $= (2x^{-\frac{1}{2}}) = \frac{2}{\sqrt{x}}$ 

#### **Question 12:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $(ax + b)^n$ 

#### Answer 12:

By first principle,

Let  $f(x) = (ax+b)^n$ . Accordingly,  $f(x+h) = \{a(x+h)+b\}^n = (ax+ah+b)^n$ 

 $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$  $=\lim_{h\to 0}\frac{(ax+ah+b)^n-(ax+b)^n}{b}$  $=\lim_{b\to 0}\frac{\left(ax+b\right)^n\left(1+\frac{ah}{ax+b}\right)^n-\left(ax+b\right)^n}{b}$  $= (ax+b)^n \lim_{h \to a} \frac{\left(1 + \frac{ah}{ax+b}\right)^n - 1}{b}$  $= (ax+b)^{n} \lim_{h \to 0} \frac{1}{n} \left\{ 1 + n \left( \frac{ah}{ax+b} \right) + \frac{n(n-1)}{2} \left( \frac{ah}{ax+b} \right)^{2} + \dots \right\} - 1 \right\}$ (Using binomial theorem)  $= (ax+b)^n \lim_{h \to 0} \frac{1}{h} \left| n \left( \frac{ah}{ax+b} \right) + \frac{n(n-1)a^2h^2}{\left| 2(ax+b)^2 \right|^2} + \dots \text{ (Terms containing higher degrees of } h \text{)} \right|$  $=(ax+b)^{n}\lim_{b\to 0}\left|\frac{na}{(ax+b)}+\frac{n(n-1)a^{2}h}{12(ax+b)^{2}}+...\right|$  $=(ax+b)^n\left[\frac{na}{(ax+b)}+0\right]$  $=na\frac{(ax+b)}{(ax+b)}$  $= na(ax+b)^{n-1}$ 

#### Question 13:

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $(ax + b)^n (cx + d)^m$ 

Answer 13: Let 
$$f(x) = (ax+b)^n (cx+d)^m$$
  
 $f'(x) = (ax+b)^n \frac{d}{dx} (cx+d)^m + (cx+d)^m \frac{d}{dx} (ax+b)^n$  ...(1)  
Now, let  $f_1(x) = (cx+d)^m$   
 $f_1(x+h) = (cx+ch+d)^m$   
 $f_1'(x) = \lim_{h \to 0} \frac{f_1(x+h) - f_1(x)}{h}$   
 $= \lim_{h \to 0} \frac{(cx+ch+d)^m - (cx+d)^n}{h}$   
 $= (cx+d)^m \lim_{h \to 0} \frac{1}{h} \left[ \left( 1 + \frac{ch}{cx+d} \right)^m - 1 \right]$   
 $= (cx+d)^m \lim_{h \to 0} \frac{1}{h} \left[ \left( 1 + \frac{mch}{(cx+d)} + \frac{m(m-1)}{2} \frac{(c^2h^2)}{(cx+d)^2} + ... \right) - 1 \right]$   
 $= (cx+d)^m \lim_{h \to 0} \frac{1}{h} \left[ \frac{mch}{(cx+d)} + \frac{m(m-1)c^2h^2}{2(cx+d)^2} + ... (Terms containing higher degrees of h) \right]$   
 $= (cx+d)^m \lim_{h \to 0} \left[ \frac{mc}{(cx+d)} + \frac{m(m-1)c^2h}{2(cx+d)^2} + ... \right]$   
 $= (cx+d)^m \left[ \frac{mc}{(cx+d)} + 0 \right]$   
 $= mc(cx+d)^m$   
 $= mc(cx+d)^m$   
 $m (cx+d)^{m-1}$  ...(2)  
Similarly,  $\frac{d}{dx} (ax+b)^n = na(ax+b)^{n-1}$  ...(3)

Therefore, from (1), (2), and (3), we obtain

$$f'(x) = (ax+b)^{n} \{ mc(cx+d)^{m-1} \} + (cx+d)^{m} \{ na(ax+b)^{n-1} \}$$
$$= (ax+b)^{n-1} (cx+d)^{m-1} [mc(ax+b) + na(cx+d)]$$

