Mathematics

(Chapter \cdots | | Introduction to Trigonometry (Class X)

Exercise 8.1

Question 1:

In $\triangle A B C$ right angled at $B, A B=24 \mathrm{~cm}, B C=7 \mathrm{~m}$. Determine
(i) $\sin A, \cos A$
(ii) $\sin C, \cos C$

Answer 1:

Applying Pythagoras theorem for $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(24 \mathrm{~cm})^{2}+(7 \mathrm{~cm})^{2}$
$=(576+49) \mathrm{cm}^{2}$
$=625 \mathrm{~cm}^{2}$
$\therefore A C=\sqrt{625} \mathrm{~cm}=25 \mathrm{~cm}$

(i) $\sin \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{7}{25}$
$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{24}{25}$
(ii)

$\sin \mathrm{C}=\frac{\text { Side opposite to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{24}{25}$
$\cos \mathrm{C}=\frac{\text { Side adjacent to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{7}{25}$

Question 2:

In the given figure find $\tan P-\cot R$

Answer 2:

Applying Pythagoras theorem for $\triangle P Q R$, we obtain
$P R^{2}=P Q^{2}+Q R^{2}$
$(13 \mathrm{~cm})^{2}=(12 \mathrm{~cm})^{2}+\mathrm{QR}^{2}$
$169 \mathrm{~cm}^{2}=144 \mathrm{~cm}^{2}+\mathrm{QR}^{2}$
$25 \mathrm{~cm}^{2}=\mathrm{QR}^{2}$
$Q R=5 \mathrm{~cm}$

$\tan \mathrm{P}=\frac{\text { Side opposite to } \angle \mathrm{P}}{\text { Side adjacent to } \angle \mathrm{P}}=\frac{\mathrm{QR}}{\mathrm{PQ}}$

$$
=\frac{5}{12}
$$

$\cot \mathrm{R}=\frac{\text { Side adjacent to } \angle \mathrm{R}}{\text { Side opposite to } \angle \mathrm{R}}=\frac{\mathrm{QR}}{\mathrm{PQ}}$

$$
=\frac{5}{12}
$$

$\tan P-\cot R=\frac{5}{12}-\frac{5}{12}=0$

Question 3:

If $\sin \mathrm{A}=\frac{3}{4}$ calculate $\cos \mathrm{A}$ and $\tan \mathrm{A}$.
Answer 3:
Let $\triangle A B C$ be a right-angled triangle, right-angled at point B.

Given that,
$\sin \mathrm{A}=\frac{3}{4}$
$\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{3}{4}$
Let BC be $3 k$. Therefore, AC will be $4 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$(4 k)^{2}=A B^{2}+(3 k)^{2}$
$16 k^{2}-9 k^{2}=A B^{2}$
$7 k^{2}=A B^{2}$
$\mathrm{AB}=\sqrt{7} k$
$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}$

$$
=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{7 k}}{4 k}=\frac{\sqrt{7}}{4}
$$

$\tan \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Side adjacent to } \angle \mathrm{A}}$

$$
=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{3 k}{\sqrt{7} k}=\frac{3}{\sqrt{7}}
$$

Question 4:

Given $15 \cot \mathrm{~A}=8$. Find $\sin \mathrm{A}$ and $\sec \mathrm{A}$

Answer 4:

Consider a right-angled triangle, right-angled at B .

$\cot \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Side opposite to } \angle \mathrm{A}}$

$$
=\frac{\mathrm{AB}}{\mathrm{BC}}
$$

It is given that,
$\cot \mathrm{A}=\frac{8}{15}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{8}{15}$
Let $A B$ be $8 k$.Therefore, $B C$ will be $15 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}=(8 k)^{2}+(15 k)^{2}$
$=64 k^{2}+225 k^{2}$
$=289 k^{2}$
$A C=17 k$
$\sin \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$=\frac{15 k}{17 k}=\frac{15}{17}$
$\sec \mathrm{A}=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle \mathrm{A}}$

$$
=\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{17}{8}
$$

Question 5:

Given $\sec \theta=\frac{13}{12}$, calculate all other trigonometric ratios.

Answer 5:

Consider a right-angle triangle $\triangle A B C$, right-angled at point B.

$\sec \theta=\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle \theta}$
$\frac{13}{12}=\frac{\mathrm{AC}}{\mathrm{AB}}$

If AC is $13 k, \mathrm{AB}$ will be $12 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$(13 k)^{2}=(12 k)^{2}+(B C)^{2}$
$169 k^{2}=144 k^{2}+B C^{2}$
$25 k^{2}=B C^{2}$
$B C=5 k$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{B C}{A C}=\frac{5 k}{13 k}=\frac{5}{13}$
$\cos \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{12 k}{13 k}=\frac{12}{13}$
$\tan \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Side adjacent to } \angle \theta}=\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{5 k}{12 k}=\frac{5}{12}$
$\cot \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{12 k}{5 k}=\frac{12}{5}$
$\operatorname{cosec} \theta=\frac{\text { Hypotenuse }}{\text { Side opposite to } \angle \theta}=\frac{\mathrm{AC}}{\mathrm{BC}}=\frac{13 k}{5 k}=\frac{13}{5}$

Question 6:

If $\angle A$ and $\angle B$ are acute angles such that $\cos A=\cos B$, then show that $\angle A=\angle B$.

Answer 6:

Let us consider a triangle $A B C$ in which $C D \perp A B$.

It is given that
$\cos A=\cos B$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{BC}}$
We have to prove $\angle A=\angle B$. To prove this, let us extend $A C$ to P such that $B C=C P$.

From equation (1), we obtain
$\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{CP}} \quad$ (By construction, we have $\mathrm{BC}=\mathrm{CP}$)
By using the converse of B.P.T,

CD||BP

$\Rightarrow \angle A C D=\angle C P B$ (Corresponding angles) ... (3) And,
$\angle B C D=\angle C B P$ (Alternate interior angles) ... (4)
By construction, we have $\mathrm{BC}=\mathrm{CP}$.
$\therefore \angle C B P=\angle C P B$ (Angle opposite to equal sides of a triangle) ... (5)
From equations (3), (4), and (5), we obtain
$\angle A C D=\angle B C D \ldots$ (6)
In $\triangle C A D$ and $\triangle C B D$,
$\angle A C D=\angle B C D$ [Using equation (6)]
$\angle C D A=\angle C D B\left[B o t h 90^{\circ}\right]$
Therefore, the remaining angles should be equal.
$\therefore \angle C A D=\angle C B D$
$\Rightarrow \angle A=\angle B$

Alternatively,

Let us consider a triangle $A B C$ in which $C D \perp A B$.

