CBSE Test Paper 01

Chapter 9 Differential Equations

1. In a bank, principal increases continuously at the rate of $r \%$ per year. Find the value of r if Rs 100 double itself in 10 years (loge2 $=0.6931$).
a. 9.93%
b. 7.93%
c. 6.93%
d. 8.93%
2. General solution of $\cos ^{2} x \frac{d y}{d x}+y=\tan x\left(0 \leqslant x<\frac{\pi}{2}\right)$ is
a. $y=(\tan x-1)+C e^{-\tan x}$
b. $y=(\tan x+1)+C e^{-\tan x}$
c. $y=(\tan x+1)-C e^{-\tan x}$
d. $y=(\tan x-1)-C e^{-\tan x}$
3. The number of arbitrary constants in the general solution of a differential equation of fourth order are:
a. 3
b. 2
c. 1
d. 4
4. In a bank, principal increases continuously at the rate of 5\% per year. An amount of Rs1000 is deposited with this bank, how much will it worth after 10 years $\left(e^{0.5}=1.648\right)$.
a. Rs 1848
b. Rs 1648
c. Rs 1748
d. Rs 1948
5. What is the order of differential equation : $\frac{d^{3} y}{d x^{3}}+\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}=e^{x}$.
a. 2
b. 3
c. 1
d. 0
6. $\mathrm{F}(\mathrm{x}, \mathrm{y})=\frac{\sqrt{x^{2}+y^{2}}+y}{x}$ is a homogeneous function of degree \qquad .
7. The degree of the differential equation $\sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=x$ is \qquad .
8. The order of the differential equation of all circles of given radius a is \qquad .
9. Verify that the function is a solution of the corresponding differential equation $y=x \sin x ; x y^{\prime}=y+x \sqrt{x^{2}-y^{2}}$.
10. Find order and degree. $\frac{d^{4} y}{d x^{2}}+\sin \left(y^{\prime \prime \prime}\right)=0$.
11. Write the solution of the differential equation $\frac{d y}{d x}=2^{-y}$.
12. Verify that the given function (explicit) is a solution of the corresponding differential equation: $y=x^{2}+2 x+C: y^{\prime}-2 x-2=0$.
13. Find the differential equation of all non-horizontal lines in a plane.
14. Verify that the function is a solution of the corresponding differential equation

$$
y=\sqrt{1+x^{2}} ; y^{\prime}=\frac{x y}{1+x^{2}}
$$

15. Solve the following differential equation.
$\left(y+3 x^{2}\right) \frac{d x}{d y}=x$
16. Solve the differential equation $\left(1+y^{2}\right) \tan ^{-1} x d x+2 y\left(1+x^{2}\right) d y=0$.
17. Find the particular solution of the differential equation $\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$, given that $\mathrm{y}=1$, when $\mathrm{x}=0$.
18. Solve $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$.

CBSE Test Paper 01

Chapter 9 Differential Equations

Solution

1. c. 6.93%

Explanation: Let P be the principal at any time t. then,
$\frac{d P}{d t}=\frac{r P}{100} \Rightarrow \frac{d P}{d t}=\frac{P}{100}$
$\Rightarrow \int \frac{1}{P} d P=\int \frac{r}{100} d t$
$\Rightarrow \log P=\frac{r}{100} t+\log c$
$\Rightarrow \log \frac{P}{c}=\frac{r}{100} t$
$\Rightarrow P=c e^{\frac{r}{100}}$
When $\mathrm{P}=100$ and $\mathrm{t}=0$., then, $\mathrm{c}=100$, therefore, we have:
$\Rightarrow P=100 e^{r / 100}$
Now, let $\mathrm{t}=\mathrm{T}$, when $\mathrm{P}=100$., then;
$\Rightarrow 200=100 e^{\frac{T}{100}}$
$\Rightarrow e^{\frac{T}{100}}=2$
$\Rightarrow T=100 \log 2=100(0.6931)=6.93 \%$
2.
a. $y=(\tan x-1)+C e^{-\tan x}$

Explanation: $\frac{d y}{d x}+\sec ^{2} x . y=\tan x \cdot \sec ^{2} x \Rightarrow P=\sec ^{2} x, Q=\tan x \cdot \sec ^{2} x$
$\Rightarrow I . F .=e^{\int \sec ^{2} x d x}=e^{\tan x}$
$\Rightarrow y . e^{\tan x}=\int \tan x \sec ^{2} x e^{\tan x} d x \Rightarrow y . e^{\tan x}=(\tan x-1) e^{\tan x}+C$
$\Rightarrow y=(\tan x-1)+C e^{-\tan x}$
3. d. 4

Explanation: 4, because the no. of arbitrary constants is equal to order of the differential equation.
4. b. Rs 1648