#### **Question 14:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): sin (x + a)

#### Answer 14:

Let  $f(x) = \sin(x+a)$ , therefore  $f(x+h) = \sin(x+h+a)$ By first principle,

$$f''(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

$$= \lim_{h \to 0} \frac{\sin(x+h+a) - \sin(x+a)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ 2\cos\left(\frac{x+h+a+x+a}{2}\right) \sin\left(\frac{x+h+a-x-a}{2}\right) \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ 2\cos\left(\frac{2x+2a+h}{2}\right) \sin\left(\frac{h}{2}\right) \right]$$

$$= \lim_{h \to 0} \left[ \cos\left(\frac{2x+2a+h}{2}\right) \left\{ \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\} \right]$$

$$= \lim_{h \to 0} \cos\left(\frac{2x+2a+h}{2}\right) \lim_{\frac{h}{2} \to 0} \left\{ \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\}$$

$$= \cos\left(\frac{2x+2a}{2}\right) \times 1$$

$$= \cos\left(\frac{2x+2a}{2}\right) \times 1$$

$$= \cos\left(x+a\right)$$

$$\left[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \right]$$

#### **Question 15:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): cosec  $x \cot x$ 

#### Answer 15:

 $\int f(x) = \operatorname{cosec} x \cot x$ By product rule,  $f'(x) = \operatorname{cosec} x (\cot x)' + \cot x (\operatorname{cosec} x)'$ ...(1) Let  $f_1(x) = \cot x$ . Accordingly,  $f_1(x+h) = \cot(x+h)$ By first principle,  $f_{1}'(x) = \lim_{h \to 0} \frac{f_{1}(x+h) - f_{1}(x)}{h}$  $=\lim_{h\to 0}\frac{\cot(x+h)-\cot x}{h}$  $=\lim_{h\to 0}\frac{1}{h}\left(\frac{\cos\left(x+h\right)}{\sin\left(x+h\right)}-\frac{\cos x}{\sin x}\right)$  $= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin x \cos (x+h) - \cos x \sin (x+h)}{\sin x \sin (x+h)} \right]$  $= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin (x-x-h)}{\sin x \sin (x+h)} \right]$  $=\lim_{h\to 0}\frac{1}{h}\left[\frac{\sin(x-x-h)}{\sin x\sin(x+h)}\right]$  $=\frac{1}{\sin x}\lim_{h\to 0}\frac{1}{h}\left[\frac{\sin(-h)}{\sin(x+h)}\right]$  $=\frac{-1}{\sin x}\left(\lim_{h\to 0}\frac{\sin h}{h}\right)\left(\lim_{h\to 0}\frac{1}{\sin(x+h)}\right)$  $=\frac{-1}{\sin x} \cdot 1 \cdot \left(\frac{1}{\sin(x+0)}\right)$  $=\frac{-1}{\sin^2 x}$  $= -\cos^2 x$  $\therefore (\cot x)' = -\csc^2 x$ ...(2)

Now, let  $f_2(x) = \operatorname{cosec} x$ . Accordingly,  $f_2(x+h) = \operatorname{cosec}(x+h)$ By first principle,

**r** 

 $f_{2}'(x) = \lim_{h \to 0} \frac{f_{2}(x+h) - f_{2}(x)}{h}$  $= \lim_{h \to 0} \frac{1}{h} \left[ \operatorname{cosec}(x+h) - \operatorname{cosec} x \right]$ 

From (1), (2), and (3), we obtain



$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{1}{\sin(x+h)} - \frac{1}{\sin x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin x - \sin(x+h)}{\sin x \sin(x+h)} \right]$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{2 \cos\left(\frac{x+x+h}{2}\right) \sin\left(\frac{x-x-h}{2}\right)}{\sin(x+h)} \right]$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{2 \cos\left(\frac{2x+h}{2}\right) \sin\left(\frac{-h}{2}\right)}{\sin(x+h)} \right]$$

$$= \frac{1}{\sin x} \cdot \lim_{h \to 0} \left[ \frac{-\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h)} \right]$$

$$= \frac{-1}{\sin x} \cdot \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \cdot \lim_{h \to 0} \frac{\cos\left(\frac{2x+h}{2}\right)}{\sin(x+h)}$$

$$= \frac{-1}{\sin x} \cdot 1 \cdot \frac{\cos\left(\frac{2x+0}{2}\right)}{\sin(x+0)}$$

$$= \frac{-1}{\sin x} \cdot \frac{\cos x}{\sin x}$$

$$= -\cos \sec x \cdot \cot x$$

$$\therefore (\operatorname{cosec} x)' = -\operatorname{cosecx.cot} x \quad \dots (3)$$

$$f'(x) = \operatorname{cosec} x \left( -\operatorname{cosec}^2 x \right) + \operatorname{cot} x \left( -\operatorname{cosec} x \operatorname{cot} x \right)$$
$$= -\operatorname{cosec}^3 x - \operatorname{cot}^2 x \operatorname{cosec} x$$