It is given that,
$\cos \mathrm{A}=\cos \mathrm{B}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{AC}}=\frac{\mathrm{BD}}{\mathrm{BC}}$
$\Rightarrow \frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}$
Let $\frac{\mathrm{AD}}{\mathrm{BD}}=\frac{\mathrm{AC}}{\mathrm{BC}}=k$
$\Rightarrow A D=k B D$
And, $\mathrm{AC}=k \mathrm{BC} \ldots$ (2)
Using Pythagoras theorem for triangles CAD and CBD, we obtain
$C D^{2}=A C^{2}-A D^{2}$.
And, $C D^{2}=B C^{2}-B D^{2} \ldots$ (4)
From equations (3) and (4), we obtain
$A C^{2}-A D^{2}=B C^{2}-B D^{2}$
$\Rightarrow(k B C)^{2}-(k B D)^{2}=B C^{2}-B^{2}$
$\Rightarrow k^{2}\left(B C^{2}-B D^{2}\right)=B C^{2}-B D^{2}$
$\Rightarrow k^{2}=1$
$\Rightarrow k=1$
Putting this value in equation (2), we obtain
$A C=B C$
$\Rightarrow \angle \mathrm{A}=\angle \mathrm{B}$ (Angles opposite to equal sides of a triangle)

Question 7:

If $\cot \theta=\frac{7}{8}$, evaluate
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}$
(ii) $\cot ^{2} \theta$

Answer 7:

Let us consider a right triangle $A B C$, right-angled at point B.

$$
\begin{aligned}
\cot \theta & =\frac{\text { Side adjacent to } \angle \theta}{\text { Side opposite to } \angle \theta}=\frac{\mathrm{BC}}{\mathrm{AB}} \\
& =\frac{7}{8}
\end{aligned}
$$

If BC is $7 k$, then AB will be $8 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$=(8 k)^{2}+(7 k)^{2}$
$=64 k^{2}+49 k^{2}$
$=113 k^{2}$
$\mathrm{AC}=\sqrt{113} k$
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}$
$=\frac{8 k}{\sqrt{113} k}=\frac{8}{\sqrt{113}}$
$\cos \theta=\frac{\text { Side adjacent to } \angle \theta}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}$
$=\frac{7 k}{\sqrt{113} k}=\frac{7}{\sqrt{113}}$
(i) $\frac{(1+\sin \theta)(1-\sin \theta)}{(1+\cos \theta)(1-\cos \theta)}=\frac{\left(1-\sin ^{2} \theta\right)}{\left(1-\cos ^{2} \theta\right)}$
$=\frac{1-\left(\frac{8}{\sqrt{113}}\right)^{2}}{1-\left(\frac{7}{\sqrt{113}}\right)^{2}}=\frac{1-\frac{64}{113}}{1-\frac{49}{113}}$
$=\frac{\frac{49}{113}}{64}=\frac{49}{64}$
113
(ii) $\cot ^{2} \theta=(\cot \theta)^{2}=\left(\frac{7}{8}\right)^{2}=\frac{49}{64}$

Question 8:

If $3 \cot A=4$, Check whether $\frac{1-\tan ^{2} A}{1+\tan ^{2} A}=\cos ^{2} A-\sin ^{2} A$ or not.
Answer 8:
It is given that $3 \cot A=4$

Or, $\cot A=\frac{4}{3}$
Consider a right triangle $A B C$, right-angled at point B.

$\cot \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Side opposite to } \angle \mathrm{A}}$
$\frac{\mathrm{AB}}{\mathrm{BC}}=\frac{4}{3}$
If AB is $4 k$, then BC will be $3 k$, where k is a positive integer.
In $\triangle A B C$,
$(A C)^{2}=(A B)^{2}+(B C)^{2}$
$=(4 k)^{2}+(3 k)^{2}$
$=16 k^{2}+9 k^{2}$
$=25 k^{2}$
$\mathrm{AC}=5 k$

$$
\begin{aligned}
\cos \mathrm{A} & =\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}} \\
& =\frac{4 k}{5 k}=\frac{4}{5} \\
\sin \mathrm{~A} & =\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}} \\
& =\frac{3 k}{5 k}=\frac{3}{5} \\
\tan \mathrm{~A} & =\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AB}} \\
& =\frac{3 k}{4 k}=\frac{3}{4}
\end{aligned}
$$

$$
\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\frac{1-\left(\frac{3}{4}\right)^{2}}{1+\left(\frac{3}{4}\right)^{2}}=\frac{1-\frac{9}{16}}{1+\frac{9}{16}}
$$

$$
=\frac{\frac{7}{16}}{\frac{25}{16}}=\frac{7}{25}
$$

$\cos ^{2} A-\sin ^{2} A=\left(\frac{4}{5}\right)^{2}-\left(\frac{3}{5}\right)^{2}$
$\left.\begin{array}{c}16\end{array}\right] \quad 7$
$=\frac{16}{25}-\frac{9}{25}=\frac{7}{25}$

$$
\frac{1-\tan ^{2} \mathrm{~A}}{1+\tan ^{2} \mathrm{~A}}=\cos ^{2} \mathrm{~A}-\sin ^{2} \mathrm{~A}
$$

Question 9:

In $\triangle A B C$, right angled at B. If $\tan A=\frac{1}{\sqrt{3}}$ find the value of
(i) $\sin A \cos C+\cos A \sin C$
(ii) $\cos A \cos C-\sin A \sin C$

Answer 9:

$\tan \mathrm{A}=\frac{1}{\sqrt{3}}$
$\frac{\mathrm{BC}}{\mathrm{AB}}=\frac{1}{\sqrt{3}}$
If BC is k, then AB will be $\sqrt{3} k$, where k is a positive integer.
In $\triangle A B C$,
$A C^{2}=A B^{2}+B C^{2}$
$=(\sqrt{3} k)^{2}+(k)^{2}$
$=3 k^{2}+k^{2}=4 k^{2}$
$\therefore \mathrm{AC}=2 k$
$\sin \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2}$
$\cos \mathrm{A}=\frac{\text { Side adjacent to } \angle \mathrm{A}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\sin \mathrm{C}=\frac{\text { Side opposite to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{AB}}{\mathrm{AC}}=\frac{\sqrt{3} k}{2 k}=\frac{\sqrt{3}}{2}$
$\cos \mathrm{C}=\frac{\text { Side adjacent to } \angle \mathrm{C}}{\text { Hypotenuse }}=\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{k}{2 k}=\frac{1}{2}$
(i) $\sin A \cos C+\cos A \sin C$
$=\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)+\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{1}{4}+\frac{3}{4}$
$=\frac{4}{4}=1$
(ii) $\cos A \cos C-\sin A \sin C$

$$
=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{1}{2}\right)-\left(\frac{1}{2}\right)\left(\frac{\sqrt{3}}{2}\right)=\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}=0
$$

Question 10:

In $\triangle P Q R$, right angled at $Q, P R+Q R=25 \mathrm{~cm}$ and $P Q=5 \mathrm{~cm}$. Determine the values of $\sin P, \cos P$ and $\tan P$.

