EQUILIBRIUM

CHEMISTRY

(Chapter - 7) (Equilibrium)
(Class - XI)

Question 7.1:

A liquid is in equilibrium with its vapour in a sealed container at a fixed temperature. The volume of the container is suddenly increased.
a) What is the initial effect of the change on vapour pressure?
b) How do rates of evaporation and condensation change initially?
c) What happens when equilibrium is restored finally and what will be the final vapour pressure?

Answer 7.1:

(a) If the volume of the container is suddenly increased, then the vapour pressure would decrease initially. This is because the amount of vapour remains the same, but the volume increases suddenly. As a result, the same amount of vapour is distributed in a larger volume.
(b) Since the temperature is constant, the rate of evaporation also remains constant. When the volume of the container is increased, the density of the vapour phase decreases. As a result, the rate of collisions of the vapour particles also decreases. Hence, the rate of condensation decreases initially.
(c) When equilibrium is restored finally, the rate of evaporation becomes equal to the rate of condensation. In this case, only the volume changes while the temperature remains constant. The vapour pressure depends on temperature and not on volume. Hence, the final vapour pressure will be equal to the original vapour pressure of the system.

Question 7.2:

What is K_{c} for the following equilibrium when the equilibrium concentration of each
substance is: $\left[\mathrm{SO}_{2}\right]=0.60 \mathrm{M},\left[\mathrm{O}_{2}\right]=0.82 \mathrm{M}$ and $\left[\mathrm{SO}_{3}\right]=1.90 \mathrm{M}$?

$$
2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})
$$

Answer 7.2:

The equilibrium constant (K_{c}) for the give reaction is:

$$
\begin{aligned}
\mathrm{K}_{c} & =\frac{\left[\mathrm{SO}_{3}\right]^{2}}{\left[\mathrm{SO}_{2}\right]^{2}\left[\mathrm{O}_{2}\right]} \\
& =\frac{(1.90)^{2} \mathrm{M}^{2}}{(0.60)^{2}(0.821) \mathrm{M}^{3}} \\
& =12.239 \mathrm{M}^{-1} \text { (approximately) }
\end{aligned}
$$

Hence, K for the equilibrium is $12.239 \mathrm{M}^{-1}$.

Question 7.3:

At a certain temperature and total pressure of $10^{5} \mathrm{~Pa}$, iodine vapour contains 40% by volume of I atoms

$$
\mathrm{I}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{I}(\mathrm{~g})
$$

Calculate K_{p} for the equilibrium.

Answer 7.3:

Partial pressure of I atoms,
$p_{1}=\frac{40}{100} \times p_{\text {total }}$
$=\frac{40}{100} \times 10^{5}$
$=4 \times 10^{4} \mathrm{~Pa}$
Partial pressure of I_{2} molecules,
$p_{1_{3}}=\frac{60}{100} \times p_{\text {total }}$

$$
\begin{aligned}
& =\frac{60}{100} \times 10^{5} \\
& =6 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Now, for the given reaction,

$$
\begin{aligned}
K_{p} & =\frac{(p \mathrm{I})^{2}}{p_{1_{2}}} \\
& =\frac{\left(4 \times 10^{4}\right)^{2} \mathrm{~Pa}^{2}}{6 \times 10^{4} \mathrm{~Pa}} \\
& =2.67 \times 10^{4} \mathrm{~Pa}
\end{aligned}
$$

Question 7.4:

Write the expression for the equilibrium constant, K_{c} for each of the following reactions:
(i) $\quad 2 \mathrm{NOCl}(\mathrm{g}) \longleftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g})$
(ii) $\quad 2 \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}(\mathrm{~s}) \longleftrightarrow 2 \mathrm{CuO}(\mathrm{s})+4 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
(iii) $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \longleftrightarrow \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{aq})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{aq})$
(iv) $\mathrm{Fe}^{3+}(\mathrm{aq})+3 \mathrm{OH}^{-}(\mathrm{aq}) \longleftrightarrow \mathrm{Fe}(\mathrm{OH})_{3}(\mathrm{~s})$
(v) $\quad \mathrm{I}_{2}(\mathrm{~s})+5 \mathrm{~F}_{2} \longleftrightarrow 2 \mathrm{IF}_{5}$

Answer 7.4:

(i) $K_{c}=\frac{\left[\mathrm{NO}_{(g)}\right]^{2}\left[\mathrm{Cl}_{2(g)}\right]}{\left[\mathrm{NOCl}_{(g)}\right]^{2}}$
(ii) $K_{c}=\frac{\left[\mathrm{CuO}_{(s)}\right]^{2}\left[\mathrm{NO}_{2(\mathrm{~g})}\right]^{4}\left[\mathrm{O}_{2(\mathrm{~g})}\right]}{\left[\mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2(x)}\right]^{2}}$

$$
=\left[\mathrm{NO}_{2(\mathrm{z})}\right]^{4}\left[\mathrm{O}_{2(z)}\right]
$$

(iii) $K_{c}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}_{(a q)}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOC}_{3} \mathrm{H}_{5(a q)}\right]\left[\mathrm{H}_{2} \mathrm{O}_{(n)}\right]}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOH}_{(\text {aq })}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(a q)}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(a q)}\right]}$
(iv) $K_{c}=\frac{\left[\mathrm{Fe}(\mathrm{OH})_{3(s)}\right]}{\left[\mathrm{Fe}_{(a q)}^{3+}\right]\left[\mathrm{OH}_{(a q)}^{-}\right]^{3}}$

$$
=\frac{1}{\left[\mathrm{Fe}_{(o q)}^{3+}\right]\left[\mathrm{OH}_{(a q)}^{-}\right]^{3}}
$$

(v) $\quad K_{c}=\frac{\left[\mathrm{IF}_{5}\right]^{2}}{\left[\mathrm{I}_{2(\mathrm{~s})}\right]\left[\mathrm{F}_{2}\right]^{5}}$

$$
=\frac{\left[\mathrm{IF}_{5}\right]^{2}}{\left[\mathrm{~F}_{2}\right]^{5}}
$$

Question 7.5:

Find out the value of K_{c} for each of the following equilibria from the value of K_{p} :
(i) $2 \mathrm{NOCl}(\mathrm{g}) \longleftrightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) ; \quad K_{p}=1.8 \times 10^{-2}$ at 500 K
(ii) CaCO_{3} (s) $\longleftrightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; \quad \mathrm{K}_{p}=167$ at 1073 K

Answer 7.5:

The relation between K_{p} and K_{c} is given as:
$K_{p}=K_{c}(\mathrm{RT})^{\Delta n}$
(a) Here,
$\Delta n=3-2=1$
$R=0.0831$ barLmol $^{-1} \mathrm{~K}^{-1}$
$T=500 \mathrm{~K}$
$K_{p}=1.8 \times 10^{-2}$
Now,
$K_{p}=K_{c}(R T)^{\Delta n}$

$$
\begin{aligned}
& \Rightarrow 1.8 \times 10^{-2}=K_{c}(0.0831 \times 500)^{1} \\
& \begin{aligned}
\Rightarrow K_{c} & =\frac{1.8 \times 10^{-2}}{0.0831 \times 500} \\
\quad= & 4.33 \times 10^{-4} \text { (approximately) }
\end{aligned}
\end{aligned}
$$

(b) Here,
$\Delta n=2-1=1$
$R=0.0831$ barLmol $^{-1} \mathrm{~K}^{-1} T$
$=1073 \mathrm{~K}$
$K_{p}=167$
Now,
$K_{p}=K_{c}(R T) \Delta n$
$\Rightarrow 167=K_{c}(0.0831 \times 1073)^{\Delta r}$
$\Rightarrow K_{c}=\frac{167}{0.0831 \times 1073}$
$=1.87$ (approximately)

Question 7.6:

For the following equilibrium, $K_{\mathrm{C}}=6.3 \times 10^{14}$ at 1000 K

$$
\mathrm{NO}(\mathrm{~g})+\mathrm{O}_{3}(\mathrm{~g}) \longleftrightarrow \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})
$$

Both the forward and reverse reactions in the equilibrium are elementary bimolecular reactions. What is K_{c}, for the reverse reaction?

Answer 7.6:

It is given that K_{c} for the forward reaction is 6.3×10^{14}.
Then, K_{c} for the reverse reaction will be,

$$
\begin{aligned}
K_{C}^{\prime} & =\frac{1}{K_{C}} \\
& =\frac{1}{6.3 \times 10^{14}} \\
& =1.59 \times 10^{-15}
\end{aligned}
$$

Question 7.7:

Explain why pure liquids and solids can be ignored while writing the equilibrium constant expression?

Answer 7.7:

For a pure substance (both solids and liquids),

$$
\begin{aligned}
\text { [Pure substance] } & =\frac{\text { Number of moles }}{\text { Volume }} \\
& =\frac{\text { Mass } / \text { molecular mass }}{\text { Volume }} \\
& =\frac{\text { Mass }}{\text { Volume } \times \text { Molecular mass }} \\
& =\frac{\text { Density }}{\text { Molecular mass }}
\end{aligned}
$$

Now, the molecular mass and density (at a particular temperature) of a pure substance is always fixed and is accounted for in the equilibrium constant. Therefore, the values of pure substances are not mentioned in the equilibrium constant expression.

Question 7.8:

Reaction between N_{2} and O_{2} takes place as follows:

$$
2 \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \quad \longleftrightarrow 2 \mathrm{~N}_{2} \mathrm{O}(\mathrm{~g})
$$

If a mixture of 0.482 mol of N_{2} and 0.933 mol of O_{2} is placed in a 10 L reaction vessel and allowed to form $\mathrm{N}_{2} \mathrm{O}$ at a temperature for which $K_{c}=2.0 \times 10^{-37}$, determine the composition of equilibrium mixture.

Answer 7.8:

Let the concentration of $\mathrm{N}_{2} \mathrm{O}$ at equilibrium be x.
The given reaction is:

	$2 \mathrm{~N}_{2(\mathrm{~g})}+$	$\mathrm{O}_{2(\mathrm{~g})}$	\longleftrightarrow
Initial conc.	0.482 mol	0.933 mol	0
At equilibrium	$(0.482-x) \mathrm{mol}$	$(1.933-x) \mathrm{mol}$	
A		$x \mathrm{~mol}$	

Therefore, at equilibrium, in the 10 L vessel:

$$
\left[\mathrm{N}_{2}\right]=\frac{0.482-x}{10},\left[\mathrm{O}_{2}\right]=\frac{0.933-x / 2}{10},\left[\mathrm{~N}_{2} \mathrm{O}\right]=\frac{x}{10}
$$

The value of equilibrium constant i.e. $K_{c}=2.0 \times 10^{-37}$ is very small. Therefore, the amount of N_{2} and O_{2} reacted is also very small. Thus, x can be neglected from the expressions of molar concentrations of N_{2} and O_{2}. Then,

$$
\left[\mathrm{N}_{2}\right]=\frac{0.482}{10}=0.0482 \mathrm{~mol} \mathrm{~L}^{-1} \text { and }\left[\mathrm{O}_{2}\right]=\frac{0.933}{10}=0.0933 \mathrm{~mol} \mathrm{~L}^{-1}
$$

Now,

$$
\begin{aligned}
& K_{\mathrm{C}}=\frac{\left[\mathrm{N}_{2} \mathrm{O}_{(\mathrm{g})}\right]^{2}}{\left[\mathrm{~N}_{2(\mathrm{~g})}\right]^{2}\left[\mathrm{O}_{2(\mathrm{~s})}\right]} \\
& \Rightarrow 2.0 \times 10^{-37}=\frac{\left(\frac{x}{10}\right)^{2}}{(0.0482)^{2}(0.0933)} \\
& \Rightarrow \frac{x^{2}}{100}=2.0 \times 10^{-37} \times(0.0482)^{2} \times(0.0933) \\
& \Rightarrow x^{2}=43.35 \times 10^{-40} \\
& \Rightarrow x=6.6 \times 10^{-20} \\
& {\left[\mathrm{~N}_{2} \mathrm{O}\right]=\frac{x}{10}=\frac{6.6 \times 10^{-20}}{10}} \\
& \quad=6.6 \times 10^{-21}
\end{aligned}
$$

Question 7.9:

Nitric oxide reacts with Br_{2} and gives nitrosyl bromide as per reaction given below:

$$
2 \mathrm{NO}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NOBr}(\mathrm{~g})
$$

When 0.087 mol of NO and 0.0437 mol of Br_{2} are mixed in a closed container at constant temperature, 0.0518 mol of NOBr is obtained at equilibrium. Calculate equilibrium amount of NO and Br_{2}.

Answer 7.9:

The given reaction is:

Now, 2 mol of NOBr are formed from 2 mol of NO . Therefore, 0.0518 mol of NOBr are formed from 0.0518 mol of NO .

Again, 2 mol of NOBr are formed from 1 mol of Br .

Therefore, 0.0518 mol of NOBr are formed from $\frac{0.0518}{2} \mathrm{~mol}$ of Br , or 0.0259 mol of NO .

The amount of NO and Br present initially is as follows:
$[\mathrm{NO}]=0.087 \mathrm{~mol}\left[\mathrm{Br}_{2}\right]=0.0437 \mathrm{~mol}$
Therefore, the amount of NO present at equilibrium is:
$[\mathrm{NO}]=0.087-0.0518=0.0352 \mathrm{~mol}$
And, the amount of Br present at equilibrium is:
$\left[\mathrm{Br}_{2}\right]=0.0437-0.0259=0.0178 \mathrm{~mol}$

Question 7.10:

At $450 \mathrm{~K}, K_{p}=2.0 \times 10^{10} /$ bar for the given reaction at equilibrium.

$$
2 \mathrm{SO}_{2(g)}+\mathrm{O}_{2(g)} \longleftrightarrow 2 \mathrm{SO}_{3(\mathrm{~g})}
$$

What is K_{c} at this temperature?

Answer 7.10:

For the given reaction,
$\Delta n=2-3=-1$
$T=450 \mathrm{~K}$

$R=0.0831$ bar L bar K$^{-1} \mathrm{~mol}^{-1}$
$K_{p}=2.0 \times 10^{10} \mathrm{bar}^{-1}$
We know that,

$$
\begin{aligned}
& K_{\mathrm{P}}=K_{\mathrm{C}}(R T) \Delta n \\
& \begin{aligned}
\Rightarrow 2.0 & \times 10^{10} \mathrm{bar}^{-1}=K_{C}\left(0.0831 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)^{-1} \\
\Rightarrow K_{\mathrm{C}} & =\frac{2.0 \times 10^{10} \mathrm{bar}^{-1}}{\left(0.0831 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right)^{-1}} \\
& =\left(2.0 \times 10^{10} \mathrm{bar}^{-1}\right)\left(0.0831 \mathrm{~L} \mathrm{bar} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} \times 450 \mathrm{~K}\right) \\
& =74.79 \times 10^{10} \mathrm{~L} \mathrm{~mol}^{-1} \\
& =7.48 \times 10^{11} \mathrm{~L} \mathrm{~mol}^{-1} \\
& =7.48 \times 10^{11} \mathrm{M}^{-1}
\end{aligned}
\end{aligned}
$$

Question 7.11:

A sample of $\mathrm{HI}_{(\mathrm{g})}$ is placed in flask at a pressure of 0.2 atm. At equilibrium the partial pressure of $\mathrm{HI}_{(\mathrm{g})}$ is 0.04 atm . What is K_{p} for the given equilibrium?

$$
2 \mathrm{HI}(\mathrm{~g}) \longleftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g})
$$

Answer 7.11:

The initial concentration of HI is 0.2 atm . At equilibrium, it has a partial pressure of 0.04 atm. Therefore, a decrease in the pressure of HI is $0.2-0.04=0.16$. The given reaction is:

	$2 \mathrm{HI}_{(\mathrm{g})}$	\longleftrightarrow	$\mathrm{H}_{2(\mathrm{~g})}$
	+	$\mathrm{I}_{2(\mathrm{~g})}$	
Initial conc.	0.2 atm		0
At equilibrium	0.04 atm		$\frac{0.16}{2}$

Therefore,

$$
\begin{aligned}
K_{\mathrm{p}} & =\frac{p_{\mathrm{H}_{2}} \times p_{\mathrm{l}_{2}}}{p_{\mathrm{HI}}^{2}} \\
& =\frac{0.08 \times 0.08}{(0.04)^{2}} \\
& =\frac{0.0064}{0.0016} \\
& =4.0
\end{aligned}
$$

Hence, the value of K_{p} for the given equilibrium is 4.0.