#### **Question 16:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{\cos x}{1+\sin x}$ 

Let  $f(x) = \frac{\cos x}{1 + \sin x}$ By quotient rule,  $f'(x) = \frac{(1 + \sin x)\frac{d}{dx}(\cos x) - (\cos x)\frac{d}{dx}(1 + \sin x)}{(1 + \sin x)^2}$   $= \frac{(1 + \sin x)(-\sin x) - (\cos x)(\cos x)}{(1 + \sin x)^2}$   $= \frac{-\sin x - \sin^2 x - \cos^2 x}{(1 + \sin x)^2}$   $= \frac{-\sin x - (\sin^2 x + \cos^2 x)}{(1 + \sin x)^2}$   $= \frac{-\sin x - 1}{(1 + \sin x)^2}$   $= \frac{-(1 + \sin x)}{(1 + \sin x)^2}$  $= \frac{-1}{(1 + \sin x)}$ 

#### **Question 17:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* 

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{\sin x + \cos x}{\sin x - \cos x}$ 

#### Answer 17:

Let  $f(x) = \frac{\sin x + \cos x}{\sin x - \cos x}$ 

$$f'(x) = \frac{(\sin x - \cos x)\frac{d}{dx}(\sin x + \cos x) - (\sin x + \cos x)\frac{d}{dx}(\sin x - \cos x)}{(\sin x - \cos x)^2}$$
$$= \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2}$$
$$= \frac{-(\sin x - \cos x)^2 - (\sin x + \cos x)^2}{(\sin x - \cos x)^2}$$
$$= \frac{-[\sin^2 x + \cos^2 x - 2\sin x \cos x + \sin^2 x + \cos^2 x + 2\sin x \cos x]}{(\sin x - \cos x)^2}$$
$$= \frac{-[1+1]}{(\sin x - \cos x)^2}$$
$$= \frac{-2}{(\sin x - \cos x)^2}$$

#### Question 18:

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* 

and s are fixed non-zero constants and m and n are integers): 
$$\frac{\sec x - 1}{\sec x + 1}$$
Let  $f(x) = \frac{\sec x - 1}{\sec x + 1}$ 
 $f(x) = \frac{1}{\cos x} - 1}{1} = \frac{1 - \cos x}{1 + \cos x}$ 
By quotient rule,
$$f'(x) = \frac{(1 + \cos x)\frac{d}{dx}(1 - \cos x) - (1 - \cos x)\frac{d}{dx}(1 + \cos x)}{(1 + \cos x)^2}$$

$$= \frac{(1 + \cos x)(\sin x) - (1 - \cos x)(-\sin x)}{(1 + \cos x)^2}$$

$$= \frac{\sin x + \cos x \sin x + \sin x - \sin x \cos x}{(1 + \cos x)^2}$$

$$= \frac{2\sin x}{(\sec x + 1)^2}$$

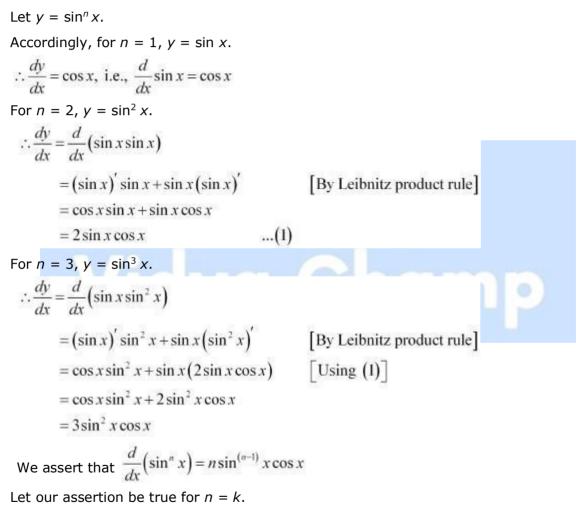
$$= \frac{2\sin x \sec^2 x}{(\sec x + 1)^2}$$

$$= \frac{2\sec x \tan x}{(\sec x + 1)^2}$$

#### **Question 19:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $sin^n x$ 

#### Answer 19:



i.e., 
$$\frac{d}{dx}(\sin^k x) = k \sin^{(k-1)} x \cos x$$
 ...(2)

Consider

$$\frac{d}{dx}(\sin^{k+1}x) = \frac{d}{dx}(\sin x \sin^k x)$$
  
=  $(\sin x)' \sin^k x + \sin x (\sin^k x)'$  [By Leibnitz product rule]  
=  $\cos x \sin^k x + \sin x (k \sin^{(k-1)} x \cos x)$  [Using (2)]  
=  $\cos x \sin^k x + k \sin^k x \cos x$   
=  $(k+1) \sin^k x \cos x$ 

Thus, our assertion is true for n = k + 1.