Answer 10:

Given that, $P R+Q R=25$
$P Q=5$
Let PR be x.
Therefore, $\mathrm{QR}=25-x$

Applying Pythagoras theorem in $\triangle P Q R$, we obtain
$\mathrm{PR}^{2}=\mathrm{PQ}^{2}+\mathrm{QR}^{2}$
$x^{2}=(5)^{2}+(25-x)^{2}$
$x^{2}=25+625+x^{2}-50 x$
$50 x=650$
$x=13$
Therefore, $\mathrm{PR}=13 \mathrm{~cm}$
$\mathrm{QR}=(25-13) \mathrm{cm}=12 \mathrm{~cm}$
$\sin \mathrm{P}=\frac{\text { Side opposite to } \angle \mathrm{P}}{\text { Hypotenuse }}=\frac{\mathrm{QR}}{\mathrm{PR}}=\frac{12}{13}$
$\cos \mathrm{P}=\frac{\text { Side adjacent to } \angle \mathrm{P}}{\text { Hypotenuse }}=\frac{\mathrm{PQ}}{\mathrm{PR}}=\frac{5}{13}$
$\tan \mathrm{P}=\frac{\text { Side opposite to } \angle \mathrm{P}}{\text { Side adjacent to } \angle \mathrm{P}}=\frac{\mathrm{QR}}{\mathrm{PQ}}=\frac{12}{5}$

Question 11:

State whether the following are true or false. Justify your answer.
(i) The value of $\tan A$ is always less than 1.
(ii) $\sec A=\frac{12}{5}$ for some value of angle A.
(iii) $\cos \mathrm{A}$ is the abbreviation used for the cosecant of angle A .
(iv) $\cot \mathrm{A}$ is the product of \cot and A
(v) $\sin \theta=\frac{4}{3}$ for some angle θ

Answer 11:

(i) Consider a $\triangle A B C$, right-angled at B.

$\tan \mathrm{A}=\frac{\text { Side opposite to } \angle \mathrm{A}}{\text { Side adjacent to } \angle \mathrm{A}}$

$$
=\frac{12}{5}
$$

But $\frac{12}{5}>1$
$\therefore \tan \mathrm{A}>1$
So, $\tan A<1$ is not always true.
Hence, the given statement is false.
(ii) $\sec \mathrm{A}=\frac{12}{5}$

$\frac{\text { Hypotenuse }}{\text { Side adjacent to } \angle \mathrm{A}}=\frac{12}{5}$
$\frac{\mathrm{AC}}{\mathrm{AB}}=\frac{12}{5}$
Let AC be $12 k$, AB will be $5 k$, where k is a positive integer.
Applying Pythagoras theorem in $\triangle A B C$, we obtain
$A C^{2}=A B^{2}+B C^{2}$
$(12 k)^{2}=(5 k)^{2}+\mathrm{BC}^{2}$
$144 k^{2}=25 k^{2}+B C^{2}$
$B C^{2}=119 k^{2}$
$B C=10.9 k$
It can be observed that for given two sides $A C=12 k$ and $A B=5 k$,
$B C$ should be such that,
$A C-A B<B C<A C+A B$
$12 k-5 k<B C<12 k+5 k$
$7 k<B C<17 k$
However, $B C=10.9 k$. Clearly, such a triangle is possible and hence, such value of sec A is possible.
Hence, the given statement is true.
(iii) Abbreviation used for cosecant of angle A is $\operatorname{cosec} A$. And $\cos A$ is the abbreviation used for cosine of angle A.
Hence, the given statement is false.
(iv) $\cot A$ is not the product of \cot and A. It is the cotangent of $\angle A$.

Hence, the given statement is false.
(v) $\sin \theta=\frac{4}{3}$

We know that in a right-angled triangle,
$\sin \theta=\frac{\text { Side opposite to } \angle \theta}{\text { Hypotenuse }}$
In a right-angled triangle, hypotenuse is always greater than the remaining two sides. Therefore, such value of $\sin \theta$ is not possible.

Hence, the given statement is false

Mathematics

(Chapter \cdots) | Introduction to Trigonometry
(Class X)

Exercise 8.2

Question 1:

Evaluate the following
(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
(iii) $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$
(iv) $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$
(v) $\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$

Answer 1:

(i) $\sin 60^{\circ} \cos 30^{\circ}+\sin 30^{\circ} \cos 60^{\circ}$
$=\left(\frac{\sqrt{3}}{2}\right)\left(\frac{\sqrt{3}}{2}\right)+\left(\frac{1}{2}\right)\left(\frac{1}{2}\right)$
$=\frac{3}{4}+\frac{1}{4}=\frac{4}{4}=1$
(ii) $2 \tan ^{2} 45^{\circ}+\cos ^{2} 30^{\circ}-\sin ^{2} 60^{\circ}$
$=2(1)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}-\left(\frac{\sqrt{3}}{2}\right)^{2}$
$=2+\frac{3}{4}-\frac{3}{4}=2$
(iii) $\frac{\cos 45^{\circ}}{\sec 30^{\circ}+\operatorname{cosec} 30^{\circ}}$

$$
\begin{aligned}
& =\frac{\frac{1}{\sqrt{2}}}{\frac{2}{\sqrt{3}}+2}=\frac{\frac{1}{\sqrt{2}}}{\frac{2+2 \sqrt{3}}{\sqrt{3}}} \\
& =\frac{\sqrt{3}}{\sqrt{2}(2+2 \sqrt{3})}=\frac{\sqrt{3}}{2 \sqrt{2}+2 \sqrt{6}} \\
& =\frac{\sqrt{3}(2 \sqrt{6}-2 \sqrt{2})}{(2 \sqrt{6}+2 \sqrt{2})(2 \sqrt{6}-2 \sqrt{2})} \\
& =\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{(2 \sqrt{6})^{2}-(2 \sqrt{2})^{2}}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{24-8}=\frac{2 \sqrt{3}(\sqrt{6}-\sqrt{2})}{16} \\
& =\frac{\sqrt{18}-\sqrt{6}}{8}=\frac{3 \sqrt{2}-\sqrt{6}}{8}
\end{aligned}
$$

