CBSE Test Paper 02 Chapter 9 Differential Equations

- 1. Forming a differential equation representing the given family of curves by eliminating arbitrary constants a and b from $\frac{x}{a} + \frac{y}{b} = 1$ yields the differential equation.
 - a. y'' = 0
 - b. y'' = y
 - c. $y^{\prime\prime}=y^3$
 - d. y" = 2y
- 2. Find the particular solution of the differential equation $\log\left(\frac{dy}{dx}\right) = 3x + 4y$, given that y = 0 and x = 0.
 - a. $4e^{3x} + 3e^{-4y} + 7 = 0$
 - b. $4e^{3x} 3e^{-4y} 7 = 0$

c.
$$4e^{3x} + 3e^{-4y} - 7 = 1$$

- d. $4e^{3x} + 3e^{-4y} 7 = 0$
- 3. Order of a differential equation is defined as
 - a. the number of derivative terms
 - b. the order of the lowest order derivative of the dependent variable
 - c. the order of the highest order derivative of the dependent variable
 - d. the number of constant terms
- 4. A function f(x,y) is said to be homogenous function of degree n if

a.
$$f(\lambda x,\lambda y) = \lambda^3 f(x,y)$$

- b. None of these
- c. $f(\lambda x,\lambda y)=\lambda^n f(x,y)$
- d. $f(\lambda x,y)=\lambda^n f(x,y)$

5. Determine order and degree (if defined) of $\frac{d^4y}{dx^4}$ +sin(y''') = 0.

- a. 2, degree undefined
- b. 1, degree undefined
- c. 4, degree undefined
- d. 3, degree undefined
- 6. The degree of the differential equation $\left(\frac{dy}{dx}\right)^3 + \left(\frac{d^2y}{dx^2}\right)^2 = 0$ is _____.
- 7. The differential equation representing the family of curves y = A sinx + B cosx is
- 8. The solution of the differential equation $rac{xdy}{dx}+2y=x^2$ is _____.
- 9. Verify that the function is a solution of the corresponding differential equation. $y = x^2 + 2x + c$; $y^1 2x 2 = 0$.
- 10. Find the solution of the differential equation $\frac{dy}{dx} = x^3 e^{-2y}$.
- 11. Write the degree of the differential equation $\left(\frac{dy}{dx}\right)^4 + 3x\frac{d^2y}{dx^2} = 0.$
- 12. Find the differential equation of all non-vertical lines in a plane.
- 13. Solve the diff. equ. $\sec^2 x$.tan y dx + $\sec^2 y$ tan x dy = 0.
- 14. Find the general solution of $rac{dy}{dx}+y=1\,(y
 eq1).$
- 15. Solve the following differential equation. $(x \log |x|) rac{dy}{dx} + y = 2 \log |x|$
- 16. Find the equation of the curve passing through the point $(0, \frac{\pi}{4})$ whose diff eq. is sinx cosy dx + cosx.siny dy = 0.

17. Solve the following differential equation $rac{dy}{dx} + y \sec x = \tan x, \left(0 \le x < rac{\pi}{2}
ight).$

18. Solve the diff. eq. $rac{dy}{dx} + 2y an x = \sin x$.

CBSE Test Paper 02 Chapter 9 Differential Equations

Solution

1. a. y'' = 0, Explanation:
$$\frac{1}{a} + \frac{1}{b} \frac{dy}{dx} = 0$$

 $\frac{dy}{dx} = \frac{-a}{b}$
 $\frac{d^2y}{dx^2} = 0$
2. d. $4e^{3x} + 3e^{-4y} - 7 = 0$, Explanation: $\frac{dy}{dx} = e^{3x}e^{4y}$
 $\int e^{-4y}dy = \int e^{3x}dx$
 $\frac{-e^{-4y}}{4} = \frac{e^{3x}}{3} + c$
here x = y = 0 gives
 $\frac{-1}{4} = \frac{1}{3} + c$
 $\therefore c = \frac{-7}{12}$
 $\therefore \frac{-e^{-4y}}{4} = \frac{e^{3x}}{3} - \frac{7}{12}$
 $4e^{3x} + 3e^{-4y} - 7 = 0$