Hence, by mathematical induction,

$$\frac{d}{dx}(\sin^n x) = n\sin^{(n-1)}x\cos x$$

#### Question 20:

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* 

Vidya Champ

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{a+b\sin x}{c+d\cos x}$ 

 $\operatorname{Let} f(x) = \frac{a + b \sin x}{c + d \cos x}$ 

$$f'(x) = \frac{\left(c+d\cos x\right)\frac{d}{dx}(a+b\sin x) - (a+b\sin x)\frac{d}{dx}(c+d\cos x)}{\left(c+d\cos x\right)^2}$$
$$= \frac{\left(c+d\cos x\right)\left(b\cos x\right) - \left(a+b\sin x\right)\left(-d\sin x\right)}{\left(c+d\cos x\right)^2}$$
$$= \frac{cb\cos x + bd\cos^2 x + ad\sin x + bd\sin^2 x}{\left(c+d\cos x\right)^2}$$
$$= \frac{bc\cos x + ad\sin x + bd\left(\cos^2 x + \sin^2 x\right)}{\left(c+d\cos x\right)^2}$$
$$= \frac{bc\cos x + ad\sin x + bd}{\left(c+d\cos x\right)^2}$$

#### **Question 21:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers): Answer 21:

 $\sin(x+a)$ cosx

Let  $f(x) = \frac{\sin(x+a)}{\cos x}$ 

By quotient rule,

$$f'(x) = \frac{\cos x \frac{d}{dx} \left[ \sin(x+a) \right] - \sin(x+a) \frac{d}{dx} \cos x}{\cos^2 x}$$
$$f'(x) = \frac{\cos x \frac{d}{dx} \left[ \sin(x+a) \right] - \sin(x+a) (-\sin x)}{\cos^2 x} \qquad \dots (i)$$

Let  $g(x) = \sin(x+a)$ . Accordingly,  $g(x+h) = \sin(x+h+a)$ 

By first principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \frac{1}{h} \Big[ \sin(x+h+a) - \sin(x+a) \Big]$$

$$= \lim_{h \to 0} \frac{1}{h} \Big[ 2\cos\left(\frac{x+h+a+x+a}{2}\right) \sin\left(\frac{x+h+a-x-a}{2}\right) \Big]$$

$$= \lim_{h \to 0} \frac{1}{h} \Big[ 2\cos\left(\frac{2x+2a+h}{2}\right) \sin\left(\frac{h}{2}\right) \Big]$$

$$= \lim_{h \to 0} \cos\left(\frac{2x+2a+h}{2}\right) \left\{ \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\} \Big]$$

$$= \lim_{h \to 0} \cos\left(\frac{2x+2a+h}{2}\right) \cdot \lim_{\frac{h}{2} \to 0} \left\{ \frac{\sin\left(\frac{h}{2}\right)}{\left(\frac{h}{2}\right)} \right\} \qquad \left[ As \ h \to 0 \Rightarrow \frac{h}{2} \to 0 \right]$$

$$= \Big[ \cos\left(\frac{2x+2a}{2}\right) \times 1 \qquad \left[ \lim_{h \to 0} \frac{\sin h}{h} = 1 \right]$$

From (i) and (ii), we obtain

$$f'(x) = \frac{\cos x \cdot \cos(x+a) + \sin x \sin(x+a)}{\cos^2 x}$$
$$= \frac{\cos(x+a-x)}{\cos^2 x}$$
$$= \frac{\cos a}{\cos^2 x}$$

#### **Question 22:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $x^4$  (5 sin x – 3 cos x)

#### Answer 22:

# Let $f(x) = x^{4} (5 \sin x - 3 \cos x) \text{By}$ product rule, $f'(x) = x^{4} \frac{d}{dx} (5 \sin x - 3 \cos x) + (5 \sin x - 3 \cos x) \frac{d}{dx} (x^{4})$ $= x^{4} \left[ 5 \frac{d}{dx} (\sin x) - 3 \frac{d}{dx} (\cos x) \right] + (5 \sin x - 3 \cos x) \frac{d}{dx} (x^{4})$ $= x^{4} \left[ 5 \cos x - 3 (-\sin x) \right] + (5 \sin x - 3 \cos x) (4x^{3})$ $= x^{3} \left[ 5x \cos x + 3x \sin x + 20 \sin x - 12 \cos x \right]$

#### **Question 23:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $(x^2 + 1) \cos x$ 

#### Answer 23:

Let 
$$f(x) = (x^2 + 1)\cos x$$
  
By product rule,

$$f'(x) = (x^{2} + 1)\frac{d}{dx}(\cos x) + \cos x\frac{d}{dx}(x^{2} + 1)$$
$$= (x^{2} + 1)(-\sin x) + \cos x(2x)$$
$$= -x^{2}\sin x - \sin x + 2x\cos x$$