Question 7.12:

A mixture of 1.57 mol of $\mathrm{N}_{2}, 1.92 \mathrm{~mol}$ of H_{2} and $8.13 \mathrm{~mol}^{\mathrm{m}} \mathrm{NH}_{3}$ is introduced into a 20 L reaction vessel at 500 K . At this temperature, the equilibrium constant, K_{c} for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \text { is } 1.7 \times 10^{2}
$$

Is the reaction mixture at equilibrium? If not, what is the direction of the net reaction?

Answer 7.12:

The given reaction is:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

The given concentration of various species is

$$
\begin{aligned}
& {\left[\mathrm{N}_{2}\right]=\frac{1.57}{20} \mathrm{~mol} \mathrm{~L}^{-1} \quad\left[\mathrm{H}_{2}\right]=\frac{1.92}{20} \mathrm{~mol} \mathrm{~L}^{-1}} \\
& {\left[\mathrm{NH}_{3}\right]=\frac{8.13}{20} \mathrm{~mol} \mathrm{~L}^{-1}}
\end{aligned}
$$

Now, reaction quotient Q_{c} is:

$$
\begin{aligned}
Q_{\mathrm{C}} & =\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \\
& =\frac{\left(\frac{(8.13)}{20}\right)^{2}}{\left(\frac{1.57}{20}\right)\left(\frac{1.92}{20}\right)^{3}} \\
& =2.4 \times 10^{3}
\end{aligned}
$$

Since, $Q_{c} \neq K_{c}$, the reaction mixture is not at equilibrium.
Again, $Q_{c}>K_{c}$. Hence, the reaction will proceed in the reverse direction.

Question 7.13:

The equilibrium constant expression for a gas reaction is,

$$
K_{\mathrm{C}}=\frac{\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5}}{[\mathrm{NO}]^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}}
$$

Write the balanced chemical equation corresponding to this expression.

Answer 7.13:

The balanced chemical equation corresponding to the given expression can be written as:

$$
4 \mathrm{NO}_{(g)}+6 \mathrm{H}_{2} \mathrm{O}_{(g)} \longleftrightarrow 4 \mathrm{NH}_{3(g)}+5 \mathrm{O}_{2(g)}
$$

Question 7.14:

One mole of $\mathrm{H}_{2} \mathrm{O}$ and one mole of CO are taken in 10 L vessel and heated to 725 K . At equilibrium 40% of water (by mass) reacts with CO according to the equation,

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \longleftrightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})
$$

Calculate the equilibrium constant for the reaction.

Answer 7.14:

The given reaction is:

$$
\mathrm{H}_{2} \mathrm{O}_{(\mathrm{p})}+\mathrm{CO}_{(\mathrm{g})} \longleftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{CO}_{2(\mathrm{~g})}
$$

$\begin{array}{lcccc}\text { Initial conc. } & \frac{1}{10} \mathrm{M} & \frac{1}{10} \mathrm{M} & 0 & 0 \\ \text { At equilibrium } & \frac{1-0.4}{10} \mathrm{M} & \frac{1-0.4}{10} \mathrm{M} & \frac{0.4}{10} \mathrm{M} & \frac{0.4}{10} \mathrm{M} \\ & =0.06 \mathrm{M} & =0.06 \mathrm{M} & =0.04 \mathrm{M} & =0.04 \mathrm{M}\end{array}$
Therefore, the equilibrium constant for the reaction,

$$
\begin{aligned}
K_{\mathrm{C}} & =\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{CO}_{2}\right]}{\left[\mathrm{H}_{2} \mathrm{O}\right][\mathrm{CO}]} \\
& =\frac{0.04 \times 0.04}{0.06 \times 0.06} \\
& =0.444 \text { (approximately) }
\end{aligned}
$$

Question 7.15:

At 700 K , equilibrium constant for the reaction

$$
\mathrm{H}_{2(g)}+\mathrm{I}_{2(g)} \longleftrightarrow 2 \mathrm{HI}_{(g)}
$$

is 54.8. If $0.5 \mathrm{molL}^{-1}$ of $\mathrm{HI}_{(g)}$ is present at equilibrium at 700 K , what are the concentration of $\mathrm{H}_{2(g)}$ and $\mathrm{I}_{2(g)}$ assuming that we initially started with $\mathrm{HI}_{(g)}$ and allowed it to reach equilibrium at 700 K ?

Answer 7.15:

It is given that equilibrium constant K_{c} for the reaction

$$
\mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{HI}_{(\mathrm{g})} \quad \text { is } 54.8
$$

Therefore, at equilibrium, the equilibrium constant K_{C}^{\prime} for the reaction $2 \mathrm{HI}_{(\mathrm{g})} \longleftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{I}_{2(\mathrm{~g})}$
$[\mathrm{HI}]=0.5 \mathrm{molL}^{-1}$ will be $1 / 54.8$.
Let the concentrations of hydrogen and iodine at equilibrium be $x \mathrm{molL}^{-1}$

$$
\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=x \mathrm{~mol} \mathrm{~L}^{-1}
$$

Therefore, $\frac{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}{[\mathrm{HI}]^{2}}=K_{\mathrm{C}}^{\prime}$
$\Rightarrow \frac{x \times x}{(0.5)^{2}}=\frac{1}{54.8}$
$\Rightarrow x^{2}=\frac{0.25}{54.8}$
$\Rightarrow x=0.06754$
$x=0.068 \mathrm{molL}^{-1}$ (approximately)
Hence, at equilibrium, $\left[\mathrm{H}_{2}\right]=\left[\mathrm{I}_{2}\right]=0.068 \mathrm{~mol} \mathrm{~L}^{-1}$.

Question 7.16:

What is the equilibrium concentration of each of the substances in the equilibrium when the initial concentration of ICl was 0.78 M ?

$$
2 \mathrm{ICl}_{(g)} \longleftrightarrow \mathrm{I}_{2(g)}+\mathrm{Cl}_{2(g)} ; \quad K_{\mathrm{c}}=0.14
$$

Answer 7.16:

The given reaction is:

	$2 \mathrm{ICl}_{(g)}$	\longleftrightarrow	$\mathrm{I}_{2(g)}$
Initial conc.	0.78 M		$\mathrm{Cl}_{2(g)}$
At equilibrium	$(0.78-2 x) \mathrm{M}$		$x \mathrm{M}$

Now, we can write, $\frac{\left[\mathrm{I}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{ICl}]^{2}}=K_{\mathrm{C}}$
$\Rightarrow \frac{x \times x}{(0.78-2 x)^{2}}=0.14$
$\Rightarrow \frac{x^{2}}{(0.78-2 x)^{2}}=0.14$
$\Rightarrow \frac{x}{0.78-2 x}=0.374$
$\Rightarrow x=0.292-0.748 x$
$\Rightarrow 1.748 x=0.292$
$\Rightarrow x=0.167$
Hence, at equilibrium,

$$
\begin{aligned}
{\left[\mathrm{H}_{2}\right] } & =\left[\mathrm{I}_{2}\right]=0.167 \mathrm{M} \\
{[\mathrm{HI}] } & =(0.78-2 \times 0.167) \mathrm{M} \\
& =0.446 \mathrm{M}
\end{aligned}
$$

Question 7.17:

$K_{\mathrm{p}}=0.04 \mathrm{~atm}$ at 899 K for the equilibrium shown below. What is the equilibrium concentration of $\mathrm{C}_{2} \mathrm{H}_{6}$ when it is placed in a flask at 4.0 atm pressure and allowed to come to equilibrium?

$$
\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

Answer 7.17:

Let p be the pressure exerted by ethene and hydrogen gas (each) at equilibrium. Now, according to the reaction,

	$\mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})} \longleftrightarrow \mathrm{C}_{2} \mathrm{H}_{4(\mathrm{~g})}+$	$\mathrm{H}_{2(\mathrm{~g})}$	
Initial conc.	4.0 atm	0	0
At equilibrium	$4.0-p$	p	p

We can write,
$\frac{p_{\mathrm{C}_{2} H_{4}} \times p_{\mathrm{H}_{2}}}{p_{\mathrm{C}_{2} H_{6}}}=K_{\mathrm{g}}$
$\Rightarrow \frac{p \times p}{40-p}=0.04$
$\Rightarrow p^{2}=0.16-0.04 p$
$\Rightarrow p^{2}+0.04 p-0.16=0$
Now, $p=\frac{-0.04 \pm \sqrt{(0.04)^{2}-4 \times 1 \times(-0.16)}}{2 \times 1}$

$$
\begin{aligned}
& =\frac{-0.04 \pm 0.80}{2} \\
& =\frac{0.76}{2} \quad \text { (Taking positive value) } \\
& =0.38
\end{aligned}
$$

Hence, at equilibrium,

$$
\begin{aligned}
{\left[\mathrm{C}_{2} \mathrm{H}_{6}\right]-4-p } & =4-0.38 \\
& =3.62 \mathrm{~atm}
\end{aligned}
$$

Question 7.18:

Ethyl acetate is formed by the reaction between ethanol and acetic acid and the equilibrium is represented as:

$$
\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{I})+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \longleftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{I})+\mathrm{H}_{2} \mathrm{O} \text { (1) }
$$

(i) Write the concentration ratio (reaction quotient), Qc, for this reaction (note: water is not in excess and is not a solvent in this reaction)
(ii) At 293 K , if one starts with 1.00 mol of acetic acid and 0.18 mol of ethanol, there is 0.171 mol of ethyl acetate in the final equilibrium mixture. Calculate the equilibrium constant.
(iii) Starting with 0.5 mol of ethanol and 1.0 mol of acetic acid and maintaining it at $293 \mathrm{~K}, 0.214 \mathrm{~mol}$ of ethyl acetate is found after sometime. Has equilibrium been reached?

Answer 7.18:

(i) Reaction quotient, $Q_{\mathrm{C}}=\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{3}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CH} . \mathrm{COOH}\rceil[\mathrm{C} . \mathrm{H} . \mathrm{OH} 1}$
(ii) Let the volume of the reaction mixture be V. Also, here we will consider that water is a solvent and is present in excess.
The given reaction is:

Therefore, equilibrium constant for the given reaction is:

$$
\begin{aligned}
K_{\mathrm{C}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]} \\
& =\frac{\frac{0.171}{V} \times \frac{0.171}{\frac{V}{0.829}} \mathrm{~V} \times \frac{0.009}{V}}{V}=3.919 \\
& =3.92 \text { (approximately) }
\end{aligned}
$$

(iii) Let the volume of the reaction mixture be V.

$$
\mathrm{CH}_{3} \mathrm{COOH}_{(l)}+\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}_{(l)} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5(l)}+\mathrm{H}_{2} \mathrm{O}_{(l)}
$$

$\begin{array}{llll}\text { Initial conc. } & \frac{1.0}{V} \mathrm{M} & \frac{0.5}{V} \mathrm{M} & 0\end{array}$

$$
\begin{array}{rll}
\text { After some time } & \frac{10-0.214}{V} & \frac{0.5-0.214}{V} \\
& =\frac{0.786}{V} \mathrm{M} & =\frac{0.286}{V} \mathrm{M}
\end{array}
$$

Therefore, the reaction quotient is,

$$
\begin{aligned}
Q_{\mathrm{C}} & =\frac{\left[\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]\left[\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}\right]} \\
& =\frac{\frac{0.214}{V} \times \frac{0.214}{V}}{\frac{0.786}{V} \times \frac{0.286}{V}} \\
& =0.2037 \\
& =0204(\text { approximately })
\end{aligned}
$$

Since $Q_{C}<K_{C}$, equilibrium has not been reached.

Question 7.19:

A sample of pure PCl_{5} was introduced into an evacuated vessel at 473 K . After equilibrium was attained, concentration of PCl_{5} was found to be $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1}$. If value of K_{c} is 8.3×10^{-3}, what are the concentrations of PCl_{3} and Cl_{2} at equilibrium?

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \longleftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

Answer 7.19:

Let the concentrations of both PCl_{3} and Cl_{2} at equilibrium be $x \mathrm{molL}^{-1}$. The given reaction is:

$$
\mathrm{PCl}_{5(\mathrm{e})} \quad \longleftrightarrow \mathrm{PCl}_{3(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}
$$

At equilibrium $0.5 \times 10^{-1} \mathrm{~mol} \mathrm{~L}^{-1} \quad x \mathrm{~mol} \mathrm{~L}^{-1} \quad x \mathrm{~mol} \mathrm{~L}^{-1}$
It is given that the value of equilibrium constant, K_{C} is 8.3×10^{-3}.
Now we can write the expression for equilibrium as:

$$
\begin{aligned}
& \frac{\left[\mathrm{PCl}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{\left[\mathrm{PCl}_{5}\right]}=K_{C} \\
& \Rightarrow \frac{x \times x}{0.5 \times 10^{-1}}=8.3 \times 10^{-3} \\
& \Rightarrow x^{2}=4.15 \times 10^{-4} \\
& \Rightarrow x=2.04 \times 10^{-2} \\
& \quad=0.0204 \\
& \quad=0.02(\text { approximately })
\end{aligned}
$$

Therefore, at equilibrium,

$$
\left[\mathrm{PCl}_{3}\right]=\left[\mathrm{Cl}_{2}\right]=0.02 \mathrm{~mol} \mathrm{~L}^{-1} .
$$

Question 7.20:

One of the reactions that takes place in producing steel from iron ore is the reduction of iron (II) oxide by carbon monoxide to give iron metal and CO_{2}.
$\mathrm{FeO}(\mathrm{s})+\mathrm{CO}(\mathrm{g}) \longleftrightarrow \mathrm{Fe}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) ; K_{p}=0.265$ at 1050 K.
What are the equilibrium partial pressures of CO and CO_{2} at 1050 K if the initial partial pressures are: $p_{\mathrm{co}}=1.4 \mathrm{~atm}$ and $p_{\mathrm{CO}_{2}}=0.80 \mathrm{~atm}$?