Explanation: Here P is the principal at time t
$\frac{d P}{d t}=\frac{5 P}{100} \Rightarrow \frac{d P}{d t}=\frac{P}{20}$
$\Rightarrow \int \frac{1}{P} d P=\int \frac{1}{20} d t$
$\Rightarrow \log P=\frac{1}{20} t+\log c$
$\Rightarrow \log \frac{P}{c}=\frac{1}{20} t$
$\Rightarrow P=c e^{\frac{1}{100}}$
When $\mathrm{P}=1000$ and $\mathrm{t}=0$., then ,
c = 1000, therefore, we have :
$\Rightarrow P=1000 e^{\frac{T}{100}}$
$\Rightarrow A=1000 e^{\frac{5}{10}}$
$\Rightarrow e^{\frac{5}{10}}=A$
$\Rightarrow A=1000 \log 0.5$
= 1000(1.648)
= 1648
5. a. 3

Explanation: Order $=3$. Since the third derivative is the highest derivative present in the equation. i.e. $\frac{d^{3} y}{d x^{3}}$
6. Zero
7. not defined
8. 2
9. $y=x \cdot \sin x \ldots$ (1)
$y^{\prime}=x \cdot \cos x+\sin x .1$
$\Rightarrow x y^{\prime}=x^{2} \cos x+x \cdot \sin x$
$x y^{\prime}=x^{2} \sqrt{1-\sin ^{2} x}+x \cdot \sin x$
$x y^{\prime}=x^{2} \sqrt{1-\left(\frac{y}{x}\right)^{2}}+x \cdot \sin x\left[\because \frac{y}{x}=\sin x\right]$
$x y=x^{2} \frac{\sqrt{x^{2}-y^{2}}}{x}+x \cdot \sin x$
$x y=x \sqrt{x^{2}-y^{2}}+y$
Hence proved.
10. order $=4$, degree $=$ not defined
11. Given differential equation is
$\frac{d y}{d x}=2^{-y}$
on separating the variables, we get
$2^{y} d y=d x$
On integrating both sides, we get
$\int 2^{y} d y=\int d x$
$\Rightarrow \quad \frac{2^{y}}{\log 2}=x+C_{1}$
$\Rightarrow 2^{\mathrm{Y}}=\mathrm{x} \log 2+\mathrm{C}_{1} \log 2$
$\therefore 2^{\mathrm{y}}=\mathrm{x} \log 2+\mathrm{C}$, where $\mathrm{C}=\mathrm{C}_{1} \log 2$
12. Given: $y=x^{2}+2 x+C$...(i)