- c. the order of the highest order derivative of the dependent variable
 Explanation: Order of a differential equation is defined as the order of the highest order derivative of the dependent variable present in the differential equation.
- 4. c. $f(\lambda x, \lambda y) = \lambda^n f(x, y)$, **Explanation:** A function is homogenous if we can write in the form of $f(\lambda x, \lambda y) = \lambda^n f(x, y)$ where n is an whole number.
- 5. c. 4, degree undefined, **Explanation:** Order = 4, degree not defined, because the function y''' present in the angle of sine function.

6. Two
7.
$$\frac{d^2y}{dx^2} + y = 0$$

8. $y = \frac{x^2}{4} + cx^{-2}$
9. $y = x^2 + 2x + c$
 $y^1 = 2x + 2$
 $y^1 - 2x - 2 = 0$ Proved

10. Given differential equation is $\frac{dy}{dx} = x^3 e^{-2y}$

On separating the variables, we get $e^{2y}dy = x^3dx$

On integrating both sides, we get

$$egin{aligned} &\int e^{2y} dy = \int x^3 dx \ \Rightarrow \quad rac{e^{2y}}{2} &= rac{x^4}{4} + C_1 \ \Rightarrow 2e^{2y} &= x^4 + 4C_1 \ \therefore \quad 2e^{2y} &= x^4 + C, ext{ where } \mathsf{C} = 4 \ \mathsf{C}_1 \end{aligned}$$

11. According to the question, the given equation is,

$$\left(rac{dy}{dx}
ight)^4 + 3xrac{d^2y}{dx^2} = 0.$$

Here, the highest order derivative is d^2y/dx^2 , whose degree is one. So, the degree of differential equation is 1.

12. Since, the family of all non-vertical line is y = mx + c, where $m \neq \tan \frac{\pi}{2}$.

On differentiating w.r.t. x, we get
$$\frac{dy}{dx} = m$$

again, differentiating w.r.t x, we get $\frac{d^2y}{dx^2} = 0$

13.
$$\sec^2 x$$
. $\tan y \, dx = -\sec^2 y \tan x \, dy$
 $\int \frac{\sec^2 x}{\tan x} dx = -\int \frac{\sec^2 y}{\tan y} dx$
 $\log(\tan x) = -\log(\tan y) + \log c$
 $\log(\tan x. \tan y) = \log ca$
 $\tan x \, \tan y = c$

14. Given: Differential equation
$$\frac{dy}{dx} + y = 1$$

$$egin{array}{lll} \Rightarrow rac{dy}{dx} = 1-y \ \Rightarrow dy = (1-y)\,dx \ \Rightarrow dy = -\left(y-1
ight)dx \ \Rightarrow rac{dy}{y-1} = -dx \end{array}$$

Integrating both sides,

$$egin{aligned} &\Rightarrow \int rac{dy}{y-1} dx = -\int 1 dx \ &\Rightarrow \log \lvert y-1
vert = -x+c \ &\Rightarrow \lvert y-1
vert = e^{-x+c} \ ert \colon ext{if } \log x = ext{t, then } x = e^x
vert \ &\Rightarrow y-1 = \pm e^{-x+c} \ &\Rightarrow y = 1 \pm e^{-x}e^c \ &\Rightarrow y = 1 \pm e^c e^{-x} \ &\Rightarrow y = 1 \pm e^c e^{-x} \ &\Rightarrow y = 1 \pm Ae^{-x}, ext{ where } A = \pm e^c \end{aligned}$$

15. We have,

 $x\log|x|rac{dy}{dx}+y=2\log|x|$ On dividing both sides by x log IxI, we get $rac{dy}{dx}+rac{y}{x\log|x|}=rac{2}{x}$

which is a linear differential equation which is in the form of $\frac{dy}{dx} + Py = Q$, Where, $P = \frac{1}{dx}$ and $Q = \frac{2}{dx}$