Answer 7.20:

For the given reaction,

$$
\begin{aligned}
Q_{\mathrm{P}} & =\frac{p_{\mathrm{CO}_{3}}}{p_{\mathrm{CO}}} \\
& =\frac{0.80}{1.4} \\
& =0.571
\end{aligned}
$$

It is given that $K_{\mathrm{p}}=0.265$.
Since $Q_{\mathrm{p}}>K_{\mathrm{P}}$, the reaction will proceed in the backward direction.
Therefore, we can say that the pressure of CO will increase while the pressure of CO_{2} will decrease.
Now, let the increase in pressure of $\mathrm{CO}=$ decrease in pressure of CO_{2} be p. Then, we can write,

$$
\begin{aligned}
& K_{\mathrm{r}}=\frac{p_{\mathrm{CO}_{2}}}{p_{\mathrm{CO}}} \\
& \Rightarrow 0.265=\frac{0.80-p}{1.4+p} \\
& \Rightarrow 0.371+0.265 p=0.80-p \\
& \Rightarrow 1.265 p=0.429 \\
& \Rightarrow p=0.339 \mathrm{~atm}
\end{aligned}
$$

Therefore, equilibrium partial of $\mathrm{CO}_{2}, p_{\mathrm{CO}_{3}}=0.80-0.339=0.461 \mathrm{~atm}$.
And, equilibrium partial pressure of $\mathrm{CO}, p_{\mathrm{co}}=1.4+0.339=1.739 \mathrm{~atm}$.

Question 7.21:

Equilibrium constant, K_{c} for the reaction

$$
\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \quad \text { at } 500 \mathrm{~K} \text { is } 0.061
$$

At a particular time, the analysis shows that composition of the reaction mixture is 3.0 mol $\mathrm{L}^{-1} \mathrm{~N}_{2}, 2.0 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{H}_{2}$ and $0.5 \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{NH}_{3}$. Is the reaction at equilibrium? If not in which direction does the reaction tend to proceed to reach equilibrium?

Answer 7.21:

The given reaction is:

$$
\mathrm{N}_{2(\mathrm{~g})}+3 \mathrm{H}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{NH}_{3(\mathrm{~g})}
$$

At a particular time: $3.0 \mathrm{~mol} \mathrm{~L}^{-1} \quad 2.0 \mathrm{~mol} \mathrm{~L}^{-1} \quad 0.5 \mathrm{~mol} \mathrm{~L}^{-1}$
Now, we know that,

$$
\begin{aligned}
Q_{\mathrm{C}} & =\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}} \\
& =\frac{(0.5)^{2}}{(3.0)(2.0)^{3}} \\
& =0.0104
\end{aligned}
$$

It is given that $K_{\mathrm{C}}=0.061$.

$$
\begin{array}{lll}
\text { Since } & Q_{\mathrm{C}} \neq K_{\mathrm{C}} & , \text { the reaction is not at equilibrium. } \\
\text { Since } & Q_{\mathrm{C}}<K_{\mathrm{C}} & \text {, the reaction will proceed in the forward direction to reach } \\
& \text { equilibrium. }
\end{array}
$$

Question 7.22:

Bromine monochloride, BrCl decomposes into bromine and chlorine and reaches the equilibrium:

$$
2 \mathrm{BrCl}(\mathrm{~g}) \longleftrightarrow \mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

for which $K_{c}=32$ at 500 K .
If initially pure BrCl is present at a concentration of $3.3 \times 10^{-3} \mathrm{molL}^{-1}$, what is its molar concentration in the mixture at equilibrium?

Answer 7.22:

Let the amount of bromine and chlorine formed at equilibrium be x. The given reaction is:

| | $2 \mathrm{BrCl}_{(\mathrm{g})}$ | \longleftrightarrow | $\mathrm{Br}_{2(\mathrm{~g})}$ |
| :--- | :---: | :---: | :---: |$+\mathrm{Cl}_{2(\mathrm{gl})}$

Now, we can write,

$$
\begin{aligned}
& \frac{\left[\mathrm{Br}_{2}\right]\left[\mathrm{Cl}_{2}\right]}{[\mathrm{BrCl}]^{2}}=K_{\mathrm{C}} \\
\Rightarrow & \frac{x \times x}{\left(3.3 \times 10^{-3}-2 x\right)^{2}}=32 \\
\Rightarrow & \frac{x}{3.3 \times 10^{-3}-2 x}=5.66 \\
\Rightarrow & x=18.678 \times 10^{-3}-11.32 x \\
\Rightarrow & 12.32 x=18.678 \times 10^{-3} \\
\Rightarrow & x=1.5 \times 10^{-3}
\end{aligned}
$$

Therefore, at equilibrium,

$$
\begin{aligned}
{[\mathrm{BrCl}] } & =3.3 \times 10^{-3}-\left(2 \times 1.5 \times 10^{-3}\right) \\
& =3.3 \times 10^{-3}-3.0 \times 10^{-3} \\
& =0.3 \times 10^{-3} \\
& =3.0 \times 10^{-4} \mathrm{molL}^{-1}
\end{aligned}
$$

Question 7.23:

At 1127 K and 1 atm pressure, a gaseous mixture of CO and CO_{2} in equilibrium with solid carbon has 90.55% CO by mass

$$
\mathrm{C}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

Calculate K_{c} for this reaction at the above temperature.

Answer 7.23:

Let the total mass of the gaseous mixture be 100 g .
Mass of CO $=90.55 \mathrm{~g}$
And, mass of $\mathrm{CO}_{2}=(100-90.55)=9.45 \mathrm{~g}$

Now, number of moles of CO, $\quad n_{\mathrm{CO}}=\frac{90.55}{28}=3.234 \mathrm{~mol}$
Number of moles of $\mathrm{CO}_{2}, \quad n_{\mathrm{CO}_{2}}=\frac{9.45}{44}=0.215 \mathrm{~mol}$
Partial pressure of CO,

$$
\begin{aligned}
p_{\mathrm{CO}} & =\frac{n_{\mathrm{CO}}}{n_{\mathrm{CO}}+n_{\mathrm{CO},}} \times p_{\text {total }} \\
& =\frac{3.234}{3.234+0.215} \times 1 \\
& =0.938 \mathrm{~atm}
\end{aligned}
$$

Partial pressure of CO_{2},

$$
\begin{aligned}
p_{\mathrm{CO}_{2}} & =\frac{n_{\mathrm{CO}_{2}}}{n_{\mathrm{CO}}+n_{\mathrm{CO}_{2}}} \times p_{\text {toal }} \\
& =\frac{0.215}{3.234+0.215} \times 1 \\
& =0.062 \mathrm{~atm}
\end{aligned}
$$

Therefore, $K_{\mathrm{p}}=\frac{[\mathrm{CO}]^{2}}{\left[\mathrm{CO}_{2}\right]}$

$$
=\frac{(0.938)^{2}}{0.062}
$$

$$
=14.19
$$

For the given reaction,

$$
\Delta n=2-1=1
$$

We know that,

$$
\begin{aligned}
& K_{\mathrm{P}}=K_{\mathrm{C}}(R T)^{\Delta t} \\
& \Rightarrow 14.19=K_{\mathrm{C}}(0.082 \times 1127)^{1} \\
& \Rightarrow K_{\mathrm{C}}=\frac{14.19}{0.082 \times 1127} \\
& =0.154 \text { (approximately) }
\end{aligned}
$$

Question 7.24:

Calculate
a) ΔG° and
b) the equilibrium constant for the formation of NO_{2} from NO and O_{2} at 298 K

$$
\mathrm{NO}(\mathrm{~g})+1 / 2 \mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{NO}_{2}(\mathrm{~g})
$$

Where:

$$
\begin{aligned}
& \Delta_{f} G^{\circ}\left(\mathrm{NO}_{2}\right)=52.0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta_{f} G^{\circ}(\mathrm{NO})=87.0 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta_{f} G^{\circ}\left(\mathrm{O}_{2}\right)=0 \mathrm{~kJ} / \mathrm{mol}
\end{aligned}
$$

Answer 7.24:

(a) For the given reaction,
$\Delta G^{\circ}=\Delta G^{\circ}$ (Products) $-\Delta G^{\circ}$ (Reactants)
$\Delta G^{\circ}=52.0-\{87.0+0\}$
$=-35.0 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(b) We know that,
$\Delta G^{\circ}=R T \log K_{c}$
$\Delta G^{\circ}=2.303 R T \log K_{c}$
$K_{c}=\frac{-35.0 \times 10^{-3}}{-2.303 \times 8.314 \times 298}$

$$
=6.134
$$

$\therefore K_{c}=\operatorname{antilog}(6.134)$

$$
=1.36 \times 10^{6}
$$

Hence, the equilibrium constant for the given reaction K_{c} is 1.36×10^{6}

Question 7.25:

Does the number of moles of reaction products increase, decrease or remain same when each of the following equilibria is subjected to a decrease in pressure by increasing the volume?
(a) $\mathrm{PCl}_{5}(\mathrm{~g}) \longleftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

(b) $\quad \mathrm{CaO}$ (s) $+\mathrm{CO}_{2}$ (g) $\longleftrightarrow \mathrm{CaCO}_{3}$ (s)
(c) 3 Fe (s) $+4 \mathrm{H}_{2} \mathrm{O}$ (g) $\longleftrightarrow \mathrm{Fe}_{3} \mathrm{O}_{4}$ (s) $+4 \mathrm{H}_{2}$ (g)

Answer 7.25:

(a) The number of moles of reaction products will increase. According to Le Chatelier's principle, if pressure is decreased, then the equilibrium shifts in the direction in which the number of moles of gases is more. In the given reaction, the number of moles of gaseous products is more than that of gaseous reactants. Thus, the reaction will proceed in the forward direction. As a result, the number of moles of reaction products will increase.
(b) The number of moles of reaction products will decrease.
(c) The number of moles of reaction products remains the same.

Question 7.26:

Which of the following reactions will get affected by increasing the pressure? Also, mention whether change will cause the reaction to go into forward or backward direction.
(i)

$$
\mathrm{COCl}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})
$$

(ii)

$$
\mathrm{CH}_{4}(\mathrm{~g})+2 \mathrm{~S}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{CS}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})
$$

(iii)

$$
\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{~s}) \longleftrightarrow 2 \mathrm{CO}(\mathrm{~g})
$$

(iv) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g}) \longleftrightarrow \mathrm{CH}_{3} \mathrm{OH}$ (g)
(v) CaCO_{3} (s) $\longleftrightarrow \mathrm{CaO}$ (s) $+\mathrm{CO}_{2}$ (g)
(vi) $4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer7.26:

The reactions given in (i), (iii), (iv), (v), and (vi) will get affected by increasing the pressure.
The reaction given in (iv) will proceed in the forward direction because the number of moles of gaseous reactants is more than that of gaseous products.
The reactions given in (i), (iii), (v), and (vi) will shift in the backward direction because the number of moles of gaseous reactants is less than that of gaseous products.

Question 7.27:

The equilibrium constant for the following reaction is 1.6×10^{5} at 1024 K .

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{HBr}(\mathrm{~g})
$$

Find the equilibrium pressure of all gases if 10.0 bar of HBr is introduced into a sealed container at 1024 K.

Answer 7.27:

Given,
K_{p} for the reaction i.e., $\mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{HBr}_{(\mathrm{g})}$ is 1.6×10^{5}.
Therefore, for the reaction $2 \mathrm{HBr}_{(\mathrm{g})} \longleftrightarrow \mathrm{H}_{2(\mathrm{~g})}+\mathrm{Br}_{2(\mathrm{~g})}$, the equilibrium constant will be,

$$
\begin{aligned}
K_{\mathrm{p}}^{\prime} & =\frac{1}{K_{\mathrm{p}}} \\
& =\frac{1}{1.6 \times 10^{5}} \\
& =6.25 \times 10^{-6}
\end{aligned}
$$

Now, let p be the pressure of both H_{2} and Br_{2} at equilibrium.

	$2 \mathrm{HBr}_{(\mathrm{s})}$	\longleftrightarrow	$\mathrm{H}_{2(\mathrm{~g})}$	$+\mathrm{Br}_{2(\mathrm{~g})}$
Initial conc.	10		0	0
At equilibrium	$10-2 p$		p	p

Now, we can write,

$$
\begin{aligned}
& \frac{p_{\mathrm{HB},} \times p_{2}}{p_{\mathrm{HBr}}^{2}}=K_{\mathrm{p}}^{\prime} \\
& \frac{p \times p}{(10-2 p)^{2}}=6.25 \times 10^{-6} \\
& \frac{p}{10-2 p}=2.5 \times 10^{-3} \\
& p=2.5 \times 10^{-2}-\left(5.0 \times 10^{-3}\right) p \\
& p+\left(5.0 \times 10^{-3}\right) p=2.5 \times 10^{-2} \\
& \left(1005 \times 10^{-3}\right) p=2.5 \times 10^{-2} \\
& p=2.49 \times 10^{-2} \text { bar }=2.5 \times 10^{-2} \text { bar (approximately) }
\end{aligned}
$$

Therefore, at equilibrium,

$$
\begin{aligned}
& {\left[\mathrm{H}_{2}\right]=\left[\mathrm{Br}_{2}\right]=2.49 \times 10^{-2} \text { bar }} \\
& {[\mathrm{HBr}]=10-2 \times\left(2.49 \times 10^{-2}\right) \text { bar }} \\
& =9.95 \text { bar }=10 \text { bar (approximately })
\end{aligned}
$$

Question 7.28:

Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following endothermic reaction:

$$
\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})
$$

(a) Write as expression for K_{p} for the above reaction.
(b) How will the values of K_{p} and composition of equilibrium mixture be affected by
(i) Increasing the pressure
(ii) Increasing the temperature
(iii) Using a catalyst?

Answer 7.28:

(a) For the given reaction,
$K_{\rho}=\frac{p_{\mathrm{CO}_{0}} \times p_{\mathrm{H}_{3}}^{3}}{p_{\mathrm{CH}_{4}} \times p_{\mathrm{H}_{2} \mathrm{O}}}$
(b)
(i) According to Le Chatelier's principle, the equilibrium will shift in the backward direction.
(ii) According to Le Chatelier's principle, as the reaction is endothermic, the equilibrium will shift in the forward direction.
(iii) The equilibrium of the reaction is not affected by the presence of a catalyst. A catalyst only increases the rate of a reaction. Thus, equilibrium will be attained quickly.

Question 7.29:

Describe the effect of:
a) Addition of H_{2}
b) Addition of $\mathrm{CH}_{3} \mathrm{OH}$
c) Removal of CO
d) Removal of $\mathrm{CH}_{3} \mathrm{OH}$ on the equilibrium of the reaction:

$$
2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g}) \longleftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Answer 7.29:

(a) According to Le Chatelier's principle, on addition of H_{2}, the equilibrium of the given reaction will shift in the forward direction.
(b) On addition of $\mathrm{CH}_{3} \mathrm{OH}$, the equilibrium will shift in the backward direction.
(c) On removing CO , the equilibrium will shift in the backward direction.
(d) On removing $\mathrm{CH}_{3} \mathrm{OH}$, the equilibrium will shift in the forward direction.

Question 7.30:

At 473 K , equilibrium constant K_{c} for decomposition of phosphorus pentachloride, PCl_{5} is 8.3×10^{-3}. If decomposition is depicted as,

$$
\mathrm{PCl}_{5}(\mathrm{~g}) \longleftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \quad \Delta_{r} H^{\circ}=124.0 \mathrm{kJmol}^{-1}
$$

a) Write an expression for K_{c} for the reaction.
b) What is the value of K_{c} for the reverse reaction at the sametemperature?
c) What would be the effect on K_{c} if
(i) more PCl_{5} is added
(ii) pressure is increased?
(iii) The temperature is increased?