#### **Question 24:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* and *s* are fixed non-zero constants and *m* and *n* are integers):  $(ax^2 + \sin x) (p + q \cos x)$ **Answer 24:** 

Let  $f(x) = (ax^2 + \sin x)(p + q\cos x)$  By product rule,

$$f'(x) = (ax^{2} + \sin x)\frac{d}{dx}(p + q\cos x) + (p + q\cos x)\frac{d}{dx}(ax^{2} + \sin x)$$
$$= (ax^{2} + \sin x)(-q\sin x) + (p + q\cos x)(2ax + \cos x)$$
$$= -q\sin x(ax^{2} + \sin x) + (p + q\cos x)(2ax + \cos x)$$

#### Question 25:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $(x + \cos x)(x - \tan x)$ Answer 25:

Let  $f(x) = (x + \cos x)(x - \tan x)$ 

By product rule,

$$f'(x) = (x + \cos x) \frac{d}{dx} (x - \tan x) + (x - \tan x) \frac{d}{dx} (x + \cos x)$$
  
=  $(x + \cos x) \left[ \frac{d}{dx} (x) - \frac{d}{dx} (\tan x) \right] + (x - \tan x) (1 - \sin x)$   
=  $(x + \cos x) \left[ 1 - \frac{d}{dx} \tan x \right] + (x - \tan x) (1 - \sin x)$  ... (i)

Let  $g(x) = \tan x$ . Accordingly,  $g(x+h) = \tan(x+h)$ By first principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \left( \frac{\tan(x+h) - \tan x}{h} \right)$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h)\cos x - \sin x\cos(x+h)}{\cos(x+h)\cos x} \right]$$

$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h-x)}{\cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin h}{\cos(x+h)} \right]$$

$$= \frac{1}{\cos x} \cdot \left( \lim_{h \to 0} \frac{\sin h}{h} \right) \cdot \left( \lim_{h \to 0} \frac{1}{\cos(x+h)} \right)$$

$$= \frac{1}{\cos x} \cdot 1 \cdot \frac{1}{\cos(x+0)}$$

$$= \frac{1}{\cos^2 x}$$

$$= \sec^2 x \qquad \dots (ii)$$

Therefore, from (i) and (ii), we obtain

$$f'(x) = (x + \cos x)(1 - \sec^2 x) + (x - \tan x)(1 - \sin x)$$
$$= (x + \cos x)(-\tan^2 x) + (x - \tan x)(1 - \sin x)$$
$$= -\tan^2 x(x + \cos x) + (x - \tan x)(1 - \sin x)$$

#### **Question 26:**

Find the derivative of the following functions (it is to be understood that *a*, *b*, *c*, *d*, *p*, q, *r* 

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{4x + 5\sin x}{3x + 7\cos x}$ 

Let 
$$f(x) = \frac{4x + 5\sin x}{3x + 7\cos x}$$
  
By quotient rule,  
$$f'(x) = \frac{(3x + 7\cos x)\frac{d}{dx}(4x + 5\sin x) - (4x + 5\sin x)\frac{d}{dx}(3x + 7\cos x)}{(3x + 7\cos x)^2}$$
$$= \frac{(3x + 7\cos x)\left[4\frac{d}{dx}(x) + 5\frac{d}{dx}(\sin x)\right] - (4x + 5\sin x)\left[3\frac{d}{dx}x + 7\frac{d}{dx}\cos x\right]}{(3x + 7\cos x)^2}$$
$$= \frac{(3x + 7\cos x)(4 + 5\cos x) - (4x + 5\sin x)(3 - 7\sin x)}{(3x + 7\cos x)^2}$$
$$= \frac{12x + 15x\cos x + 28\cos x + 35\cos^2 x - 12x + 28x\sin x - 15\sin x + 35\sin^2 x}{(3x + 7\cos x)^2}$$
$$= \frac{15x\cos x + 28\cos x + 28x\sin x - 15\sin x + 35(\cos^2 x + \sin^2 x)}{(3x + 7\cos x)^2}$$
$$= \frac{35 + 15x\cos x + 28\cos x + 28x\sin x - 15\sin x}{(3x + 7\cos x)^2}$$

#### **Question 27:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers):



#### Answer 27:

Let  $f(x) = \frac{x^2 \cos\left(\frac{\pi}{4}\right)}{\sin x}$ By quotient rule,

$$f'(x) = \cos\frac{\pi}{4} \cdot \left[ \frac{\sin x \frac{d}{dx} (x^2) - x^2 \frac{d}{dx} (\sin x)}{\sin^2 x} \right]$$
$$= \cos\frac{\pi}{4} \cdot \left[ \frac{\sin x \cdot 2x - x^2 \cos x}{\sin^2 x} \right]$$
$$= \frac{x \cos\frac{\pi}{4} [2 \sin x - x \cos x]}{\sin^2 x}$$