(iv) $\frac{\sin 30^{\circ}+\tan 45^{\circ}-\operatorname{cosec} 60^{\circ}}{\sec 30^{\circ}+\cos 60^{\circ}+\cot 45^{\circ}}$

$$
\begin{aligned}
& =\frac{\frac{1}{2}+1-\frac{2}{\sqrt{3}}}{\frac{2}{\sqrt{3}}+\frac{1}{2}+1}=\frac{\frac{3}{2}-\frac{2}{\sqrt{3}}}{\frac{3}{2}+\frac{2}{\sqrt{3}}} \\
& =\frac{\frac{3 \sqrt{3}-4}{2 \sqrt{3}}}{\frac{3 \sqrt{3}+4}{2 \sqrt{3}}}=\frac{(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)}
\end{aligned}
$$

$$
=\frac{(3 \sqrt{3}-4)(3 \sqrt{3}-4)}{(3 \sqrt{3}+4)(3 \sqrt{3}-4)}=\frac{(3 \sqrt{3}-4)^{2}}{(3 \sqrt{3})^{2}-(4)^{2}}
$$

$$
=\frac{27+16-24 \sqrt{3}}{27-16}=\frac{43-24 \sqrt{3}}{11}
$$

(v) $\frac{5 \cos ^{2} 60^{\circ}+4 \sec ^{2} 30^{\circ}-\tan ^{2} 45^{\circ}}{\sin ^{2} 30^{\circ}+\cos ^{2} 30^{\circ}}$
$=\frac{5\left(\frac{1}{2}\right)^{2}+4\left(\frac{2}{\sqrt{3}}\right)^{2}-(1)^{2}}{\left(\frac{1}{2}\right)^{2}+\left(\frac{\sqrt{3}}{2}\right)^{2}}$
$=\frac{5\left(\frac{1}{4}\right)+\left(\frac{16}{3}\right)-1}{\frac{1}{4}+\frac{3}{4}}$

$$
=\frac{\frac{15+64-12}{12}}{\frac{4}{4}}=\frac{67}{12}
$$

Question 2:

Choose the correct option and justify your choice.
(i) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}=$
(A). $\sin 60^{\circ}$
(B). $\cos 60^{\circ}$
(C). $\tan 60^{\circ}$
(D). $\sin 30^{\circ}$
(ii) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=$
(A). $\tan 90^{\circ}$
(B). 1
(C). $\sin 45^{\circ}$
(D). 0
(iii) $\sin 2 \mathrm{~A}=2 \sin \mathrm{~A}$ is true when $\mathrm{A}=$
(A). 0°
(B). 30°
(C). 45°
(D). 60°
(iv) $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}=$
(A). $\cos 60^{\circ}$
(B). $\sin 60^{\circ}$
(C). $\tan 60^{\circ}$
(D). $\sin 30^{\circ}$

Answer 2:

(i) $\frac{2 \tan 30^{\circ}}{1+\tan ^{2} 30^{\circ}}$
$=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1+\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{\frac{2}{\sqrt{3}}}{1+\frac{1}{3}}=\frac{\frac{2}{\sqrt{3}}}{\frac{4}{3}}$
$=\frac{6}{4 \sqrt{3}}=\frac{\sqrt{3}}{2}$
Out of the given alternatives, only $\sin 60^{\circ}=\frac{\sqrt{3}}{2}$
Hence, (A) is correct.
(ii) $\frac{1-\tan ^{2} 45^{\circ}}{1+\tan ^{2} 45^{\circ}}=\frac{1-(1)^{2}}{1+(1)^{2}}=\frac{1-1}{1+1}=\frac{0}{2}=0$

Hence, (D) is correct.
(iii)Out of the given alternatives, only $\mathrm{A}=0^{\circ}$ is correct.

As $\sin 2 \mathrm{~A}=\sin 0^{\circ}=0$
$2 \sin A=2 \sin 0^{\circ}=2(0)=0$
Hence, (A) is correct.
(iv) $\frac{2 \tan 30^{\circ}}{1-\tan ^{2} 30^{\circ}}$
$=\frac{2\left(\frac{1}{\sqrt{3}}\right)}{1-\left(\frac{1}{\sqrt{3}}\right)^{2}}=\frac{\frac{2}{\sqrt{3}}}{1-\frac{1}{3}}=\frac{\frac{2}{\sqrt{3}}}{\frac{2}{3}}=\sqrt{3}$

Out of the given alternatives, only $\tan 60^{\circ}=\sqrt{3}$
Hence, (C) is correct.

Question 3:

If $\tan (A+B)=\sqrt{3}$ and $\tan (A-B)=\frac{1}{\sqrt{3}}$
$0^{\circ}<A+B \leq 90^{\circ}, A>B$ find A and B.

Answer 3:

$\tan (A+B)=\sqrt{3}$
$\tan (A+B)=\tan 60$
$\Rightarrow A+B=60$
$\tan (A-B)=\frac{1}{\sqrt{3}}$
$\Rightarrow \tan (A-B)=\tan 30$
$\Rightarrow A-B=30$
On adding both equations, we obtain
$2 \mathrm{~A}=90$
$\Rightarrow A=45$
From equation (1), we obtain
$45+B=60$
$B=15$
Therefore, $\angle A=45^{\circ}$ and $\angle B=15^{\circ}$

Question 4:

State whether the following are true or false. Justify your answer.
(i) $\sin (A+B)=\sin A+\sin B$
(ii) The value of $\sin \theta$ increases as θ increases
(iii) The value of $\cos \theta$ increases as θ increases
(iv) $\sin \theta=\cos \theta$ for all values of θ
(v) $\cot A$ is not defined for $A=0^{\circ}$

Answer 4:

(i) $\sin (A+B)=\sin A+\sin B$ Let $A=30^{\circ}$ and $B=60^{\circ}$
$\sin (A+B)=\sin \left(30^{\circ}+60^{\circ}\right)$
$=\sin 90^{\circ}=1$
And $\sin A+\sin B=\sin 30^{\circ}+\sin 60^{\circ}$
$=\frac{1}{2}+\frac{\sqrt{3}}{2}=\frac{1+\sqrt{3}}{2}$
Clearly, $\sin (A+B) \neq \sin A+\sin B$
Hence, the given statement is false.
(ii) The value of $\sin \theta$ increases as θ increases in the interval of $0^{\circ}<\theta<90^{\circ}$ as \sin $0^{\circ}=0$
$\sin 30^{\circ}=\frac{1}{2}=0.5$
$\sin 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\sin 60^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\sin 90^{\circ}=1$
Hence, the given statement is true.
(iii) $\cos 0^{\circ}=1$
$\cos 30^{\circ}=\frac{\sqrt{3}}{2}=0.866$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}=0.707$
$\cos 60^{\circ}=\frac{1}{2}=0.5$
$\cos 90^{\circ}=0$
It can be observed that the value of $\cos \theta$ does not increase in the interval of $0^{\circ}<\theta<90^{\circ}$.
Hence, the given statement is false.
(iv) $\sin \theta=\cos \theta$ for all values of θ.