Answer 7.30:
(a)

(b) Value of K_{c} for the reverse reaction at the same temperature is:

$$
\begin{aligned}
K_{c}^{\prime} & =\frac{1}{K_{c}} \\
& =\frac{1}{8.3 \times 10^{-3}}=1.2048 \times 10^{2} \\
& =120-48
\end{aligned}
$$

(c) (i) K_{c} would remain the same because in this case, the temperature remains the same.
(ii) K_{c} is constant at constant temperature. Thus, in this case, K_{c} would not change.
(iii) In an endothermic reaction, the value of K_{c} increases with an increase in temperature. Since the given reaction in an endothermic reaction, the value of K_{c} will increase ifthe temperature is increased.

Question 7.31:

Dihydrogen gas used in Haber's process is produced by reacting methane from natural gas with high temperature steam. The first stage of two stage reaction involves the formation of CO and H_{2}. In second stage, CO formed in first stage is reacted with more steam in water gas shift reaction,

$$
\mathrm{CO}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \longleftrightarrow \mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})
$$

If a reaction vessel at $400^{\circ} \mathrm{C}$ is charged with an equimolar mixture of CO and steam such that $p_{\mathrm{co}}=p_{\mathrm{H}_{2} \mathrm{O}}=4.0$ bar, what will be the partial pressure of H_{2} at equilibrium? $K p=10.1$ at $400^{\circ} \mathrm{C}$

Answer 7.31:

Let the partial pressure of both carbon dioxide and hydrogen gas be p. The given reaction is:

| | $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ | \longleftrightarrow | $\mathrm{CO}_{2(\mathrm{~g})}+$ | $\mathrm{H}_{2(\mathrm{~g})}$ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Initial conc. | 4.0 bar | 4.0 bar | 0 | 0 |
| At equilibrium | $4.0-p$ | $4.0-p$ | p | p |

It is given that $K_{\mathrm{p}}=10.1$.
Now,

$$
\begin{aligned}
& \frac{p_{\mathrm{CO}_{2}} \times p_{\mathrm{H}_{2}}}{p_{\mathrm{CoI}^{2}} \times p_{\mathrm{I}}}=K_{\mathrm{P}} \\
& \Rightarrow \frac{p \times p}{(4.0-p)(4.0-p)}=10.1 \\
& \Rightarrow \frac{p}{4.0-p}=3.178 \\
& \Rightarrow p=12.712-3.178 p \\
& \Rightarrow 4.178 p=12.712 \\
& \Rightarrow p=3.04
\end{aligned}
$$

Hence, at equilibrium, the partial pressure of H_{2} will be 3.04 bar.

Question 7.32:

Predict which of the following reaction will have appreciable concentration of reactants and products:
a) $\mathrm{Cl}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{Cl}(\mathrm{g}) ; \quad K_{c}=5 \times 10^{-39}$
b) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}(\mathrm{g}) \longleftrightarrow 2 \mathrm{NOCl}(\mathrm{g}) ; \quad K_{c}=3.7 \times 10^{8}$
c) $\mathrm{Cl}_{2}(\mathrm{~g})+2 \mathrm{NO}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{NO}_{2} \mathrm{Cl}(\mathrm{g}) ; \quad K_{c}=1.8$

Answer 7.32:

If the value of K_{c} lies between 10^{-3} and 10^{3}, a reaction has appreciable concentration of reactants and products. Thus, the reaction given in (c) will have appreciable concentration of reactants and products.

Question 7.33:

The value of K_{c} for the reaction $3 \mathrm{O}_{2}(\mathrm{~g}) \longleftrightarrow 2 \mathrm{O}_{3}(\mathrm{~g})$ is 2.0×10^{-50} at $25^{\circ} \mathrm{C}$. If the equilibrium concentration of O_{2} in air at $25^{\circ} \mathrm{C}$ is 1.6×10^{-2}, what is the concentration of O_{3} ?

Answer 7.33:

The given reaction is:

$$
\begin{aligned}
& 3 \mathrm{O}_{2(\mathrm{~g})} \longleftrightarrow 2 \mathrm{O}_{3(\mathrm{~g})} \\
& \text { Then, } K_{C}=\frac{\left[\mathrm{O}_{3(\mathrm{~g})}\right]^{2}}{\left[\mathrm{O}_{2(\mathrm{~g})}\right]^{3}}
\end{aligned}
$$

It is given that $K_{C}=2.0 \times 10^{-50}$ and $\left[\mathrm{O}_{2(\mathrm{~g})}\right]=1.6 \times 10^{-2}$.
Then, we have,

$$
\begin{aligned}
& 2.0 \times 10^{-50}=\frac{\left[\mathrm{O}_{3(\mathrm{~g})}\right]^{2}}{\left[1.6 \times 10^{-2}\right]^{3}} \\
& \Rightarrow\left[\mathrm{O}_{3(\mathrm{~g})}\right]^{2}=2.0 \times 10^{-50} \times\left(1.6 \times 10^{-2}\right)^{3} \\
& \Rightarrow\left[\mathrm{O}_{3(\mathrm{~g})}\right]^{2}=8.192 \times 10^{-56} \\
& \Rightarrow\left[\mathrm{O}_{3(\mathrm{~g})}\right]=2.86 \times 10^{-28} \mathrm{M}
\end{aligned}
$$

Hence, the concentration of O_{3} is $2.86 \times 10^{-28} \mathrm{M}$.

Vidya Champ

Question 7.34:

The reaction, $\mathrm{CO}(\mathrm{g})+3 \mathrm{H}_{2}(\mathrm{~g}) \longleftrightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is at equilibrium at 1300 K in a 1 L flask. It also contain 0.30 mol of $\mathrm{CO}, 0.10 \mathrm{~mol}$ of H_{2} and 0.02 mol of $\mathrm{H}_{2} \mathrm{O}$ and an unknown amount of CH_{4} in the flask. Determine the concentration of CH_{4} in the mixture.

The equilibrium constant, K_{c} for the reaction at the given temperature is 3.90 .

Answer 7.34:

Let the concentration of methane at equilibrium be x.

$$
\begin{gathered}
\mathrm{CO}_{(\mathrm{s})}+3 \mathrm{H}_{2(\mathrm{~g})} \longleftrightarrow \mathrm{CH}_{4(\mathrm{~g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \\
\text { At equilibrium } \frac{0.3}{1}=0.3 \mathrm{M} \frac{0.1}{1}=0.1 \mathrm{M} \\
\end{gathered}
$$

It is given that $K_{c}=3.90$.

Therefore,

$$
\begin{aligned}
& \frac{\left[\mathrm{CH}_{4(\mathrm{~g})}\right]\left[\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}\right]}{\left[\mathrm{CO}_{(\mathrm{g})}\right]\left[\mathrm{H}_{2(\mathrm{~g})}\right]^{3}}=K_{c} \\
& \Rightarrow \frac{x \times 0.02}{0.3 \times(0.1)^{3}}=3.90 \\
& \Rightarrow x=\frac{3.90 \times 0.3 \times(0.1)^{3}}{0.02} \\
& \quad=\frac{0.00117}{0.02} \\
& \quad=0.0585 \mathrm{M} \\
& \quad=5.85 \times 10^{-2} \mathrm{M}
\end{aligned}
$$

Hence, the concentration of CH_{4} at equilibrium is $5.85 \times 10^{-2} \mathrm{M}$.

Question 7.35:

What is meant by the conjugate acid-base pair? Find the conjugate acid/base for the following species:

$$
\mathrm{HNO}_{2}, \mathrm{CN}^{-}, \mathrm{HClO}_{4}, \mathrm{~F}^{-}, \mathrm{OH}^{-}, \mathrm{CO}_{3}^{2-} \text {, and S }{ }^{-}
$$

Answer 7.35:

A conjugate acid-base pair is a pair that differs only by one proton.
The conjugate acid-base for the given species is mentioned in the table below.

Species Conjugate acid-base

$\mathrm{HNO}_{2} \quad \mathrm{NO}_{2}^{-}$(base)
$\mathrm{CN}^{-} \quad \mathrm{HCN}$ (acid)
HClO_{4}

$$
\mathrm{ClO}_{4}^{-}(\text {base })
$$

$\mathrm{F}^{-} \quad \mathrm{HF}$ (acid)
$\mathrm{OH}^{-} \quad \mathrm{H}_{2} \mathrm{O}$ (acid) $/ \mathrm{O}^{2-}$ (base)
$\mathrm{CO}_{3}^{2-} \quad \mathrm{HCO}_{3}^{-}$(acid)
$\mathrm{S}_{2-} \quad \mathrm{HS}^{-}$(acid)

Question 7.36:

Which of the followings are Lewis acids? $\mathrm{H}_{2} \mathrm{O}, \mathrm{BF}_{3}, \mathrm{H}^{+}$, and NH_{4}^{+}

Answer 7.36:

Lewis acids are those acids which can accept a pair of electrons. For example, $\mathrm{BF}_{3}, \mathrm{H}^{+}$, and NH_{4}^{+}are Lewis acids.

Question 7.37:

What will be the conjugate bases for the Brönsted acids: $\mathrm{HF}, \mathrm{H}_{2} \mathrm{SO}_{4}$ and HCO_{3} ?

Answer 7.37:

The table below lists the conjugate bases for the given Bronsted acids.

Bronsted acid Conjugate base

HF	F^{-}
$\mathrm{H}_{2} \mathrm{SO}_{4}$	HSO_{4}^{-}
HCO_{3}^{-}	CO_{3}^{2-}

Question 7.38:

Write the conjugate acids for the following Brönsted bases: $\mathrm{NH}_{2}{ }^{-}, \mathrm{NH}_{3}$ and HCOO^{-}.

Answer 7.38:

The table below lists the conjugate acids for the given Bronsted bases.

Bronsted base Conjugate acid

NH_{2}^{-}
NH_{3}
NH_{3}
NH_{4}^{+}
HCOO^{-}
HCOOH

Question 7.39:

The species: $\mathrm{H}_{2} \mathrm{O}, \mathrm{HCO}_{3}^{-}, \mathrm{HSO}_{4}^{-}$, and NH_{3} can act both as Brönsted acids and bases. For each case give the corresponding conjugate acid and base.

Answer 7.39:

The table below lists the conjugate acids and conjugate bases for the given species.

Species	Conjugate acid	Conjugate base
$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{3} \mathrm{O}+$	OH^{-}

$\mathrm{HCO}_{3}^{-} \quad \mathrm{H}_{2} \mathrm{CO}_{3} \quad \mathrm{CO}_{3}^{2-}$
$\mathrm{HSO}_{4}^{-} \quad \mathrm{H}_{2} \mathrm{SO}_{4} \quad \mathrm{SO}_{4}^{2-}$
$\mathrm{NH}_{3} \quad \mathrm{NH}_{4}^{+} \quad \mathrm{NH}_{2}^{-}$

Question 7.40:

Classify the following species into Lewis acids and Lewis bases and show how these act as Lewis acid/base:
(a) OH^{-}
(b) F^{-}
(c) H^{+}
(d) BCl_{3}.

Answer 7.40:

(a) OH^{-}is a Lewis base since it can donate its lone pair of electrons.
(b) F^{-}is a Lewis base since it can donate a pair of electrons.
(c) H^{+}is a Lewis acid since it can accept a pair of electrons.
(d) BCl_{3} is a Lewis acid since it can accept a pair of electrons.

Question 7.41:

The concentration of hydrogen ion in a sample of soft drink is $3.8 \times 10^{-3} \mathrm{M}$. what is its pH ?

Answer 7.41:

Given,
$\left[\mathrm{H}^{+}\right]=3.8 \times 10^{-3} \mathrm{M}$
$\therefore \mathrm{pH}$ value of soft drink
$=-\log \left[\mathrm{H}^{+}\right]$
$=-\log \left(3.8 \times 10^{-3}\right)$
$=-\log 3.8-\log 10^{-3}$
$=-\log 3.8+3$
$=-0.58+3$
$=2.42$

Question 7.42:

The pH of a sample of vinegar is 3.76 . Calculate the concentration of hydrogen ion in it.

Answer 7.42:

Given, pH
$=3.76$
It is known that,

$$
\begin{aligned}
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \Rightarrow \log \left[\mathrm{H}^{+}\right]=-\mathrm{pH} \\
& \begin{aligned}
& \Rightarrow\left[\mathrm{H}^{+}\right]=\operatorname{antilog}(-\mathrm{pH}) \\
&=\operatorname{antil} \log (-3.76) \\
& \quad=1.74 \times 10^{-4} \mathrm{M}
\end{aligned}
\end{aligned}
$$

Hence, the concentration of hydrogen ion in the given sample of vinegar is $1.74 \times 10^{-4} \mathrm{M}$.

Question 7.43:

The ionization constant of $\mathrm{HF}, \mathrm{HCOOH}$ and HCN at 298 K are $6.8 \times 10^{-4}, 1.8 \times 10^{-4}$ and 4.8×10^{-9} respectively. Calculate the ionization constants of the corresponding conjugate base.

Answer 7.43:

It is known that,

$$
K_{b}=\frac{K_{w}}{K_{a}}
$$

Given,
K_{a} of $\mathrm{HF}=6.8 \times 10^{-4}$
Hence, K_{b} of its conjugate base F^{-}

$$
\begin{aligned}
& =\frac{K_{\mathrm{w}}}{K_{o}} \\
& =\frac{10^{-14}}{6.8 \times 10^{-4}} \\
& =1.5 \times 10^{-11}
\end{aligned}
$$

Given,
K_{a} of $\mathrm{HCOOH}=1.8 \times 10^{-4}$
Hence, K_{b} of its conjugate base HCOO^{-}

$$
\begin{aligned}
& =\frac{K_{\text {r }}}{K_{a}} \\
& =\frac{10^{-14}}{1.8 \times 10^{-4}} \\
& =5.6 \times 10^{-11}
\end{aligned}
$$

Given,
K_{a} of $\mathrm{HCN}=4.8 \times 10^{-9}$
Hence, K_{b} of its conjugate base CN^{-}

$$
\begin{aligned}
& =\frac{K_{\mathrm{r}}}{K_{a}} \\
& =\frac{10^{-14}}{4.8 \times 10^{-9}} \\
& =2.08 \times 10^{-6}
\end{aligned}
$$

Question 7.44:

The ionization constant of phenol is 1.0×10^{-10}. What is the concentration of phenolate ion in 0.05 M solution of phenol? What will be its degree of ionization if the solution is also 0.01 M in sodium phenolate?