#### Question 28:

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{x}{1 + \tan x}$ 

Let 
$$f(x) = \frac{x}{1 + \tan x}$$
  
 $f'(x) = \frac{(1 + \tan x)\frac{d}{dx}(x) - x\frac{d}{dx}(1 + \tan x)}{(1 + \tan x)^2}$   
 $f'(x) = \frac{(1 + \tan x) - x \cdot \frac{d}{dx}(1 + \tan x)}{(1 + \tan x)^2}$  ... (i)

Let  $g(x) = 1 + \tan x$ . Accordingly,  $g(x+h) = 1 + \tan(x+h)$ .

By first principle,

$$g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h}$$

$$= \lim_{h \to 0} \left[ \frac{1 + \tan(x+h) - 1 - \tan x}{h} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h)}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h)\cos x - \sin x\cos(x+h)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h-x)}{\cos(x+h)\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin h}{\cos(x+h)\cos x} \right]$$

$$= \left[ \lim_{h \to 0} \frac{\sin h}{h} \right] \cdot \left[ \lim_{h \to 0} \frac{1}{\cos(x+h)\cos x} \right]$$

$$= 1 \times \frac{1}{\cos^2 x} = \sec^2 x$$

$$\Rightarrow \frac{d}{dx} (1 + \tan x) = \sec^2 x \qquad \dots (ii)$$

From (i) and (ii), we obtain

$$f'(x) = \frac{1 + \tan x - x \sec^2 x}{(1 + \tan x)^2}$$

#### **Question 29:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r and s are fixed non-zero constants and m and n are integers): (x + sec x) (x - tan x)

#### Answer 29:

 $\int f(x) = (x + \sec x)(x - \tan x)$ 

By product rule,

$$f'(x) = (x + \sec x)\frac{d}{dx}(x - \tan x) + (x - \tan x)\frac{d}{dx}(x + \sec x)$$
$$= (x + \sec x)\left[\frac{d}{dx}(x) - \frac{d}{dx}\tan x\right] + (x - \tan x)\left[\frac{d}{dx}(x) + \frac{d}{dx}\sec x\right]$$
$$= (x + \sec x)\left[1 - \frac{d}{dx}\tan x\right] + (x - \tan x)\left[1 + \frac{d}{dx}\sec x\right] \qquad \dots (i)$$

Let  $f_1(x) = \tan x$ ,  $f_2(x) = \sec x$ Accordingly,  $f_1(x+h) = \tan(x+h)$  and  $f_2(x+h) = \sec(x+h)$ 

$$f_{1}'(x) = \lim_{h \to 0} \left( \frac{f_{1}(x+h) - f_{1}(x)}{h} \right)$$

$$= \lim_{h \to 0} \left[ \frac{\tan(x+h) - \tan x}{h} \right]$$

$$= \lim_{h \to 0} \left[ \frac{\tan(x+h) - \tan x}{h} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h) - \sin x}{\cos(x+h)} - \frac{\sin x}{\cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h) \cos x - \sin x \cos(x+h)}{\cos(x+h) \cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin(x+h-x)}{\cos(x+h) \cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin h}{\cos(x+h) \cos x} \right]$$

$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin h}{\cos(x+h) \cos x} \right]$$

$$= 1 \times \frac{1}{\cos^{2} x} = \sec^{2} x$$

$$\Rightarrow \frac{d}{dx} \tan x = \sec^{2} x \qquad \dots (ii)$$

$$f_{2}'(x) = \lim_{h \to 0} \left( \frac{f_{2}(x+h) - f_{2}(x)}{h} \right)$$
$$= \lim_{h \to 0} \left( \frac{\sec(x+h) - \sec x}{h} \right)$$
$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\csc(x+h) - \sec x}{\cos(x+h)} \right]$$
$$= \lim_{h \to 0} \frac{1}{h} \left[ \frac{\cos x - \cos(x+h)}{\cos(x+h) \cos x} \right]$$
$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2\sin\left(\frac{x+x+h}{2}\right) \cdot \sin\left(\frac{x-x-h}{2}\right)}{\cos(x+h)} \right]$$
$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{-2\sin\left(\frac{2x+h}{2}\right) \cdot \sin\left(\frac{-h}{2}\right)}{\cos(x+h)} \right]$$
$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \frac{1}{h} \left[ \frac{\sin\left(\frac{2x+h}{2}\right) \cdot \sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \right]}{\cos(x+h)}$$
$$= \frac{1}{\cos x} \cdot \lim_{h \to 0} \left[ \frac{\sin\left(\frac{2x+h}{2}\right) \cdot \sin\left(\frac{h}{2}\right)}{\cos(x+h)} \right]$$
$$= \sec x \cdot \frac{\left\{ \lim_{h \to 0} \sin\left(\frac{2x+h}{2}\right) \right\} \left\{ \lim_{h \to 0} \frac{\sin\left(\frac{h}{2}\right)}{\frac{h}{2}} \right\}}{\lim_{h \to 0} \cos(x+h)}$$
$$= \sec x \cdot \frac{\sin x \cdot 1}{\cos x}$$
$$\Rightarrow \frac{d}{dx} \sec x = \sec x \tan x \quad \dots \quad \dots \quad (iii)$$