Where,
$$P = rac{1}{x \log |x|}$$
 and $Q = rac{2}{x}$

we know that ,

$$\begin{split} \operatorname{IF} &= e^{\int Pdx} = e^{\int \frac{1}{x \log |x|}} \\ \operatorname{put} \log |x| = t \Rightarrow \frac{1}{x} dx = dt \\ \therefore \int \frac{1}{x \log |x|} dx = \int \frac{dt}{t} = \log |t| = \log |\log x| \\ \operatorname{IF} &= \log |x| [\because e^{\log |x|} = x] \\ \operatorname{The solution of linear differential equation is given by} \\ y \times \operatorname{IF} &= \int (Q \times \operatorname{IF}) dx + C \\ \therefore \quad y \times \log |x| = \int \frac{2}{x} \log |x| dx + C \\ \operatorname{put} \log |x| = t \Rightarrow \frac{1}{x} dx = dt \\ \therefore \int \frac{\log |x|}{x} dx = \int t dt = \frac{t^2}{2} = \frac{(\log |x|)^2}{2} \\ \Rightarrow \quad y \log |x| = \frac{2(\log |x|)^2}{2} + C \\ \operatorname{On dividing both sides by } \log |x| , \text{ we get} \\ \therefore \quad y = \log |x| + \frac{C}{\log |x|} \end{split}$$

which is the required solution of differential equation.

16. Given diff eq. is sinx $\cos y \, dx + \cos x \cdot \sin y \, dy = 0$.

$$\Rightarrow \int \frac{\sin x}{\cos x} dx = -\int \frac{\sin y}{\cos y} dy$$

$$\Rightarrow \int \tan x dx = -\int \tan y dy$$

$$\Rightarrow \log(\sec x) = -\log(\sec y) + \log c$$

$$\Rightarrow \log(\sec x.\sec y) = \log c$$

secx.secy = c(1)
when x = 0, $y = \frac{x}{4}$, therefore we get, $c = \sqrt{2}$
put the value of c in (1), we get, $\sec x. \sec y = \sqrt{2}$

17. We have,

 $rac{dy}{dx} + y \sec x = \tan x$

which is a linear differential equation of first order and is of the form

$$\frac{dy}{dx} + Py = Q \dots (i)$$
Here, P = sec x and Q = tan x
 \therefore IF = $e^{\int Pdx} = e^{\int sec xdx} = e^{\log|sec x + \tan x|}$
 $[: \int sec xdx = \log|sec x + \tan x]]$
 \Rightarrow IF = sec x + tan x
The general solution is $y \times$ IF = $\int (Q \times$ IF) $dx + C$
 $y(sec x + tan x) = \int tan x \cdot (sec x + tan x)dx$
 $\Rightarrow y(sec x + tan x) = \int sec x tan xdx + \int tan^2 xdx$
 $\Rightarrow y(sec x + tan x) = sec x + \int (sec^2 x - 1) dx$
 $\Rightarrow y(sec x + tan x) = sec x + tan x - x + C [: \int sec^2 x dx = tan x]$
On dividing both sides by (sec x + tan x), we get
 $y = 1 - \frac{x}{sec x + tan x} + \frac{C}{sec x + tan x}$
Riven diff eq is the form of
 $\frac{dy}{dx} + 2y \tan x = \sin x$
Given diff eq is the form of
 $\frac{dy}{dx} + Py = Q$
P = 2 tan x,Q = sin x
I.F = $e^{\int 2 \tan xdx}$
 $= e^{\log sec^2x}$
 $= sec^2x$
Solution is,
 $y \times sec^2x = \int sin xsec^2xdx + c$
 $= \int sec x \cdot tan xdx + c$
 $y \times sec^2x = sec x + c$
 $y = \frac{sec^2x}{sec^2x}$
 $y = \frac{1}{secx} + \frac{c}{sec^2x}$
 $y = \frac{1}{secx} + \frac{c}{sec^2x}$
 $y = \frac{1}{secx} + \frac{c}{sec^2x}$