Answer 7.44:

Ionization of phenol:

	$\mathrm{C}_{6} \mathrm{H}_{3} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}_{3} \mathrm{O}^{+}$		
Initial conc.	0.05	0	0
At equilibrium	$0.05-x$	x	x

$$
K_{a}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]}
$$

$$
K_{u t}=\frac{x \times x}{0.05-x}
$$

As the value of the ionization constant is very less, x will be very small. Thus, we can ignore x in the denominator.

$$
\left.\begin{array}{l}
\begin{array}{rl}
\therefore x & =\sqrt{1 \times 10^{-10} \times 0.05} \\
\quad & =\sqrt{5 \times 10^{-12}} \\
\quad= & 2.2 \times 10^{-6} \mathrm{M}=\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]
\end{array} \\
\text {Since }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right],
\end{array}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]=2.2 \times 10^{-6} \mathrm{M} .8 .
$$

Now, let \propto be the degree of ionization of phenol in the presence of $0.01 \mathrm{M} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa}$.

$$
\begin{aligned}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{ONa} \longrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{Na}^{+} \\
\text {Conc. } & 0.01
\end{aligned}
$$

Also,

$$
\begin{array}{ll}
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
\text {Conc. } & 0.05-0.05 \alpha \\
& 0.05 \alpha \\
0.05 \alpha
\end{array}
$$

$$
\begin{aligned}
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]=0.05-0.05 \alpha ; 0.05 \mathrm{M}} \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]=0.01+0.05 \alpha ; 0.01 \mathrm{M}} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.05 \alpha} \\
& K_{a}=\frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{O}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}\right]} \\
& K_{\alpha}=\frac{(0.01)(0.05 \alpha)}{0.05} \\
& 1.0 \times 10^{-10}=.01 \alpha \\
& \alpha=1 \times 10^{-8}
\end{aligned}
$$

Question 7.45:

The first ionization constant of $\mathrm{H}_{2} \mathrm{~S}$ is 9.1×10^{-8}. Calculate the concentration of HS^{-}ion in its 0.1 M solution. How will this concentration be affected if the solution is 0.1 M in HCl also? If the second dissociation constant of $\mathrm{H}_{2} \mathrm{~S}$ is 1.2×10^{-13}, calculate the concentration of S^{2-} under both conditions.

Answer 7.45:

(i) To calculate the concentration of HS^{-}ion:

Case I (in the absence of HCl):

Let the concentration of HS^{-}be $x \mathrm{M}$.

$$
\mathrm{H}_{2} \mathrm{~S} \longleftrightarrow \mathrm{H}^{+}+\mathrm{HS}^{-}
$$

$\mathrm{C}_{\boldsymbol{j}} 0.100$
C $\begin{array}{llll} & 0.1-x & x & x\end{array}$
Then, $K_{u_{4}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{HS}^{-}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]}$
$9.1 \times 10^{-8}=\frac{(x)(x)}{0.1-x}$
$\left(9.1 \times 10^{-8}\right)(0.1-x)=x^{2}$
Taking $0.1-x \mathrm{M} ; 0.1 \mathrm{M}$, we have $\left(9.1 \times 10^{-8}\right)(0.1)=x^{2}$.
$9.1 \times 10^{-9}=x^{2}$
$x=\sqrt{9.1 \times 10^{-9}}$
$=9.54 \times 10^{-5} \mathrm{M}$
$\Rightarrow\left[\mathrm{HS}^{-}\right]=9.54 \times 10^{-5} \mathrm{M}$

Case II (in the presence of HCl):

In the presence of 0.1 M of HCl , let $\left[\mathrm{HS}^{-}\right]$be y M

$$
\text { Then, } \mathrm{H}_{2} \mathrm{~S} \longleftrightarrow \mathrm{HS}^{-}+\mathrm{H}^{+}
$$

$\begin{array}{llll}\mathrm{C}_{i} & 0.1 & 0 & 0\end{array}$
C $0.1-y \quad y \quad y$

$$
\begin{aligned}
& \text { Now, } K_{w_{1}}=\frac{\left[\mathrm{HS}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{H}_{2} \mathrm{~S}\right]} \\
& K_{w_{1}}=\frac{[y](0.1+y)}{(0.1-y)} \\
& 9.1 \times 10^{-8}=\frac{y \times 0.1}{0.1} \\
& (\because 0.1-y ; 0.1 \mathrm{M}) \\
& 9.1 \times 10^{-8}=y \\
& \Rightarrow\left[\mathrm{HS}^{-}\right]=9.1 \times 10^{-8}
\end{aligned}
$$

To calculate the concentration of $\left[\mathrm{S}^{2-}\right]$

Case I (in the absence of 0.1 M HCl):

$\mathrm{HS}^{-} \longleftrightarrow \mathrm{H}^{+}+\mathrm{S}^{2-}$
$\left[\mathrm{HS}^{-}\right]=9.54 \times 10^{-5} \mathrm{M} \quad$ (From first ionization, $\begin{array}{r}\text { case } \mathrm{I} \text {) }\end{array}$
Let $\left[\mathrm{S}^{2-}\right]$ be X.
Also, $\left[\mathrm{H}^{+}\right]=9.54 \times 10^{-5} \mathrm{M} \quad$ (From first ionization, case I)
$K_{a_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]}$
$K_{w_{3}}=\frac{\left(9.54 \times 10^{-5}\right)(X)}{9.54 \times 10^{-5}}$
$1.2 \times 10^{-13}=X=\left[\mathrm{S}^{2-}\right]$

Case II (in the presence of $0.1 \mathbf{~ M ~ H C I}$):

Again, let the concentration of HS^{-}be $X^{\prime} \mathrm{M}$.
$\left[\mathrm{HS}^{-}\right]=9.1 \times 10^{-8} \mathrm{M} \quad$ (From first ionization, case II)
$\left[\mathrm{H}^{+}\right]=0.1 \mathrm{M} \quad$ (From HCl, case II)

$$
\begin{aligned}
& {\left[\mathrm{S}^{2-}\right]=X^{\prime}} \\
& \text { Then, } K_{a_{2}}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{S}^{2-}\right]}{\left[\mathrm{HS}^{-}\right]} \\
& 1.2 \times 10^{-13}=\frac{(0.1)\left(X^{\prime}\right)}{9.1 \times 10^{-8}} \\
& 10.92 \times 10^{-21}=0.1 X^{\prime} \\
& \frac{10.92 \times 10^{-21}}{0.1}=X^{\prime} \\
& X^{\prime}=\frac{1.092 \times 10^{-20}}{0.1} \\
& =1.092 \times 10^{-19} \mathrm{M} \\
& \Rightarrow K_{o_{1}}=1.74 \times 10^{-5}
\end{aligned}
$$

Question 7.46:

The ionization constant of acetic acid is 1.74×10^{-5}. Calculate the degree of dissociation of acetic acid in its 0.05 M solution. Calculate the concentration of acetate ion in the solution and its pH .

Answer 7.46:

Method 1

$$
\begin{array}{ll}
\text { 1) } \mathrm{CH}_{3} \mathrm{COOH} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+} & K_{u}=1.74 \times 10^{-5} \\
\text { 2) } & \mathrm{H}_{2} \mathrm{O}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{OH}^{-}
\end{array} K_{n}=1.0 \times 10^{-14} .
$$

Since $K a>K_{w}$:

$$
\begin{aligned}
C_{i} & =\begin{array}{ccc}
\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O}^{+} \\
0.05 & 0 & 0 \\
K_{q} & =\frac{(.05 \alpha)(.05 \alpha)}{(.05-0.05 \alpha)} \\
& =\frac{(.05 \alpha)(0.05 \alpha)}{.05(1-\alpha)} \\
& =\frac{.05 \alpha^{2}}{1-\alpha}
\end{array} . \begin{array}{l}
0.05 \alpha \\
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& 1.74 \times 10^{-5}=\frac{0.05 \alpha^{2}}{1-\alpha} \\
& 1.74 \times 10^{-5}-1.74 \times 10^{-5} \alpha=0.05 \alpha^{2} \\
& 0.05 \alpha^{2}+1.74 \times 10^{-5} \alpha-1.74 \times 10^{-5} \\
& \begin{aligned}
D & =b^{2}-4 a c \\
& =\left(1.74 \times 10^{-5}\right)^{2}-4(.05)\left(1.74 \times 10^{-5}\right) \\
& =3.02 \times 10^{-25}+.348 \times 10^{-5}
\end{aligned} \\
& \begin{aligned}
& \begin{aligned}
& =\sqrt{\frac{K_{u}}{c}}
\end{aligned} \\
& \begin{aligned}
\alpha & =\sqrt{\frac{1.74 \times 10^{-5}}{.05}} \\
& =\sqrt{\frac{34.8 \times 10^{-5} \times 10}{10}} \\
& =\sqrt{3.48 \times 10^{-6}} \\
& =\mathrm{CH}_{3} \mathrm{COOH} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}
\end{aligned} \\
& \begin{aligned}
\begin{array}{l}
1.86
\end{array} \\
{\left[\mathrm{CH}_{3} \mathrm{COO}^{-3}\right.}
\end{aligned}=0.05 \times 1.86 \times 10^{-3} \\
&=\frac{0.93 \times 10^{-3}}{1000} \\
&=.000093
\end{aligned}
\end{aligned}
$$

Method 2

Degree of dissociation,
$\alpha=\sqrt{\frac{K_{a}}{c}}$
$c=0.05 \mathrm{M}$
$K_{a}=1.74 \times 10^{-5}$

Then, $\alpha=\sqrt{\frac{1.74 \times 10^{-5}}{.05}}$

$$
\begin{aligned}
& \alpha=\sqrt{34.8 \times 10^{-5}} \\
& \alpha=\sqrt{3.48} \times 10^{-4} \\
& \alpha=1.8610^{-2}
\end{aligned}
$$

$\mathrm{CH}_{3} \mathrm{COOH} \longleftrightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$

Thus, concentration of $\mathrm{CH}_{3} \mathrm{COO}-=\mathrm{c} . \mathrm{a}$

$$
\begin{aligned}
& =.05 \times 1.86 \times 10^{-2} \\
& =.093 \times 10^{-2} \\
& =.00093 \mathrm{M}
\end{aligned}
$$

Since $\left[\mathrm{OAc}^{-}\right]=\left[\mathrm{H}^{+}\right]$,

$$
\begin{aligned}
& {\left[\mathrm{H}^{+}\right]=.00093=.093 \times 10^{-2} .} \\
& \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& \quad=-\log \left(.093 \times 10^{-2}\right) \\
& \therefore \mathrm{pH}=3.03
\end{aligned}
$$

Hence, the concentration of acetate ion in the solution is 0.00093 M and its Ph is 3.03.

Question 7.47:

It has been found that the pH of a 0.01 M solution of an organic acid is 4.15 . Calculate the concentration of the anion, the ionization constant of the acid and its $\mathrm{p} K_{\mathrm{a}}$.

Answer 7.47:

Let the organic acid be HA.
$\Rightarrow \mathrm{HA} \longleftrightarrow \mathrm{H}^{+}+\mathrm{A}^{-}$
Concentration of $\mathrm{HA}=0.01 \mathrm{MpH}$
$=4.15$

$$
\begin{aligned}
& -\log \left[\mathrm{H}^{+}\right]=4.15 \\
& {\left[\mathrm{H}^{+}\right]=7.08 \times 10^{-5}}
\end{aligned}
$$

Now,

$$
K_{a}=\frac{\left[\mathrm{H}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]}
$$

$$
\left[\mathrm{H}^{+}\right]=\left[\mathrm{A}^{-}\right]=7.08 \times 10^{-5}
$$

$$
[\mathrm{HA}]=0.01
$$

Then,

$$
\begin{aligned}
K_{o} & =\frac{\left(7.08 \times 10^{-5}\right)\left(7.08 \times 10^{-5}\right)}{0.01} \\
K_{o} & =5.01 \times 10^{-7} \\
p K_{a} & =-\log K_{a} \\
& =-\log \left(5.01 \times 10^{-7}\right) \\
p K_{a} & =6.3001
\end{aligned}
$$

Question 7.48:

Assuming complete dissociation, calculate the pH of the following solutions:
(i) 0.003 M HCl
(ii) 0.005 M NaOH
(iii) 0.002 M HBr
(iv) 0.002 M KOH

Answer 7.48:

(i) 0.003 MHCl :

$$
\mathrm{H}_{2} \mathrm{O}+\mathrm{HCl} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Cl}^{-}
$$

Since HCl is completely ionized,
$\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HCl}]$.
$\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.003$
Now,

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=-\log (.003) \\
& =2.52
\end{aligned}
$$

Hence, the pH of the solution is 2.52 .
(ii) 0.005 MNaOH :

$$
\begin{aligned}
& \mathrm{NaOH}_{(\text {aq) }} \longleftrightarrow \mathrm{Na}_{(m q)}^{+}+\mathrm{HO}_{(m q)}^{-} \\
& {\left[\mathrm{HO}^{-}\right]=[\mathrm{NaOH}]} \\
& \Rightarrow\left[\mathrm{HO}^{-}\right]=.005 \\
& \mathrm{pOH}=-\log \left[\mathrm{HO}^{-}\right]=-\log (.005) \\
& \mathrm{pOH}=2.30 \\
& \therefore \mathrm{pH}=14-2.30 \\
& \quad=11.70
\end{aligned}
$$

Hence, the pH of the solution is 11.70 .
(iii) 0.002 HBr :

$$
\begin{aligned}
& \mathrm{HBr}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{H}_{3} \mathrm{O}^{+}+\mathrm{Br}^{-} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=[\mathrm{HBr}]} \\
& \begin{array}{c}
\Rightarrow\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=.002 \\
\therefore \mathrm{pH}=-\log \left[\mathrm{H}_{3} \mathrm{O}^{+}\right] \\
\quad=-\log (0.002) \\
\quad=2.69
\end{array}
\end{aligned}
$$

Hence, the pH of the solution is 2.69 .
(iv) 0.002 M KOH :

$$
\mathrm{KOH}_{(a q)} \longleftrightarrow \mathrm{K}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-}
$$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=[\mathrm{KOH}]} \\
& \begin{aligned}
\Rightarrow\left[\mathrm{OH}^{-}\right] & =.002
\end{aligned} \\
& \text { Now, pOH}=-\log \left[\mathrm{OH}^{-}\right] \\
& \quad=2.69
\end{aligned} \begin{aligned}
& \therefore \mathrm{pH}=14-2.69 \\
& \quad=11.31
\end{aligned}
$$

Hence, the pH of the solution is 11.31 .

Question 7.49:

Calculate the pH of the following solutions:
a) 2 g of TIOH dissolved in water to give 2 litre of solution.
b) 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution.
c) 0.3 g of NaOH dissolved in water to give 200 mL of solution.
d) 1 mL of 13.6 M HCl is diluted with water to give 1 litre of solution.