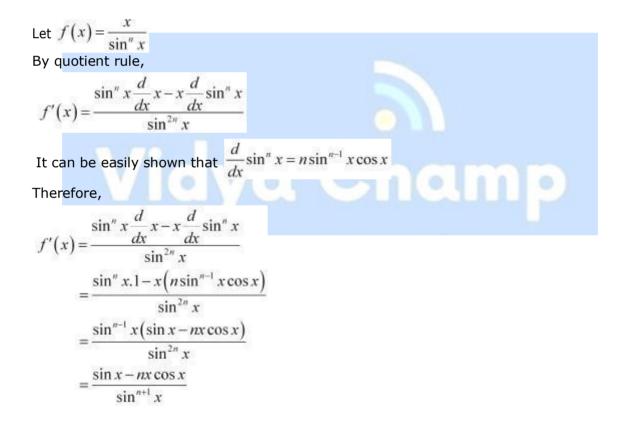
From (i), (ii), and (iii), we obtain

$$f'(x) = (x + \sec x)(1 - \sec^2 x) + (x - \tan x)(1 + \sec x \tan x)$$

#### **Question 30:**

Find the derivative of the following functions (it is to be understood that a, b, c, d, p, q, r

and *s* are fixed non-zero constants and *m* and *n* are integers):  $\frac{x}{\sin^n x}$ 



# **Mathematics**

(Chapter – 13) (Limits and Derivatives) (Class – XI)

### **Exercise 13.2 (Supplementary)**

Evaluate the following limits, if exist.

| Question 1: | $\lim_{x \to 0} \frac{e^{4x} - 1}{x}$                                               |                                                        |
|-------------|-------------------------------------------------------------------------------------|--------------------------------------------------------|
| Answer 1:   | $\lim_{x \to 0} \frac{e^{4x} - 1}{x}$                                               |                                                        |
|             | $= \lim_{x \to 0} \frac{e^{4x} - 1}{4x} \times 4$                                   |                                                        |
|             | $= \lim_{y \to 0} \frac{e^{y} - 1}{y} \times 4$                                     | [Where y = 4x]                                         |
|             | = 1×4                                                                               | [Using $\lim_{y \to 0} \frac{e^y - 1}{y} = 1$ ]        |
|             | = 4                                                                                 |                                                        |
| Question 2: | $\lim_{x \to 0} \frac{e^{2+x} - e^2}{x}$                                            |                                                        |
| Answer 2:   | $\lim_{x \to 0} \frac{e^{2+x} - e^2}{x}$                                            |                                                        |
|             | $=\lim_{x\to 0}\frac{e^2(e^x-1)}{x}$                                                |                                                        |
|             | $= e^2 \times 1$                                                                    | $[\text{Using } \lim_{x \to 0} \frac{e^{x-1}}{x} = 1]$ |
|             | $= e^2$                                                                             |                                                        |
|             |                                                                                     |                                                        |
| Question 3: | $\lim_{x \to 5} \frac{e^x - e^5}{x - 5}$                                            |                                                        |
| Answer 3:   | $\lim_{x \to 5} \frac{e^x - e^5}{x - 5}$                                            |                                                        |
|             | Put $x = 5 + h$ , then as $x \to 5 \Longrightarrow h \longrightarrow 0$ . Therefore |                                                        |
|             |                                                                                     |                                                        |

$$\lim_{x \to 0} \frac{e^x - e^x}{x - 5} = \lim_{h \to 0} \frac{e^{5+h} - e^5}{h}$$

$$= \lim_{h \to 0} \frac{e^x (e^{h} - 1)}{h}$$

$$= e^3 \times 1$$
[Using  $\lim_{h \to 0} \frac{e^{k-1}}{h} = 1$ ]
$$= e^5$$
Question 4: 
$$\lim_{x \to 0} \frac{e^{sinx} - 1}{x}$$
Answer 4: 
$$\lim_{x \to 0} \frac{e^{sinx} - 1}{x} \times \frac{sinx}{sinx}$$