This is true when $\theta=45^{\circ}$
As $\sin 45^{\circ}=\frac{1}{\sqrt{2}}$
$\cos 45^{\circ}=\frac{1}{\sqrt{2}}$
It is not true for all other values of θ.

As $\sin 30^{\circ}=\frac{1}{2}$ and $\cos 30^{\circ}=\frac{\sqrt{3}}{2}$
Hence, the given statement is false.
(v) $\cot A$ is not defined for $A=0^{\circ}$

As $\cot \mathrm{A}=\frac{\cos \mathrm{A}}{\sin \mathrm{A}^{\prime}}$
$\cot 0^{\circ}=\frac{\cos 0^{\circ}}{\sin 0^{\circ}}=\frac{1}{0}=$ undefined

Hence, the given statement is true.

Mathematics

(Chapter $\cdots 1$) Introduction to Trigonometry
(Class X)

Exercise 8.3

Question 1:

Evaluate
(I) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}$
(II) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}$
(III) $\cos 48^{\circ}-\sin 42^{\circ}$
(IV) $\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}$

Answer 1:
(I) $\frac{\sin 18^{\circ}}{\cos 72^{\circ}}=\frac{\sin \left(90^{\circ}-72^{\circ}\right)}{\cos 72^{\circ}}=\frac{\cos 72^{\circ}}{\cos 72^{\circ}}=1$
(II) $\frac{\tan 26^{\circ}}{\cot 64^{\circ}}=\frac{\tan \left(90^{\circ}-64^{\circ}\right)}{\cot 64^{\circ}}=\frac{\cot 64^{\circ}}{\cot 64^{\circ}}=1$
(III) $\cos 48^{\circ}-\sin 42^{\circ}=\cos \left(90^{\circ}-42^{\circ}\right)-\sin 42^{\circ}$
$=\sin 42^{\circ}-\sin 42^{\circ}$
$=0$
(iv) $\operatorname{cosec} 31^{\circ}-\sec 59^{\circ}=\operatorname{cosec}\left(90^{\circ}-59^{\circ}\right)-\sec 59^{\circ}$
$=\sec 59^{\circ}-\sec 59^{\circ}$
$=0$

Question 2:

Show that
(I) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}=1$
(II) $\cos 38^{\circ} \cos 52^{\circ}-\sin 38^{\circ} \sin 52^{\circ}=0$

Answer 2:
(I) $\tan 48^{\circ} \tan 23^{\circ} \tan 42^{\circ} \tan 67^{\circ}$
$=\tan \left(90^{\circ}-42^{\circ}\right) \tan \left(90^{\circ}-67^{\circ}\right) \tan 42^{\circ} \tan 67^{\circ}$

```
= cot 42 
=(\operatorname{cot 42}
=(1)(1)
= 1
(II) }\operatorname{cos}3\mp@subsup{8}{}{\circ}\operatorname{cos}5\mp@subsup{2}{}{\circ}-\operatorname{sin}3\mp@subsup{8}{}{\circ}\operatorname{sin}5\mp@subsup{2}{}{\circ
= cos (9\mp@subsup{0}{}{\circ}-5\mp@subsup{2}{}{\circ})\operatorname{cos}(9\mp@subsup{0}{}{\circ}-3\mp@subsup{8}{}{\circ})-\operatorname{sin}3\mp@subsup{8}{}{\circ}\operatorname{sin}5\mp@subsup{2}{}{\circ}
```



```
= 0
```


Question 3:

If $\tan 2 A=\cot \left(A-18^{\circ}\right)$, where $2 A$ is an acute angle, find the value of A.

Answer 3:

Given that, $\tan 2 \mathrm{~A}=\cot \left(\mathrm{A}-18^{\circ}\right)$
$\cot \left(90^{\circ}-2 A\right)=\cot \left(A-18^{\circ}\right)$
$90^{\circ}-2 A=A-18^{\circ}$
$108^{\circ}=3 A$
$A=36^{\circ}$

Question 4:

If $\tan A=\cot B$, prove that $A+B=90^{\circ}$

Answer 4:

Given that, $\tan A=\cot B$
$\tan \mathrm{A}=\tan \left(90^{\circ}-\mathrm{B}\right)$
$A=90^{\circ}-B$
$A+B=90^{\circ}$

Question 5:

If $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$, where $4 A$ is an acute angle, find the value of A.

Answer 5:

Given that, $\sec 4 A=\operatorname{cosec}\left(A-20^{\circ}\right)$
$\operatorname{cosec}\left(90^{\circ}-4 A\right)=\operatorname{cosec}\left(A-20^{\circ}\right)$
$90^{\circ}-4 A=A-20^{\circ}$
$110^{\circ}=5 \mathrm{~A}$
$A=22^{\circ}$

Question 6:

If A, B and C are interior angles of a triangle $A B C$ then show that
$\sin \left(\frac{B+C}{2}\right)=\cos \frac{A}{2}$

Answer 6:

We know that for a triangle $A B C$,
$\angle A+\angle B+\angle C=180^{\circ}$

$$
\begin{aligned}
& \angle \mathrm{B}+\angle \mathrm{C}=180^{\circ}-\angle \mathrm{A} \\
& \frac{\angle \mathrm{~B}+\angle \mathrm{C}}{2}=90^{\circ}-\frac{\angle \mathrm{A}}{2} \\
& \begin{aligned}
\sin \left(\frac{\mathrm{B}+\mathrm{C}}{2}\right) & =\sin \left(90^{\circ}-\frac{\mathrm{A}}{2}\right) \\
& =\cos \left(\frac{\mathrm{A}}{2}\right)
\end{aligned}
\end{aligned}
$$

Question 7:

Express $\sin 67^{\circ}+\cos 75^{\circ}$ in terms of trigonometric ratios of angles between 0° and 45°.

Answer 7:
$\sin 67^{\circ}+\cos 75^{\circ}$
$=\sin \left(90^{\circ}-23^{\circ}\right)+\cos \left(90^{\circ}-15^{\circ}\right)$
$=\cos 23^{\circ}+\sin 15^{\circ}$

Mathematics

(Chapter $\cdots 1$) (Introduction to Trigonometry
(Class X)

Exercise 8.4

Question 1:

Express the trigonometric ratios $\sin A, \sec A$ and $\tan A$ in terms of $\cot A$.