Answer 7.49:

(a) For 2 g of TIOH dissolved in water to give 2 L of solution:

$$
\begin{aligned}
& {\left[\mathrm{TlOH}_{(a q)}\right]=\frac{2}{2} \mathrm{~g} / \mathrm{L}} \\
& =\frac{2}{2} \times \frac{1}{221} \mathrm{M} \\
& =\frac{1}{221} \mathrm{M} \\
& \mathrm{TlOH}_{(a q)} \longrightarrow \mathrm{Tl}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \\
& {\left[\mathrm{OH}_{(o q)}^{-}\right]=\left[\mathrm{TlOH}_{(o q)}\right]=\frac{1}{221} \mathrm{M}} \\
& K_{\mathrm{v}}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& 10^{-14}=\left[\mathrm{H}^{+}\right]\left(\frac{1}{221}\right) \\
& 221 \times 10^{-14}=\left[\mathrm{H}^{+}\right] \\
& \Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{-}\right]=-\log \left(221 \times 10^{-14}\right) \\
& =-\log \left(2.21 \times 10^{-12}\right) \\
& =11.65
\end{aligned}
$$

(b) For 0.3 g of $\mathrm{Ca}(\mathrm{OH})_{2}$ dissolved in water to give 500 mL of solution:

$$
\begin{aligned}
& \mathrm{Ca}(\mathrm{OH})_{2} \longrightarrow \mathrm{Ca}^{2+}+2 \mathrm{OH}^{-} \\
& {\left[\mathrm{Ca}(\mathrm{OH})_{2}\right]=0.3 \times \frac{1000}{500}=0.6 \mathrm{M}} \\
& \begin{aligned}
{\left[\mathrm{OH}_{a q}^{-}\right] } & =2 \times\left[\mathrm{Ca}(\mathrm{OH})_{2 a q}\right] \\
& =2 \times 0.6 \\
{\left[\mathrm{H}^{+}\right]=} & \frac{K_{u}}{\left[\mathrm{OH}_{a q}^{-}\right]}
\end{aligned} \\
& \begin{aligned}
&=\frac{10-14}{1.2} \mathrm{M} \\
&= 0.833 \times 10^{-14} \\
& \mathrm{pH}=-\log \left(0.833 \times 10^{-14}\right) \\
&=-\log \left(8.33 \times 10^{-13}\right) \\
&=(-0.902+13) \\
&=12.098
\end{aligned}
\end{aligned}
$$

(c) For 0.3 g of NaOH dissolved in water to give 200 mL of solution:

$$
\begin{aligned}
& \mathrm{NaOH} \longrightarrow \mathrm{Na}_{(a q)}^{+}+\mathrm{OH}_{(a q)}^{-} \\
& {[\mathrm{NaOH}]=0.3 \times \frac{1000}{200}=1.5 \mathrm{M}} \\
& {\left[\mathrm{OH}_{a q}^{-}\right]=1.5 \mathrm{M}}
\end{aligned} \begin{array}{r}
\text { Then, }\left[\mathrm{H}^{+}\right]=\frac{10^{-14}}{1.5} \\
\quad=6.66 \times 10^{-13} \\
\mathrm{pH}=-\log \left(6.66 \times 10^{-13}\right) \\
\quad=12.18
\end{array}
$$

(d) For 1 mL of 13.6 M HCl diluted with water to give 1 L of solution:

$$
13.6 \times 1 \mathrm{~mL}=\mathrm{M}_{2} \times 1000 \mathrm{~mL}
$$

(Before dilution) (After dilution)
$13.6 \times 10^{-3}=M_{2} \times 1 \mathrm{LM} M_{2}$
$=1.36 \times 10^{-2}\left[\mathrm{H}^{+}\right]=1.36 \times 10^{-2} \mathrm{pH}=-\log \left(1.36 \times 10^{-2}\right)$
$=(-0.1335+2)=1.866 \ldots 1.87$

Question 7.50:

The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 . Calculate the pH of the solution and the $p K_{a}$ of bromoacetic acid.

Answer 7.50:

Degree of ionization, $a=0.132$
Concentration, $c=0.1 \mathrm{M}$
Thus, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}=c . a$
$=0.1 \times 0.132$
$=0.0132$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log (0.0132) \\
& =1.879: 1.88
\end{aligned}
$$

Now,

$$
\begin{aligned}
K_{a} & =C \alpha^{2} \\
& =0.1 \times(0.132)^{2} \\
K_{a} & =.0017 \\
p K_{a} & =2.75
\end{aligned}
$$

Question 7.51:

The degree of ionization of a 0.1 M bromoacetic acid solution is 0.132 . Calculate the pH of the solution and the $p K_{a}$ of bromoacetic acid.

Answer 7.51:

Degree of ionization, $a=0.132$
Concentration, $c=0.1 \mathrm{M}$
Thus, the concentration of $\mathrm{H}_{3} \mathrm{O}^{+}=c . a$
$=0.1 \times 0.132$
$=0.0132$

$$
\begin{aligned}
\mathrm{pH} & =-\log \left[\mathrm{H}^{+}\right] \\
& =-\log (0.0132) \\
& =1.879: 1.88
\end{aligned}
$$

Now,

$$
\begin{aligned}
K_{a} & =C \alpha^{2} \\
& =0.1 \times(0.132)^{2} \\
K_{a} & =.0017 \\
p K_{a} & =2.75
\end{aligned}
$$

Question 7.52:

What is the pH of 0.001 M aniline solution? The ionization constant of aniline can be taken from Table 7.7. Calculate the degree of ionization of aniline in the solution. Also calculate the ionization constant of the conjugate acid of aniline.

Answer 7.52:

$K_{b}=4.27 \times 10^{-10}$
$c=0.001 \mathrm{M} \mathrm{pH}$
$=$?
$a=$?
$k_{b}=c \alpha^{2}$
$4.27 \times 10^{-10}=0.001 \times \alpha^{2}$
$4270 \times 10^{-10}=\alpha^{2}$
$65.34 \times 10^{-5}=\alpha=6.53 \times 10^{-4}$
Then, $[$ anion $]=c \alpha=.001 \times 65.34 \times 10^{-5}$

$$
=.065 \times 10^{-5}
$$

$\mathrm{pOH}=-\log \left(.065 \times 10^{-5}\right)$

$$
=6.187
$$

$\mathrm{pH}=7.813$
Now,
$K_{i} \times K_{b}=K_{w}$
$\therefore 4.27 \times 10^{-19} \times K_{e}=K_{w}$
$K_{a}=\frac{10^{-14}}{4.27 \times 10^{-10}}$
$=2.34 \times 10^{-5}$
Thus, the ionization constant of the conjugate acid of aniline is 2.34×10^{-5}.

Question 7.53:

Calculate the degree of ionization of 0.05 M acetic acid if its $\mathrm{p} K_{\mathrm{a}}$ value is 4.74 .
How is the degree of dissociation affected when its solution also contains (a) 0.01 M (b) 0.1 M in HCl ?

Answer 7.53:

$$
\begin{aligned}
& c=0.05 \mathrm{M} \\
& p K_{a}=4.74 \\
& p K_{a}=-\log \left(K_{o}\right) \\
& K_{o}=1.82 \times 10^{-5}
\end{aligned}
$$

$$
K_{o}=c \alpha^{2} \quad \alpha=\sqrt{\frac{K_{a}}{c}}
$$

$$
\alpha=\sqrt{\frac{1.82 \times 10^{-5}}{5 \times 10^{-2}}}=1.908 \times 10^{-2}
$$

When HCl is added to the solution, the concentration of H^{+}ions will increase. Therefore, the equilibrium will shift in the backward direction i.e., dissociation of acetic acid will decrease.

Case I: When 0.01 M HCl is taken.
Let x be the amount of acetic acid dissociated after the addition of HCl .

Initial conc.

After dissociation

As the dissociation of a very small amount of acetic acid will take place, the values i.e., $0.05-x$ and $0.01+x$ can be taken as 0.05 and 0.01 respectively.

$$
\begin{aligned}
& K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]} \\
& \therefore K_{a}=\frac{(0.01) x}{0.05} \\
& x=\frac{1.82 \times 10^{-5} \times 0.05}{0.01} \\
& x=1.82 \times 10^{-3} \times 0.05 \mathrm{M}
\end{aligned}
$$

Now,

$$
\begin{aligned}
\alpha & =\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }} \\
& =\frac{1.82 \times 10^{-3} \times 0.05}{0.05} \\
& =1.82 \times 10^{-3}
\end{aligned}
$$

Case II: When 0.1 M HCl is taken.
Let the amount of acetic acid dissociated in this case be X. As we have done in the first case, the concentrations of various species involved in the reaction are:

$$
\begin{aligned}
& {\left[\mathrm{CH}_{3} \mathrm{COOH}\right]=0.05-X ; 0.05 \mathrm{M}} \\
& {\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=X} \\
& {\left[\mathrm{H}^{+}\right]=0.1+X ; 0.1 \mathrm{M}}
\end{aligned}
$$

$$
K_{a}=\frac{\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]\left[\mathrm{H}^{+}\right]}{\left[\mathrm{CH}_{3} \mathrm{COOH}\right]}
$$

$$
\therefore K_{a}=\frac{(0.1) X}{0.05}
$$

$$
x=\frac{1.82 \times 10^{-5} \times 0.05}{0.1}
$$

$$
x=1.82 \times 10^{-4} \times 0.05 \mathrm{M}
$$

Now,
$\alpha=\frac{\text { Amount of acid dissociated }}{\text { Amount of acid taken }}$

$$
\begin{aligned}
& =\frac{1.82 \times 10^{-4} \times 0.05}{0.05} \\
& =1.82 \times 10^{-4}
\end{aligned}
$$

Question 7.54:

The ionization constant of dimethylamine is 5.4×10^{-4}. Calculate its degree of ionization in its 0.02 M solution. What percentage of dimethylamine is ionized if the solution is also 0.1 M in NaOH ?

Answer 7.54:

$K_{b}=5.4 \times 10^{-4}$
$c=0.02 \mathrm{M}$
Then, $\alpha=\sqrt{\frac{K_{b}}{c}}$

$$
\begin{aligned}
& =\sqrt{\frac{5.4 \times 10^{-4}}{0.02}} \\
& =0.1643
\end{aligned}
$$

Now, if 0.1 M of NaOH is added to the solution, then NaOH (being a strong base) undergoes complete ionization.

$$
\begin{aligned}
\mathrm{NaOH}_{(a q)} \longleftrightarrow & \mathrm{Na}_{(a q)}^{+}+\mathrm{OH}_{(w q)}^{-} \\
& 0.1 \mathrm{M} \quad 0.1 \mathrm{M}
\end{aligned}
$$

And,
$\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}+\mathrm{OH}$
$(0.02-x)$
; 0.02 M
x
x
; 0.1 M
Then, $\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]=x$
$\left[\mathrm{OH}^{-}\right]=x+0.1 ; 0.1$
$\Rightarrow K_{h}=\frac{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}_{2}^{+}\right]\left[\mathrm{OH}^{-}\right]}{\left[\left(\mathrm{CH}_{3}\right)_{2} \mathrm{NH}\right]}$
$5.4 \times 10^{-4}=\frac{x \times 0.1}{0.02}$
$x=0.0054$

It means that in the presence of $0.1 \mathrm{M} \mathrm{NaOH}, 0.54 \%$ of dimethylamine will get dissociated.

Question 7.55:

Calculate the hydrogen ion concentration in the following biological fluids whose pH are given below:
(a) Human muscle-fluid, 6.83
(b) Human stomach fluid, 1.2
(c) Human blood, 7.38
(d) Human saliva, 6.4.

Answer 7.55:

(a) Human muscle fluid 6.83:

$$
\mathrm{pH}=6.83 \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$\therefore 6.83=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=1.48 \times 10^{-7} \mathrm{M}$
(b) Human stomach fluid, 1.2:
$\mathrm{pH}=1.2$
$1.2=-\log \left[\mathrm{H}^{+}\right]$
$\therefore\left[\mathrm{H}^{+}\right]=0.063$
(c) Human blood, 7.38:
$\mathrm{pH}=7.38=-\log \left[\mathrm{H}^{+}\right]$
$\therefore\left[\mathrm{H}^{+}\right]=4.17 \times 10^{-8} \mathrm{M}$
(d) Human saliva, 6.4:
$\mathrm{pH}=6.4$
$6.4=-\log \left[\mathrm{H}^{+}\right]$
$\left[\mathrm{H}^{+}\right]=3.98 \times 10^{-7}$

Question 7.56:

The pH of milk, black coffee, tomato juice, lemon juice and egg white are $6.8,5.0,4.2$, 2.2 and 7.8 respectively. Calculate corresponding hydrogen ion concentration in each.

Answer 7.56:

The hydrogen ion concentration in the given substances can be calculated by using the given relation: $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
(i) pH of milk $=6.8$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$6.8=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-6.8$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-6.8)$
$=1.5 \times 19^{-7} \mathrm{M}$
(ii) pH of black coffee $=5.0$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$5.0=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-5.0$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-5.0)$
$=10^{-5} \mathrm{M}$
(iii) pH of tomato juice $=4.2$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$4.2=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-4.2$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-4.2)$
$=6.31 \times 10^{-5} \mathrm{M}$
(iv) pH of lemon juice $=2.2$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$2.2=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-2.2$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-2.2)$
$=6.31 \times 10^{-3} \mathrm{M}$
(v) pH of egg white $=7.8$

Since, $\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$7.8=-\log \left[\mathrm{H}^{+}\right] \log$
$\left[\mathrm{H}^{+}\right]=-7.8$
$\left[\mathrm{H}^{+}\right]=\operatorname{anitlog}(-7.8)$
$=1.58 \times 10^{-8} \mathrm{M}$

Question 7.57:

If 0.561 g of KOH is dissolved in water to give 200 mL of solution at 298 K . Calculate the concentrations of potassium, hydrogen and hydroxyl ions. What is its pH ?

Answer 7.57:

$$
\left.\begin{array}{l}
\begin{array}{rl}
{\left[\mathrm{KOH}_{w q}\right]} & =\frac{0.561}{\frac{1}{5}} \mathrm{~g} / \mathrm{L} \\
& =2.805 \mathrm{~g} / \mathrm{L} \\
& =2.805 \times \frac{1}{56.11} \mathrm{M} \\
& =.05 \mathrm{M}
\end{array} \\
\mathrm{KOH}_{(\mathrm{aqq})} \rightarrow \mathrm{K}_{(\mathrm{wq})}^{+}+\mathrm{OH}_{(a \mathrm{q})}^{-}
\end{array}\right] \begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=.05 \mathrm{M}=\left[\mathrm{K}^{+}\right]}
\end{aligned} \begin{aligned}
& {\left[\mathrm{H}^{+}\right]\left[\mathrm{H}^{-}\right]=K_{\mathrm{w}}} \\
& {\left[\mathrm{H}^{+}\right] \frac{K_{\mathrm{w}}}{\left[\mathrm{OH}^{-}\right]}} \\
& =\frac{10^{-14}}{0.05}=2 \times 10^{-13} \mathrm{M} \\
& \therefore \mathrm{pH}=12.70
\end{aligned}
$$

Question 7.58:

The solubility of $\mathrm{Sr}(\mathrm{OH})_{2}$ at 298 K is $19.23 \mathrm{~g} / \mathrm{L}$ of solution. Calculate the concentrations of strontium and hydroxyl ions and the pH of the solution.

Answer 7.58:

Solubility of $\mathrm{Sr}(\mathrm{OH})_{2}=19.23 \mathrm{~g} / \mathrm{L}$
Then, concentration of $\mathrm{Sr}(\mathrm{OH})_{2}$

$$
\begin{aligned}
& \quad=\frac{19.23}{121.63} \mathrm{M} \\
& =0.1581 \mathrm{M} \\
& \mathrm{Sr}(\mathrm{OH})_{2(a \mathrm{aq})} \longrightarrow \mathrm{Sr}_{(\mathrm{aaq})}^{2+}+2\left(\mathrm{OH}^{-}\right)_{(\mathrm{as})} \\
& \therefore\left[\mathrm{Sr}^{2+}\right]=0.1581 \mathrm{M} \\
& {\left[\mathrm{OH}^{-}\right]=2 \times 0.1581 \mathrm{M}=0.3126 \mathrm{M}} \\
& \text { Now, } \\
& K_{\mathrm{w}}=\left[\mathrm{OH}^{-}\right]\left[\mathrm{H}^{+}\right] \\
& \frac{10^{-14}}{0.3126}=\left[\mathrm{H}^{+}\right] \\
& \Rightarrow\left[\mathrm{H}^{+}\right]=3.2 \times 10^{-14} \\
& \therefore \mathrm{pH}=13.495 ; 13.50
\end{aligned}
$$

Question 7.59:

The ionization constant of propanoic acid is 1.32×10^{-5}. Calculate the degree of ionization of the acid in its 0.05 M solution and also its pH . What will be its degree of ionization if the solution is 0.01 M in HCl also?