$$= \lim_{x \to 0} \frac{e^{sinx} - 1}{sinx} \times \frac{sinx}{sinx}$$

$$= \lim_{x \to 0} \frac{e^{sinx} - 1}{sinx} \times \frac{sinx}{x}$$
[Where  $y = \sin x$ ]
$$= 1 \times 1$$
[Using  $\lim_{y \to 0} \frac{e^{y} - 1}{y} \times \lim_{x \to 0} \frac{sinx}{x} = 1$ ]
$$= 1$$
Question 5: 
$$\lim_{x \to 3} \frac{e^x - e^3}{x - 3}$$
Answer 5: 
$$\lim_{x \to 3} \frac{e^x - e^3}{x - 3}$$
Put  $x = 3 + h$ , then as  $x \to 3 \Rightarrow h \to 0$ . Therefore

$$\begin{aligned} \lim_{x \to 3} \frac{e^x - 3}{x \to 3} &= \lim_{h \to 0} \frac{e^{2+h} - e^3}{h} \\ &= \lim_{h \to 0} \frac{e^{3}(e^{h} - 1)}{h} \\ &= e^3 \times 1 \\ &= e^3 \end{aligned}$$

$$(Using \lim_{h \to 0} \frac{e^{h} - 1}{h} = 1) \\ &= e^3 \end{aligned}$$

$$(uestion 6: \quad \lim_{x \to 0} \frac{x(e^{x} - 1)}{1 - \cos x} \\ &= \lim_{x \to 0} \frac{x(e^{x} - 1)}{1 - \cos x} \\ &= \lim_{x \to 0} \frac{x(e^{x} - 1)}{1 - \cos x} \times \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{x} \\ &= \lim_{x \to 0} \frac{(e^{x} - 1)}{1 - \cos x} \times \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{x} \\ &= \lim_{x \to 0} \frac{(e^{x} - 1)}{x} \times \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{x} \\ &= \lim_{x \to 0} \frac{(e^{x} - 1)}{x} \times \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{1 - \cos^{2} x} \\ &= \lim_{x \to 0} \frac{(e^{x} - 1)}{x} \times \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{x - 0} = \frac{1}{\sin^{2} x} \\ &= \lim_{x \to 0} \frac{(e^{x} - 1)}{x} \times \lim_{x \to 0} \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{x - 0} = \frac{1}{\sin^{2} x} \\ &= \lim_{x \to 0} \frac{(e^{x} - 1)}{x} \times \lim_{x \to 0} \frac{1 + \cos x}{1 + \cos x} \times \frac{x}{x - 0} = \frac{1}{(e^{3x} - 1)^{2}} \\ &= 1 \times (1 + 1) \times \frac{1}{1^{1}} \qquad [Using \lim_{x \to 0} \frac{e^{x} - 1}{x} = 1 \text{ and } \lim_{x \to 0} \frac{\sin x}{x - 0 \cdot x} = 1 \\ &= 2 \end{aligned}$$
Question 7: 
$$\lim_{x \to 0} \frac{\log_{x} (1 + 2x)}{x} \\ &= \lim_{x \to 0} \frac{\log_{x} (1 + 2x)}{x} \\ &= \lim_{x \to 0} \frac{\log_{x} (1 + 2x)}{x} \times 2 \\ &= \lim_{x \to 0} \frac{\log_{x} (1 + 2x)}{2x} \times 2 \end{aligned}$$

$$= \lim_{y \to 0} \frac{\log_{x} (1+y)}{y} \times 2 \qquad [Where \ y = 2x]$$

$$= 1 \times 2 \qquad [Using \lim_{y \to 0} \frac{\log_{x} (1+y)}{y} = 1]$$

$$= 2$$
Question 8: 
$$\lim_{x \to 0} \frac{\log(1+x^{3})}{\sin^{3}x}$$
Answer 8: 
$$\lim_{x \to 0} \frac{\log(1+x^{3})}{\sin^{3}x} \times \frac{x^{3}}{x^{3}}$$

$$= \lim_{x \to 0} \frac{\log(1+x^{3})}{x^{3}} \times \frac{x^{3}}{x^{3}}$$

$$= \lim_{x \to 0} \frac{\log(1+x^{3})}{x^{3}} \times \frac{x^{3}}{\sin^{3}x}$$

$$= \lim_{y \to 0} \frac{\log(1+y)}{y} \times \lim_{x \to 0} \frac{1}{(\frac{\sin x}{x})^{3}} \qquad [Where \ y = x^{3}]$$

$$= 1 \times \frac{1}{1^{3}} \qquad [Using \ \lim_{y \to 0} \frac{\log(1+y)}{y} = 1 \ and \ \lim_{x \to 0} \frac{\sin x}{x} = 1]$$

$$= 1$$