Answer 1:

We know that,

$$
\begin{aligned}
& \operatorname{cosec}^{2} \mathrm{~A}=1+\cot ^{2} \mathrm{~A} \\
& \frac{1}{\operatorname{cosec}^{2} \mathrm{~A}}=\frac{1}{1+\cot ^{2} \mathrm{~A}} \\
& \sin ^{2} \mathrm{~A}=\frac{1}{1+\cot ^{2} \mathrm{~A}} \\
& \sin \mathrm{~A}= \pm \frac{1}{\sqrt{1+\cot ^{2} \mathrm{~A}}}
\end{aligned}
$$

Therefore, $\sin \mathrm{A}=\frac{1}{\sqrt{1+\cot ^{2} \mathrm{~A}}}$
We know that, $\tan A=\frac{\sin A}{\cos A}$
However, $\cot A=\frac{\cos A}{\sin A}$
Therefore, $\tan \mathrm{A}=\frac{1}{\cot \mathrm{~A}}$
Also, $\sec ^{2} \mathrm{~A}=1+\tan ^{2} \mathrm{~A}$
$=1+\frac{1}{\cot ^{2} \mathrm{~A}}$
$=\frac{\cot ^{2} \mathrm{~A}+1}{\cot ^{2} \mathrm{~A}}$
$\sec A=\frac{\sqrt{\cot ^{2} A+1}}{\cot A}$

Question 2:

Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Answer 2:

We know that,

$$
\begin{aligned}
& \cos A=\frac{1}{\sec A} \\
& \text { Also, } \sin ^{2} A+\cos ^{2} A=1 \\
& \sin ^{2} A=1-\cos ^{2} A \\
& \sin A=\sqrt{1-\left(\frac{1}{\sec A}\right)^{2}} \\
&=\sqrt{\frac{\sec ^{2} A-1}{\sec ^{2} A}}=\frac{\sqrt{\sec ^{2} A-1}}{\sec A} \\
& \begin{aligned}
& \tan ^{2} A+1=\sec ^{2} A \\
& \tan ^{2} A=\sec ^{2} A-1 \\
& \tan A=\sqrt{\sec ^{2} A-1} \\
& \cot A=\frac{\cos A}{\sin A}=\frac{1}{\sqrt{\sec A} A-1} \\
& \sec A
\end{aligned} \\
&=\frac{1}{\sqrt{\sec ^{2} A-1}}
\end{aligned}
$$

$\operatorname{cosec} A=\frac{1}{\sin A}=\frac{\sec A}{\sqrt{\sec ^{2} A-1}}$

Question 3:

Evaluate
(i) $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$

Answer 3:

(i) $\frac{\sin ^{2} 63^{\circ}+\sin ^{2} 27^{\circ}}{\cos ^{2} 17^{\circ}+\cos ^{2} 73^{\circ}}=\frac{\left[\sin \left(90^{\circ}-27^{\circ}\right)\right]^{2}+\sin ^{2} 27^{\circ}}{\left[\cos \left(90^{\circ}-73^{\circ}\right)\right]^{2}+\cos ^{2} 73^{\circ}}$

$$
=\frac{\left[\cos 27^{\circ}\right]^{2}+\sin ^{2} 27^{\circ}}{\left[\sin 73^{\circ}\right]^{2}+\cos ^{2} 73^{\circ}}
$$

$=\frac{\cos ^{2} 27^{\circ}+\sin ^{2} 27^{\circ}}{\sin ^{2} 73^{\circ}+\cos ^{2} 73^{\circ}}$
$=\frac{1}{1}$
$=1$
(ii) $\sin 25^{\circ} \cos 65^{\circ}+\cos 25^{\circ} \sin 65^{\circ}$
$=\left(\sin 25^{\circ}\right)\left\{\cos \left(90^{\circ}-25^{\circ}\right)\right\}+\cos 25^{\circ}\left\{\sin \left(90^{\circ}-25^{\circ}\right)\right\}$
$=\left(\sin 25^{\circ}\right)\left(\sin 25^{\circ}\right)+\left(\cos 25^{\circ}\right)\left(\cos 25^{\circ}\right)$
$=\sin ^{2} 25^{\circ}+\cos ^{2} 25^{\circ}$
$=1\left(\right.$ As $\left.\sin ^{2} A+\cos ^{2} A=1\right)$

Question 4:

Choose the correct option. Justify your choice.
(i) $9 \sec ^{2} \mathrm{~A}-9 \tan ^{2} \mathrm{~A}=$
(A) 1
(B) 9
(C) 8
(D) 0
(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$
(A) 0
(B) 1
(C) 2
(D) -1
(iii) $(\sec A+\tan A)(1-\sin A)=$
(A) $\sec A$
(B) $\sin A$
(C) $\operatorname{cosec} A$
(D) $\cos A$
(iv) $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}$
(A) $\sec ^{2} A$
(B) -1
(C) $\cot ^{2} A$
(D) $\tan ^{2} A$

Answer 4:

(i) $9 \sec ^{2} A-9 \tan ^{2} A$
$=9\left(\sec ^{2} A-\tan ^{2} A\right)$
$=9$ (1) [As $\left.\sec ^{2} A-\tan ^{2} A=1\right]$
$=9$
Hence, alternative (B) is correct.
(ii) $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$

$$
\begin{aligned}
& =\left(1+\frac{\sin \theta}{\cos \theta}+\frac{1}{\cos \theta}\right)\left(1+\frac{\cos \theta}{\sin \theta}-\frac{1}{\sin \theta}\right) \\
& =\left(\frac{\cos \theta+\sin \theta+1}{\cos \theta}\right)\left(\frac{\sin \theta+\cos \theta-1}{\sin \theta}\right) \\
& =\frac{(\sin \theta+\cos \theta)^{2}-(1)^{2}}{\sin \theta \cos \theta} \\
& =\frac{\sin ^{2} \theta+\cos ^{2} \theta+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{1+2 \sin \theta \cos \theta-1}{\sin \theta \cos \theta} \\
& =\frac{2 \sin \theta \cos \theta}{\sin \theta \cos \theta}=2
\end{aligned}
$$

Hence, alternative (C) is correct.
(iii) $(\sec A+\tan A)(1-\sin A)$
$=\left(\frac{1}{\cos A}+\frac{\sin A}{\cos A}\right)(1-\sin A)$
$=\left(\frac{1+\sin A}{\cos A}\right)(1-\sin A)$
$=\frac{1-\sin ^{2} A}{\cos A}=\frac{\cos ^{2} A}{\cos A}$
$=\cos A$
Hence, alternative (D) is correct.
(iv) $\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}=\frac{1+\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{1+\frac{\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}}=\frac{\frac{\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}}=\frac{\frac{1}{\cos ^{2} \mathrm{~A}}}{\frac{1}{\sin ^{2} \mathrm{~A}}}$

$$
=\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}=\tan ^{2} \mathrm{~A}
$$

Hence, alternative (D) is correct.

Question 5:

Prove the following identities, where the angles involved are acute angles for which the expressions are defined.