Answer 7.59:

Let the degree of ionization of propanoic acid be a.
Then, representing propionic acid as HA, we have:

$$
\begin{aligned}
& \begin{array}{l}
\mathrm{HA}+\underset{\mathrm{H}_{2} \mathrm{O}}{(.05-0.0 \alpha) \approx .05}
\end{array} \\
& \begin{array}{l}
K_{a}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]\left[\mathrm{A}^{-}\right]}{[\mathrm{HA}]} \\
\quad=\frac{(.05 \alpha)(.05 \alpha)}{0.05} \\
\mathrm{H}_{3} \mathrm{O}^{+}
\end{array}+\begin{array}{c}
\mathrm{A}^{-} \\
.05 \alpha
\end{array} \\
& \alpha=\sqrt{\frac{K_{a}}{.05}}=1.63 \times 10^{-2} \\
& \text { Then, }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=.05 \alpha=.05 \times 1.63 \times 10^{-2}=K_{b} .15 \times 10^{-4} \mathrm{M} \\
& \therefore \mathrm{pH}=3.09
\end{aligned}
$$

In the presence of 0.1 M of HCl , let a^{\prime} be the degree of ionization.

$$
\begin{aligned}
& \text { Then, }\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=0.01 \\
& {\left[\mathrm{~A}^{-}\right]=005 \alpha^{\prime}} \\
& {[\mathrm{HA}]=.05} \\
& K_{a}=\frac{0.01 \times .05 \alpha^{\prime}}{.05} \\
& 1.32 \times 10^{-5}=.01 \times \alpha^{\prime} \\
& \alpha^{\prime}=1.32 \times 10^{-3}
\end{aligned}
$$

Question 7.60:

The pH of 0.1 M solution of cyanic acid (HCNO) is 2.34 . Calculate the ionization constant of the acid and its degree of ionization in the solution.

Answer 7.60:

$c=0.1 \mathrm{M}$
$\mathrm{pH}=2.34$

$$
\begin{aligned}
& -\log \left[\mathrm{H}^{+}\right]=\mathrm{pH} \\
& -\log \left[\mathrm{H}^{+}\right]=2.34 \\
& {\left[\mathrm{H}^{+}\right]=4.5 \times 10^{-3}} \\
& \text { Also, } \\
& {\left[\mathrm{H}^{+}\right]=c \alpha} \\
& 4.5 \times 10^{-3}=0.1 \times \alpha \\
& \frac{4.5 \times 10^{-3}}{0.1}=\alpha \\
& \alpha=45 \times 10^{-3}=.045
\end{aligned}
$$

Then,

$$
\begin{aligned}
K_{a} & =c \alpha^{2} \\
& =0.1 \times\left(45 \times 10^{-3}\right)^{2} \\
& =202.5 \times 10^{-6} \\
& =2.02 \times 10^{-4}
\end{aligned}
$$

Question 7.61:

The ionization constant of nitrous acid is 4.5×10^{-4}. Calculate the pH of 0.04 M sodium nitrite solution and also its degree of hydrolysis.

Answer 7.61:

NaNO_{2} is the salt of a strong base (NaOH) and a weak acid $\left(\mathrm{HNO}_{2}\right)$.

$$
\begin{aligned}
& \mathrm{NO}_{2}^{-}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{HNO}_{2}+\mathrm{OH}^{-} \\
& K_{h}=\frac{\left[\mathrm{HNO}_{2}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{NO}_{2}^{-}\right]} \\
& \Rightarrow \frac{K_{w}}{K_{a}}=\frac{10^{-14}}{4.5 \times 10^{-4}}=.22 \times 10^{-10}
\end{aligned}
$$

Now, If x moles of the salt undergo hydrolysis, then the concentration of various species present in the solution will be:

$$
\begin{aligned}
& {\left[\mathrm{NO}_{2}^{-}\right]=.04-x ; 0.04} \\
& {\left[\mathrm{HNO}_{2}\right]=x} \\
& {\left[\mathrm{OH}^{-}\right]=x} \\
& \mathrm{~K}_{h}=\frac{x^{2}}{0.04}=0.22 \times 10^{-10} \\
& x^{2}=.0088 \times 10^{-10} \\
& x=.093 \times 10^{-5} \\
& \therefore\left[\mathrm{OH}^{-}\right]=0.093 \times 10^{-5} \mathrm{M} \\
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{10^{-14}}{.093 \times 10^{-5}}=10.75 \times 10^{-9} \mathrm{M}} \\
& \Rightarrow \mathrm{pH}=-\log \left(10.75 \times 10^{-9}\right) \\
& \quad=7.96
\end{aligned}
$$

Therefore, degree of hydrolysis

$$
\begin{aligned}
& =\frac{x}{0.04}=\frac{.093 \times 10^{-5}}{.04} \\
& =2.325 \times 10^{-5}
\end{aligned}
$$

Question 7.62:

A 0.02 M solution of pyridinium hydrochloride has $\mathrm{pH}=3.44$. Calculate the ionization constant of pyridine

Answer 7.62:

$\mathrm{pH}=3.44$
We know that,
$\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]$
$\therefore\left[\mathrm{H}^{+}\right]=3.63 \times 10^{-4}$
Then, $K_{h}=\frac{\left(3.63 \times 10^{-4}\right)^{2}}{0.02} \quad(\because$ concentration $=0.02 \mathrm{M})$
$\Rightarrow K_{h}=6.6 \times 10^{-6}$
Now, $K_{b}=\frac{K_{w}}{K_{a}}$
$\Rightarrow K_{u}=\frac{K_{w}}{K_{h}}=\frac{10^{-14}}{6.6 \times 10^{-6}}$

$$
=1.51 \times 10^{-9}
$$

Question 7.63:

Predict if the solutions of the following salts are neutral, acidic or basic:
$\mathrm{NaCl}, \mathrm{KBr}, \mathrm{NaCN}, \mathrm{NH}_{4} \mathrm{NO}_{3}, \mathrm{NaNO}_{2}$ and KF

Answer 7.63:

(i) NaCl :

$$
\mathrm{NaCl}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \underset{\text { Strong base }}{\mathrm{NaOH}}+\underset{\text { Strong acid }}{\mathrm{HCl}}
$$

Therefore, it is a neutral solution.

(ii) KBr :

$\mathrm{KBr}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \underset{\substack{\mathrm{KOH} \\ \text { Strong base }}}{\mathrm{HBr}}$ Strong acid

Therefore, it is a neutral solution.

(iii) NaCN :

$$
\mathrm{NaCN}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \underset{\text { Weak acid }}{\mathrm{HCN}+\underset{\text { Strong base }}{\mathrm{NaOH}}}
$$

Therefore, it is a basic solution.

(iv) $\mathrm{NH}_{4} \mathrm{NO}_{3}$

Therefore, it is an acidic solution.

(v) NaNO_{2}

$\mathrm{NaNO}_{2}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \underset{\text { Strong base }}{\mathrm{NaOH}}+\underset{\text { Weak acid }}{\mathrm{HNO}_{2}}$

Therefore, it is a basic solution.

(vi) KF

$$
\mathrm{KF}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{KOH}+\mathrm{HF}
$$

Strong base Weak acid
Therefore, it is a basic solution.

Question 7.64:

The ionization constant of chloroacetic acid is 1.35×10^{-3}. What will be the pH of 0.1 M acid and its 0.1 M sodium salt solution?

Answer 7.64:

It is given that K_{a} for $\mathrm{ClCH}_{2} \mathrm{COOH}$ is 1.35×10^{-3}.

$$
\begin{aligned}
& \Rightarrow K_{a}=c \alpha^{2} \\
& \therefore \alpha=\sqrt{\frac{K_{\alpha}}{c}} \\
& \quad=\sqrt{\frac{1.35 \times 10^{-3}}{0.1}} \\
& \alpha=\sqrt{1.35 \times 10^{-2}} \\
& \quad=0.116 \\
& \therefore\left[\mathrm{H}^{+}\right]=c \alpha=0.1 \times 0.116 \\
& \quad=.0116 \\
& \Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]=1.94
\end{aligned}
$$

$\mathrm{ClCH}_{2} \mathrm{COONa}^{2}$ is the salt of a weak acid i.e., $\mathrm{ClCH}_{2} \mathrm{COOH}$ and a strong base i.e., NaOH .

$$
\mathrm{ClCH}_{2} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{ClCH}_{2} \mathrm{COOH}+\mathrm{OH}^{-}
$$

$$
K_{h}=\frac{\left[\mathrm{ClCH}_{2} \mathrm{COOH}\right]\left[\mathrm{OH}^{-}\right]}{\left[\mathrm{ClCH}_{2} \mathrm{COO}^{-}\right]}
$$

$$
K_{b}=\frac{K_{w}}{K_{a}}
$$

$$
K_{n}=\frac{10^{-14}}{1.35 \times 10^{-3}}
$$

$$
=0.740 \times 10^{-11}
$$

$$
\text { Also, } K_{h}=\frac{x^{2}}{0.1} \quad \text { (where } x \text { is the concentration of } \mathrm{OH}^{-} \text {and } \mathrm{ClCH}_{2} \mathrm{COOH} \text {) }
$$

$$
0.740 \times 10^{-11}=\frac{x^{2}}{0.1}
$$

$$
0.074 \times 10^{-11}=x^{2}
$$

$$
\Rightarrow x^{2}=0.74 \times 10^{-12}
$$

$$
x=0.86 \times 10^{-6}
$$

$$
\left[\mathrm{OH}^{-}\right]=0.86 \times 10^{-6}
$$

$$
\therefore\left[\mathrm{H}^{+}\right]=\frac{K_{w}}{0.86 \times 10^{-6}}
$$

$$
=\frac{10^{-14}}{0.86 \times 10^{-6}}
$$

$$
\left[\mathrm{H}^{+}\right]=1.162 \times 10^{-8}
$$

$$
\mathrm{pH}=-\log \left[\mathrm{H}^{+}\right]
$$

$$
=7.94
$$

Question 7.65:

Ionic product of water at 310 K is 2.7×10^{-14}. What is the pH of neutral water at this temperature?

Answer 7.65:

Ionic product,

$$
\begin{aligned}
& K_{v}=\left[\mathrm{H}^{+}\right]\left[\mathrm{OH}^{-}\right] \\
& \text {Let }\left[\mathrm{H}^{+}\right]=x . \\
& \text { Since }\left[\mathrm{H}^{+}\right]=\left[\mathrm{OH}^{-}\right], K_{n}=x^{2} . \\
& \Rightarrow K_{w} \text { at } 310 \mathrm{~K} \text { is } 2.7 \times 10^{-14} . \\
& \therefore 2.7 \times 10^{-14}=x^{2} \\
& \Rightarrow x=1.64 \times 10^{-7} \\
& \Rightarrow\left[\mathrm{H}^{+}\right]=1.64 \times 10^{-7} \\
& \Rightarrow \mathrm{pH}=-\log \left[\mathrm{H}^{+}\right] \\
& =-\log \left[1.64 \times 10^{-7}\right] \\
& =6.78
\end{aligned}
$$

Hence, the pH of neutral water is 6.78 .

Question 7.66:

Calculate the pH of the resultant mixtures:
a) 10 mL of $0.2 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}+25 \mathrm{~mL}$ of 0.1 M HCl
b) 10 mL of $0.01 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of $0.01 \mathrm{M} \mathrm{Ca}(\mathrm{OH})_{2}$
c) 10 mL of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}+10 \mathrm{~mL}$ of 0.1 M KOH

Answer 7.66:

(a) Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=\frac{25 \times 0.1}{1000}=.0025 \mathrm{~mol}$

$$
\text { Moles of } \mathrm{OH}^{-}=\frac{10 \times 0.2 \times 2}{1000}=.0040 \mathrm{~mol}
$$

Thus, excess of $\mathrm{OH}^{-}=.0015 \mathrm{~mol}$

$$
\begin{aligned}
& {\left[\mathrm{OH}^{-}\right]=\frac{.0015}{35 \times 10^{-3}} \mathrm{~mol} / \mathrm{L}=.0428} \\
& \mathrm{pOH}
\end{aligned}=-\log [\mathrm{OH}] \quad \begin{aligned}
\mathrm{pH} & =14-1.36 \\
& =12.63
\end{aligned} \begin{aligned}
& \\
& \text { (not matched) }
\end{aligned}
$$

(b) Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=\frac{2 \times 10 \times 0.01}{1000}=.0002 \mathrm{~mol}$

Moles of $\mathrm{OH}^{-}=\frac{2 \times 10 \times .01}{1000}=.0002 \mathrm{~mol}$

Since there is neither an excess of $\mathrm{H}_{3} \mathrm{O}^{+}$or OH^{-}
(c) Moles of $\mathrm{H}_{3} \mathrm{O}^{+}=\frac{2 \times 10 \times 0.1}{1000}=.002 \mathrm{~mol}$

$$
\text { Moles of } \mathrm{OH}^{-}=\frac{10 \times 0.1}{1000}=0.001 \mathrm{~mol}
$$

Excess of $\mathrm{H}_{3} \mathrm{O}^{+}=.001 \mathrm{~mol}$
Thus, $\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=\frac{.001}{20 \times 10^{-3}}=\frac{10^{-3}}{20 \times 10^{-3}}=.05$
$\therefore \mathrm{pH}=-\log (0.05)$
$=1.30$
The solution is neutral. Hence, $\mathrm{pH}=7$.

Question 7.67:

Determine the solubilities of silver chromate, barium chromate, ferric hydroxide, lead chloride and mercurous iodide at 298K from their solubility product constants given in Table 7.9 (page 221). Determine also the molarities of individual ions.

Answer 7.67:

(1) Silver chromate:

$$
\mathrm{Ag}_{2} \mathrm{CrO}_{4} \longrightarrow 2 \mathrm{Ag}^{+}+\mathrm{CrO}_{4}^{2-}
$$

Then,

$$
K_{s p}=\left[\mathrm{Ag}^{+}\right]^{2}\left[\mathrm{CrO}_{4}^{2-}\right]
$$

Let the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ be s.
$\Rightarrow\left[\mathrm{Ag}^{+}\right] 2 s$ and $\left[\mathrm{CrO}_{4}{ }^{2-}\right]=s$
Then,

$$
\begin{aligned}
& K_{s p}=(2 s)^{2} \cdot s=4 s^{3} \\
& \Rightarrow 1.1 \times 10^{-12}=4 s^{3} \\
& .275 \times 10^{-12}=s^{3} \\
& s=0.65 \times 10^{-1} \mathrm{M}
\end{aligned}
$$

$$
\begin{array}{lll}
\text { Molarity of } & \mathrm{Ag}^{+} & =2 \mathrm{~s}=2 \times 0.65 \times 10^{-4}=1.30 \times 10^{-4} \mathrm{M} \\
\text { Molarity of } & \mathrm{CrO}_{4}{ }^{2-} & =s=0.65 \times 10^{-4} \mathrm{M}
\end{array}
$$

(2) Barium chromate:

$\mathrm{BaCrO}_{4} \longrightarrow \mathrm{Ba}^{2+}+\mathrm{CrO}_{4}{ }^{2-}$
Then, $K_{v p}=\left[\mathrm{Ba}^{2+}\right]\left[\mathrm{CrO}_{4}{ }^{2-}\right]$
Let the solubility of BaCrO_{4}. be s.
So,

$$
\begin{aligned}
{\left[\mathrm{Ba}^{2+}\right]=\mathrm{s} \text { and }\left[\mathrm{CrO}_{4}^{2-}\right]=\mathrm{s} \quad } & \Rightarrow K_{S P}=s^{2} \\
& \Rightarrow 1.2 \times 10^{-10}=s^{2} \\
& \Rightarrow s=1.09 \times 10^{-5} \mathrm{M}
\end{aligned}
$$

Molarity of $\mathrm{Ba}^{2+}=$ Molarity of $\mathrm{CrO}_{4}{ }^{2-}=s=1.09 \times 10^{-5} \mathrm{M}$

(3) Ferric hydroxide:

$$
\mathrm{Fe}(\mathrm{OH})_{3} \longrightarrow \mathrm{Fe}^{2+}+3 \mathrm{OH}^{-}
$$

$$
K_{s p}=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{OH}^{-}\right]^{3}
$$

Let s be the solubility of $\mathrm{Fe}(\mathrm{OH})_{3}$.

$$
\begin{aligned}
& \text { Thus, }\left[\mathrm{Fe}^{3+}\right]=s \text { and }\left[\mathrm{OH}^{-}\right]=3 s \quad \begin{array}{r}
\Rightarrow K_{s p}=s .(3 s)^{3} \\
\\
=s .27 s^{3}
\end{array} \\
& K_{s p}=27 s^{4} \\
& 1.0 \times 10^{-38}=27 s^{4} \\
& \\
& .037 \times 10^{-38}=s^{4} \\
& \\
& \\
& .00037 \times 10^{-36}=s^{4} \quad \Rightarrow 1.39 \times 10^{-10} \mathrm{M}=\mathrm{S}
\end{aligned}
$$

Molarity of $\mathrm{Fe}^{3+}=s=1.39 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{OH}^{-}=3 s=4.17 \times 10^{-10} \mathrm{M}$
(4) Lead chloride:

$$
\begin{aligned}
& \mathrm{PbCl}_{2} \longrightarrow \mathrm{~Pb}^{2+}+2 \mathrm{Cl}^{-} \\
& K_{S p}=\left[\mathrm{Pb}^{2+}\right]\left[\mathrm{Cl}^{-}\right]^{2}
\end{aligned}
$$

Let $K_{S P}$ be the solubility of PbCl_{2}.

$$
\left[\mathrm{PB}^{2+}\right]=s \text { and }\left[\mathrm{Cl}^{-}\right]=2 s
$$

Thus, $K_{\text {sp }}=s .(2 s)^{2}$
$=4 s^{3}$
$\Rightarrow 1.6 \times 10^{-5}=4 s^{3}$
$\Rightarrow 0.4 \times 10^{-5}=s^{3}$
$4 \times 10^{-6}=s^{3} \Rightarrow 1.58 \times 10^{-2} \mathrm{M}=\mathrm{S} .1$
Molarity of $\mathrm{PB}^{2+}=s=1.58 \times 10^{-2} \mathrm{M}$
Molarity of chloride $=2 s=3.16 \times 10^{-2} \mathrm{M}$

(5) Mercurous iodide:
$\mathrm{Hg}_{2} \mathrm{I}_{2} \longrightarrow \mathrm{Hg}^{2+}+2 \mathrm{I}^{-}$
$K_{s p}=\left[\mathrm{Hg}_{2}^{2+}\right]^{2}\left[\mathrm{I}^{-}\right]^{2}$
Let s be the solubility of $\mathrm{Hg}_{2} \mathrm{I}_{2}$.
$\Rightarrow\left[\mathrm{Hg}_{2}^{2+}\right]=s$ and $\left[\mathrm{I}^{-}\right]=2 s$
Thus, $K_{\text {sp }}=s(2 s)^{2} \Rightarrow K_{s p}=4 s^{3}$
$4.5 \times 10^{-29}=4 \mathrm{~s}^{3}$
$1.125 \times 10^{-29}=s^{3}$
$\Rightarrow s=2.24 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{Hg}_{2}^{2+}=s=2.24 \times 10^{-10} \mathrm{M}$
Molarity of $\mathrm{I}^{-}=2 s=4.48 \times 10^{-10} \mathrm{M}$

Question 7.68:

The solubility product constant of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ and AgBr are 1.1×10^{-12} and 5.0×10^{-13} respectively. Calculate the ratio of the molarities of their saturated solutions.
Answer 7.68:
Let s be the solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$.
Then, $\mathrm{Ag}_{2} \mathrm{CrO}_{4} \longleftrightarrow \mathrm{Ag}^{2+}+2 \mathrm{CrO}_{4}^{-}$
$K_{s p}=(2 s)^{2} \cdot s=4 s^{3}$
$1.1 \times 10^{-12}=4 s^{3}$
$s=6.5 \times 10^{-5} \mathrm{M}$
Let s^{\prime} be the solubility of AgBr .
$\mathrm{AgBr}_{(s)} \longleftrightarrow \mathrm{Ag}^{+}+\mathrm{Br}^{-}$
$K_{x p}=s^{\prime 2}=5.0 \times 10^{-13}$
$\therefore s^{\prime}=7.07 \times 10^{-7} \mathrm{M}$
Therefore, the ratio of the molarities of their saturated solution is
$\frac{s}{s^{\prime}}=\frac{6.5 \times 10^{-5} \mathrm{M}}{7.07 \times 10^{-7} \mathrm{M}}=91.9$.

Question 7.69:

Equal volumes of 0.002 M solutions of sodium iodate and cupric chlorate are mixed together. Will it lead to precipitation of copper iodate?
(For cupric iodate $K_{\text {sp }}=7.4 \times 10^{-8}$).

Answer 7.69:

When equal volumes of sodium iodate and cupric chlorate solutions are mixed together, then the molar concentrations of both solutions are reduced to half i.e., 0.001 M . Then,

$$
\begin{aligned}
& \mathrm{NalO}_{3} \\
& 0 . \mathrm{Na}^{+}+\begin{array}{c}
10_{3}^{-} \\
0.001 \mathrm{M} \\
\mathrm{Nu}\left(\mathrm{ClO}_{3}\right)_{2}
\end{array} \rightarrow \mathrm{Cu}^{2+} \quad+\quad 2 \mathrm{ClO}_{3}^{-} \\
& 0.001 \mathrm{M}
\end{aligned}
$$

Now, the solubility equilibrium for copper iodate can be written as:

$$
\mathrm{Cu}\left(10_{3}\right)_{2} \rightarrow \mathrm{Cu}_{(\mathrm{aq})}^{2+}+210_{3(\mathrm{aq})}^{-}
$$

Ionic product of copper iodate:

$$
\begin{aligned}
& =\left[\mathrm{Cu}^{2+}\right]\left[10_{3}^{-}\right]^{2} \\
& =(0.001)(0.001)^{2} \\
& =1 \times 10^{-9}
\end{aligned}
$$

Since the ionic product $\left(1 \times 10^{-9}\right)$ is less than $K_{s p}\left(7.4 \times 10^{-8}\right)$, precipitation will not occur.

Question 7.70:

The ionization constant of benzoic acid is 6.46×10^{-5} and $K_{\text {sp }}$ for silver benzoate is $2.5 \times$ 10^{-13}. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?

Answer 7.70:

Since pH = 3.19,

$$
\begin{aligned}
& {\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]=6.46 \times 10^{-4} \mathrm{M}} \\
& \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}+\mathrm{H}_{3} \mathrm{O} \\
& K_{a} \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]} \\
& \frac{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]}{\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]}=\frac{\left[\mathrm{H}_{3} \mathrm{O}^{+}\right]}{K_{a}}=\frac{6.46 \times 10^{-4}}{6.46 \times 10^{-5}}=10
\end{aligned}
$$

Let the solubility of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}$ be $x \mathrm{~mol} / \mathrm{L}$.
Then,

$$
\begin{aligned}
& {\left[\mathrm{Ag}^{+}\right]=x} \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right]+\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=x} \\
& 10\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]+\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=x \\
& {\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right]=\frac{x}{11}} \\
& K_{x p}\left[\mathrm{Ag}^{+}\right]\left[\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO}^{-}\right] \\
& 2.5 \times 10^{-13}=x\left(\frac{x}{11}\right) \\
& x=1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}
\end{aligned}
$$

Thus, the solubility of silver benzoate in a pH 3.19 solution is $1.66 \times 10^{-6} \mathrm{~mol} / \mathrm{L}$. Now, let the solubility of $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}$ be $x^{\prime} \mathrm{mol} / \mathrm{L}$.

$$
\begin{aligned}
& \text { Then, }\left[\mathrm{Ag}^{+}\right]=x^{\prime} \mathrm{M} \text { and }\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right]=x^{\prime} \mathrm{M} . \\
& K_{s p}=\left[\mathrm{Ag}^{+}\right]\left[\mathrm{CH}_{3} \mathrm{COO}^{-}\right] \\
& K_{s p}=\left(x^{\prime}\right)^{2} \\
& x^{\prime}=\sqrt{K_{s p}}=\sqrt{2.5 \times 10^{-13}}=5 \times 10^{-7} \mathrm{~mol} / \mathrm{L} \\
& \therefore \frac{x}{x^{\prime}}=\frac{1.66 \times 10^{-6}}{5 \times 10^{-7}}=3.32
\end{aligned}
$$

Hence, $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOAg}$ is approximately 3.317 times more soluble in a low pH solution.

Question 7.71:

What is the maximum concentration of equimolar solutions of ferrous sulphate and sodium sulphide so that when mixed in equal volumes, there is no precipitation of iron sulphide? (For iron sulphide, $K_{\text {sp }}=6.3 \times 10^{-18}$).

Answer 7.71:

Let the maximum concentration of each solution be $x \mathrm{~mol} / \mathrm{L}$. After mixing, the volume of the concentrations of each solution will be reduced to half i.e., $x / 2$.

$$
\therefore\left[\mathrm{FeSO}_{4}\right]=\left[\mathrm{Na}_{2} \mathrm{~S}\right]=\frac{x}{2} \mathrm{M}
$$

Then, $\left[\mathrm{Fe}^{2+}\right]=\left[\mathrm{FeSO}_{4}\right]=\frac{x}{2} \mathrm{M}$
Also, $\left[\mathrm{S}^{2-}\right]=\left[\mathrm{Na}_{2} \mathrm{~S}\right]=\frac{x}{2} \mathrm{M}$
$\mathrm{FeS}_{(s)} \longleftrightarrow \mathrm{Fe}_{(a q)}^{2+}+\mathrm{S}^{2-}{ }_{(m)}$
$K_{y p}=\left[\mathrm{Fe}^{2+}\right]\left[\mathrm{S}^{2-}\right]$
$6.3 \times 10^{-18}=\left(\frac{x}{2}\right)\left(\frac{x}{2}\right)$
$\frac{x^{2}}{4}=6.3 \times 10^{-18}$
$\Rightarrow x=5.02 \times 10^{-9}$
If the concentrations of both solutions are equal to or less than $5.02 \times 10^{-9} \mathrm{M}$, then there will be no precipitation of iron sulphide.

Question 7.72:

What is the minimum volume of water required to dissolve 1 g of calcium sulphate at 298 K ? (For calcium sulphate, $K_{\text {sp }}$ is 9.1×10^{-6}).

Answer 7.72:

$$
\begin{aligned}
& \mathrm{CaSO}_{4(s)} \longleftrightarrow \mathrm{Ca}_{(\mathrm{wq})}^{2+}+\mathrm{SO}_{4}^{2-}(\mathrm{wq}) \\
& K_{s p}=\left[\mathrm{Ca}^{2+}\right]\left[\mathrm{SO}_{4}^{2-}\right]
\end{aligned}
$$

Let the solubility of CaSO_{4} be s.

Then, $K_{s p}=s^{2}$
$9.1 \times 10^{-6}=s^{2}$
$s=3.02 \times 10^{-3} \mathrm{~mol} / \mathrm{L}$

Molecular mass of $\mathrm{CaSO}_{4}=136 \mathrm{~g} / \mathrm{mol}$
Solubility of CaSO_{4} in gram/L
$=3.02 \times 10^{-3} \times 136$
$=0.41 \mathrm{~g} / \mathrm{L}$
This means that we need 1 L of water to dissolve 0.41 g of CaSO_{4}
Therefore, to dissolve 1 g of CaSO_{4} we require $=\frac{1}{0.41} \mathrm{~L}=2.44 \mathrm{~L}$ of water.

Question 7.73:

The concentration of sulphide ion in 0.1 M HCl solution saturated with hydrogen sulphide is $1.0 \times 10^{-19} \mathrm{M}$. If 10 mL of this is added to 5 mL of 0.04 M solution of the following: $\mathrm{FeSO}_{4}, \mathrm{MnCl}_{2}, \mathrm{ZnCl}_{2}$ and CdCl_{2}. in which of these solutions precipitation will take place?

Given $K_{\text {sp }}$ for $\mathrm{FeS}=6.3 \times 10^{-18}, \mathrm{MnS}=2.5 \times 10^{-13}, \mathrm{ZnS}=1.6 \times 10^{-24}$,
$\mathrm{CdS}=8.0 \times 10^{-27}$

Answer 7.73:

For precipitation to take place, it is required that the calculated ionic product exceeds the $K_{s p}$ value.
Before mixing:

$$
\left[\mathrm{S}^{2-}\right]=1.0 \times 10^{-19} \mathrm{M}\left[\mathrm{M}^{2+}\right]=0.04 \mathrm{M}
$$

volume $=10 \mathrm{~mL} \quad$ volume $=5 \mathrm{~mL}$
After mixing:

$$
\begin{aligned}
& {\left[\mathrm{S}^{2-}\right]=?} \\
& \text { volume }=(10+5)=15 \mathrm{~mL} \\
& {\left[\mathrm{~S}^{2-}\right]=\frac{1.0 \times 10^{-19} \times 10}{15}=6.67 \times 10^{-20} \mathrm{M}} \\
& {\left[\mathrm{M}^{2+}\right]=\frac{0.04 \times 5}{15}=1.33 \times 10^{-2} \mathrm{M}} \\
& \text { Ionic product }=\left[\mathrm{M}^{2+}\right]\left[\mathrm{S}^{2-}\right] \\
& \\
& \begin{aligned}
& =\left(1.33 \times 10^{-2}\right)\left(6.67 \times 10^{-20}\right) \\
& =8.87 \times 10^{-22}
\end{aligned}
\end{aligned}
$$

This ionic product exceeds the $K_{s p}$ of Zns and CdS. Therefore, precipitation will occur in CdCl_{2} and ZnCl_{2} solutions.