Answer 5:

(i) $(\operatorname{cosec} \theta-\cot \theta)^{2}=\frac{1-\cos \theta}{1+\cos \theta}$
L.H.S. $=(\operatorname{cosec} \theta-\cot \theta)^{2}$

$$
\begin{aligned}
& =\left(\frac{1}{\sin \theta}-\frac{\cos \theta}{\sin \theta}\right)^{2} \\
& =\frac{(1-\cos \theta)^{2}}{(\sin \theta)^{2}}=\frac{(1-\cos \theta)^{2}}{\sin ^{2} \theta} \\
& =\frac{(1-\cos \theta)^{2}}{1-\cos ^{2} \theta}=\frac{(1-\cos \theta)^{2}}{(1-\cos \theta)(1+\cos \theta)}=\frac{1-\cos \theta}{1+\cos \theta} \\
& =\text { R.H.S. }
\end{aligned}
$$

(ii) $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2 \sec A$
L.H.S $=\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}$

$$
=\frac{\cos ^{2} A+(1+\sin A)^{2}}{(1+\sin A)(\cos A)}
$$

$$
=\frac{\cos ^{2} A+1+\sin ^{2} A+2 \sin A}{(1+\sin A)(\cos A)}
$$

$$
=\frac{\sin ^{2} A+\cos ^{2} A+1+2 \sin A}{(1+\sin A)(\cos A)}
$$

$$
=\frac{1+1+2 \sin A}{(1+\sin A)(\cos A)}=\frac{2+2 \sin A}{(1+\sin A)(\cos A)}
$$

$$
=\frac{2(1+\sin A)}{(1+\sin A)(\cos A)}=\frac{2}{\cos A}=2 \sec A
$$

= R.H.S.
(iii) $\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta}=1+\sec \theta \operatorname{cosec} \theta$

$$
\begin{aligned}
\text { L.H.S } & =\frac{\tan \theta}{1-\cot \theta}+\frac{\cot \theta}{1-\tan \theta} \\
& =\frac{\frac{\sin \theta}{\cos \theta}}{1-\frac{\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{1-\frac{\sin \theta}{\cos \theta}} \\
& =\frac{\frac{\sin \theta}{\cos \theta}}{\frac{\sin \theta-\cos \theta}{\sin \theta}}+\frac{\frac{\cos \theta}{\sin \theta}}{\frac{\sin \theta-\sin \theta}{\cos \theta}} \\
& =\frac{\sin ^{2} \theta}{\cos \theta(\sin \theta-\cos \theta)}+\frac{\cos ^{2} \theta}{\sin \theta(\sin \theta-\cos \theta)} \\
& =\frac{1}{(\sin \theta-\cos \theta)}\left[\frac{\sin ^{2} \theta}{\cos \theta}-\frac{\cos ^{2} \theta}{\sin \theta}\right] \\
& =\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{\sin ^{3} \theta-\cos { }^{3} \theta}{\sin \theta \cos \theta}\right] \\
& =\left(\frac{1}{\sin \theta-\cos \theta}\right)\left[\frac{(\sin \theta-\cos \theta)\left(\sin ^{2} \theta+\cos ^{2} \theta+\sin \theta \cos \theta\right)}{\sin ^{2} \theta \cos \theta}\right] \\
& =\frac{(1+\sin \theta \cos \theta)}{(\sin \theta \cos \theta)}
\end{aligned}
$$

$=\sec \theta \operatorname{cosec} \theta+1=$ R.H.S.
(iv) $\frac{1+\sec A}{\sec A}=\frac{\sin ^{2} A}{1-\cos A}$
L.H.S. $=\frac{1+\sec \mathrm{A}}{\sec \mathrm{A}}=\frac{1+\frac{1}{\cos \mathrm{~A}}}{\frac{1}{\cos \mathrm{~A}}}$
$\cos \mathrm{A}+1$
$=\frac{\cos \mathrm{A}}{\frac{1}{\cos \mathrm{~A}}}=(\cos \mathrm{A}+1)$
$=\frac{(1-\cos A)(1+\cos A)}{(1-\cos A)}$
$=\frac{1-\cos ^{2} \mathrm{~A}}{1-\cos \mathrm{A}}=\frac{\sin ^{2} \mathrm{~A}}{1-\cos \mathrm{A}} \quad=$ R.H.S
(v) $\frac{\cos \mathrm{A}-\sin \mathrm{A}+1}{\cos \mathrm{~A}+\sin \mathrm{A}-1}=\operatorname{cosec} \mathrm{A}+\cot \mathrm{A}$

Using the identity $\operatorname{cosec}^{2} \mathrm{~A}=1+\cot ^{2} \mathrm{~A}$
L.H.S $=\frac{\cos \mathrm{A}-\sin \mathrm{A}+1}{\cos \mathrm{~A}+\sin \mathrm{A}-1}$
$=\frac{\frac{\cos A}{\sin A}-\frac{\sin A}{\sin A}+\frac{1}{\sin A}}{\frac{\cos A}{\sin A}+\frac{\sin A}{\sin A}+\frac{1}{\sin A}}$
$=\frac{\cot A-1+\operatorname{cosec} A}{\cot A+1-\operatorname{cosec} A}$
$=\frac{\{(\cot A)-(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}{\{(\cot A)+(1-\operatorname{cosec} A)\}\{(\cot A)-(1-\operatorname{cosec} A)\}}$
$=\frac{(\cot A-1+\operatorname{cosec} A)^{2}}{(\cot A)^{2}-(1-\operatorname{cosec} A)^{2}}$
$=\frac{\cot ^{2} \mathrm{~A}+1+\operatorname{cosec}^{2} \mathrm{~A}-2 \cot \mathrm{~A}-2 \operatorname{cosec} \mathrm{~A}+2 \cot \mathrm{~A} \operatorname{cosec} \mathrm{~A}}{\cot ^{2} \mathrm{~A}-\left(1+\operatorname{cosec}^{2} \mathrm{~A}-2 \operatorname{cosec} \mathrm{~A}\right)}$
$=\frac{2 \operatorname{cosec}^{2} \mathrm{~A}+2 \cot \mathrm{~A} \operatorname{cosec} \mathrm{~A}-2 \cot \mathrm{~A}-2 \operatorname{cosec} \mathrm{~A}}{\cot ^{2} \mathrm{~A}-1-\operatorname{cosec}^{2} \mathrm{~A}+2 \operatorname{cosec} \mathrm{~A}}$
$=\frac{2 \operatorname{cosec} \mathrm{~A}(\operatorname{cosec} \mathrm{~A}+\cot \mathrm{A})-2(\cot \mathrm{~A}+\operatorname{cosec} \mathrm{A})}{\cot ^{2} \mathrm{~A}-\operatorname{cosec}^{2} \mathrm{~A}-1+2 \operatorname{cosec} \mathrm{~A}}$
$=\frac{(\operatorname{cosec} \mathrm{A}+\cot \mathrm{A})(2 \operatorname{cosec} \mathrm{~A}-2)}{-1-1+2 \operatorname{cosec} \mathrm{~A}}$
$=\frac{(\operatorname{cosec} \mathrm{A}+\cot \mathrm{A})(2 \operatorname{cosec} \mathrm{~A}-2)}{(2 \operatorname{cosec} \mathrm{~A}-2)}$
$=\operatorname{cosec} A+\cot A$
= R.H.S
(vi) $\sqrt{\frac{1+\sin A}{1-\sin A}}=\sec A+\tan A$
L.H.S. $=\sqrt{\frac{1+\sin \mathrm{A}}{1-\sin \mathrm{A}}}$

$$
\begin{aligned}
& =\sqrt{\frac{(1+\sin \mathrm{A})(1+\sin \mathrm{A})}{(1-\sin \mathrm{A})(1+\sin \mathrm{A})}} \\
& =\frac{(1+\sin \mathrm{A})}{\sqrt{1-\sin ^{2} \mathrm{~A}}} \quad=\frac{1+\sin \mathrm{A}}{\sqrt{\cos ^{2} \mathrm{~A}}} \\
& =\frac{1+\sin \mathrm{A}}{\cos \mathrm{~A}} \\
& =\text { R.H.S. }
\end{aligned}
$$

(vii) $\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos \hat{\theta} \cos \theta}=\tan \theta$
L.H.S. $=\frac{\sin \theta-2 \sin ^{3} \theta}{2 \cos ^{3} \theta-\cos \theta}$

$$
\begin{aligned}
& =\frac{\sin \theta\left(1-2 \sin ^{2} \theta\right)}{\cos \theta\left(2 \cos ^{2} \theta-1\right)} \\
& =\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left\{2\left(1-\sin ^{2} \theta\right)-1\right\}} \\
& =\frac{\sin \theta \times\left(1-2 \sin ^{2} \theta\right)}{\cos \theta \times\left(1-2 \sin ^{2} \theta\right)} \\
& =\tan \theta=\text { R.H.S }
\end{aligned}
$$

(viii) $\quad(\sin \mathrm{A}+\operatorname{cosec} \mathrm{A})^{2}+(\cos \mathrm{A}+\sec \mathrm{A})^{2}=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
L.H.S $=(\sin A+\operatorname{cosec} A)^{2}+(\cos A+\sec A)^{2}$
$=\sin ^{2} \mathrm{~A}+\operatorname{cosec}^{2} \mathrm{~A}+2 \sin \mathrm{~A} \operatorname{cosec} \mathrm{~A}+\cos ^{2} \mathrm{~A}+\sec ^{2} \mathrm{~A}+2 \cos \mathrm{~A} \sec \mathrm{~A}$
$=\left(\sin ^{2} A+\cos ^{2} A\right)+\left(\operatorname{cosec}^{2} A+\sec ^{2} A\right)+2 \sin A\left(\frac{1}{\sin A}\right)+2 \cos A\left(\frac{1}{\cos A}\right)$
$=(1)+\left(1+\cot ^{2} \mathrm{~A}+1+\tan ^{2} \mathrm{~A}\right)+(2)+(2)$
$=7+\tan ^{2} \mathrm{~A}+\cot ^{2} \mathrm{~A}$
$=$ R.H.S
(ix) $(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{\tan A+\cot A}$

$$
\begin{aligned}
\text { L.H.S } & =(\operatorname{cosec} A-\sin A)(\sec A-\cos A) \\
& =\left(\frac{1}{\sin A}-\sin A\right)\left(\frac{1}{\cos A}-\cos A\right) \\
& =\left(\frac{1-\sin ^{2} A}{\sin A}\right)\left(\frac{1-\cos ^{2} A}{\cos A}\right) \\
& =\frac{\left(\cos ^{2} A\right)\left(\sin ^{2} A\right)}{\sin A \cos A} \\
& =\sin A \cos A
\end{aligned}
$$

$$
\text { R.H.S }=\frac{1}{\tan \mathrm{~A}+\cot \mathrm{A}}
$$

$$
=\frac{1}{\frac{\sin A}{\cos A}+\frac{\cos A}{\sin A}}=\frac{1}{\frac{\sin ^{2} A+\cos ^{2} A}{\sin A \cos A}}
$$

$$
=\frac{\sin A \cos A}{\sin ^{2} A+\cos ^{2} A}=\sin A \cos A
$$

Hence, L.H.S = R.H.S
(x) $\left(\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}}\right)=\left(\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right)^{2}=\tan ^{2} \mathrm{~A}$

$$
\begin{aligned}
\frac{1+\tan ^{2} \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}} & =\frac{1+\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{1+\frac{\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}}=\frac{\frac{\cos ^{2} \mathrm{~A}+\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{\frac{\sin ^{2} \mathrm{~A}+\cos ^{2} \mathrm{~A}}{\sin ^{2} \mathrm{~A}}} \\
= & \frac{\frac{1}{\cos ^{2} \mathrm{~A}}}{\frac{1}{\sin ^{2} \mathrm{~A}}}=\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}} \\
= & \tan ^{2} \mathrm{~A}
\end{aligned}
$$

$$
\begin{aligned}
\left(\frac{1-\tan \mathrm{A}}{1-\cot \mathrm{A}}\right)^{2} & =\frac{1+\tan ^{2} \mathrm{~A}-2 \tan \mathrm{~A}}{1+\cot ^{2} \mathrm{~A}-2 \cot \mathrm{~A}} \\
& =\frac{\sec ^{2} \mathrm{~A}-2 \tan \mathrm{~A}}{\operatorname{cosec}^{2} \mathrm{~A}-2 \cot \mathrm{~A}} \\
& =\frac{\frac{1}{\cos ^{2} \mathrm{~A}}-\frac{2 \sin \mathrm{~A}}{\cos \mathrm{~A}}}{\frac{1}{\sin ^{2} \mathrm{~A}}-\frac{2 \cos \mathrm{~A}}{\sin \mathrm{~A}}}=\frac{\frac{1-2 \sin \mathrm{~A} \cos \mathrm{~A}}{\cos ^{2} \mathrm{~A}}}{\frac{1-2 \sin \mathrm{~A} \cos \mathrm{~A}}{\sin ^{2} \mathrm{~A}}} \\
& =\frac{\sin ^{2} \mathrm{~A}}{\cos ^{2} \mathrm{~A}}=\tan ^{2} \mathrm{~A}
\end{aligned}
$$