To prove: y is a solution of the differential equation $\mathrm{y}^{\prime}-2 \mathrm{x}-2=0 \ldots$ (ii)
Proof:From, eq. (i),
$y^{\prime}=2 x+2$
L.H.S. of eq. (ii),
$=y$ ' $-2 x-2$
$=(2 x+2)-2 x-2$
$=2 \mathrm{x}+2-2 \mathrm{x}-2=0=$ R.H.S.
Hence, y given by eq. (i) is a solution of $y^{\prime}-2 x-2=0$.
13. The general equation of all non-horizontal lines in a plane is $\mathrm{ax}+\mathrm{by}=\mathrm{c}$, where $a \neq 0$. differentiating both sides w.r.t. y on both sides,we get
$a \frac{d y}{d x}+b=0$
Again, differentiating both sides w.r.t. y, we get
$a \frac{d^{2} x}{d y^{2}}=0 \Rightarrow \frac{d^{2} x}{d y^{2}}=0$.
14. $y=\sqrt{1+x^{2}}$
$y^{\prime}=\frac{1}{2 \sqrt{1+x^{2}}} .2 x$
$(i i) \div(i)$,we get,
$\Rightarrow \frac{y^{\prime}}{y}=\frac{\frac{x}{\sqrt{1+x^{2}}}}{\sqrt{1+x^{2}}}$
$\Rightarrow \frac{y^{\prime}}{y}=\frac{x}{1+x^{2}}$
$y^{\prime}=\frac{x y}{1+x^{2}}$
Hence given value of y is the solution of given differential equation.
15. According to the question,we have to solve the differential equation,
$\left(y+3 x^{2}\right) \frac{d x}{d y}=x \Rightarrow \frac{d y}{d x}=\frac{y}{x}+3 x$
$\Rightarrow \quad \frac{d y}{d x}-\frac{y}{x}=3 x$
which is a linear differential equation of the form
$\frac{d y}{d x}+P y=Q$.
Here, $P=\frac{-1}{x}$ and $\mathrm{Q}=3 \mathrm{x}$
$\therefore \quad \mathrm{IF}=e^{\int P d x}=e^{\int-\frac{1}{x} d x}=e^{-\log |x|}=e^{\log x^{-1}}=x^{-1}$
$\Rightarrow \quad \mathrm{IF}=x^{-1}=\frac{1}{x}$
The solution of linear differential equation is given by
$y \times I F=\int(Q \times I F) d x+C$
$\Rightarrow \quad y \times \frac{1}{x}=\int\left(3 x \times \frac{1}{x}\right) d x+C$
$\Rightarrow \quad \frac{y}{x}=\int 3 d x+C \Rightarrow \frac{y}{x}=3 x+C$
$\therefore y=3 x^{2}+C x$
which is the required solution.
16. Given differential equation is
$\left(1+y^{2}\right) \tan ^{-1} x d x+2 y\left(1+x^{2}\right) d y=0$
$\Rightarrow\left(1+y^{2}\right) \tan ^{-1} x d x=-2 y\left(1+x^{2}\right) d y$
$\Rightarrow \frac{\tan ^{-1} x d x}{1+x^{2}}=-\frac{2 y}{1+y^{2}} d y$
On integrating both sides, we get
$\int \frac{\tan ^{-1} x}{1+x^{2}} d x=-\int \frac{2 y}{1+y^{2}} d y$
Put $\tan ^{-1} x=t$ in $L H S$, we get
$\frac{1}{1+x^{2}} d x=d t$
and put $1+y^{2}=u$ in RHS, we get
$2 y d y=d u$
$\Rightarrow \int t d t=-\int \frac{1}{u} \Rightarrow \frac{t^{2}}{2}=-\log u+C$
$\Rightarrow \frac{1}{2}\left(\tan ^{-1} x\right)^{2}=-\log \left(1+y^{2}\right)+C$
$\Rightarrow \frac{1}{2}\left(\tan ^{-1} x\right)^{2}+\log \left(1+y^{2}\right)=C$
17. Given differential equation is,
$\left(1+e^{2 x}\right) d y+\left(1+y^{2}\right) e^{x} d x=0$
Above equation may be written as
$\frac{d y}{1+y^{2}}=\frac{-e^{x}}{1+e^{2 x}} d x$
On integrating both sides, we get
$\int \frac{d y}{1+y^{2}}=-\int \frac{e^{x}}{1+e^{2 x}} d x$
On putting $e^{x}=t \Rightarrow e^{x} d x=d t$ in RHS, we get
$\tan ^{-1} y=-\int \frac{1}{1+t^{2}} d t$
$\Rightarrow \tan ^{-1} y=-\tan ^{-1} t+C$
$\Rightarrow \quad \tan ^{-1} y=-\tan ^{-1}\left(e^{x}\right)+C \ldots$ (i) [put $\mathrm{t}=\mathrm{e}^{\mathrm{x}}$]

Also, given that $\mathrm{y}=1$, when $\mathrm{x}=0$.
On putting above values in Eq. (i), we get

$$
\begin{aligned}
& \tan ^{-1} 1=-\tan ^{-1}\left(\mathrm{e}^{0}\right)+\mathrm{C} \\
& \Rightarrow \quad \tan ^{-1} 1=-\tan ^{-1} 1+C \quad\left[\because e^{0}=1\right] \\
& \Rightarrow \quad 2 \tan ^{-1} 1=C \\
& \Rightarrow \quad 2 \tan ^{-1}\left(\tan \frac{\pi}{4}\right)=C \\
& \Rightarrow \quad C=2 \times \frac{\pi}{4}=\frac{\pi}{2}
\end{aligned}
$$

On putting $C=\frac{\pi}{2}$ in Eq. (i), we get
$\tan ^{-1} y=-\tan ^{-1} e^{x}+\frac{\pi}{2}$
$\Rightarrow \quad y=\tan \left[\frac{\pi}{2}-\tan ^{-1}\left(e^{x}\right)\right]=\cot \left[\tan ^{-1}\left(e^{x}\right)\right]$
$=\cot \left[\cot ^{-1}\left(\frac{1}{e^{x}}\right)\right]\left[\because \tan ^{-1} x=\cot ^{-1} \frac{1}{x}\right]$
$\therefore \quad y=\frac{1}{e^{x}}$
which is the required solution.
18. $\left(1+e^{\frac{x}{y}}\right) d x+e^{\frac{x}{y}}\left(1-\frac{x}{y}\right) d y=0$
$\Rightarrow \frac{d x}{d y}=-\frac{e^{x / y}\left(1-\frac{x}{y}\right)}{1+e^{x / y}}$
$\Rightarrow \frac{d x}{d y}=\frac{e^{x / y}\left(\frac{x}{y}-1\right)}{1+e^{x / y}}$.
Let $x=v y$, then,
$\frac{d x}{d y}=v+y \frac{d v}{d y}$
Put $\frac{d x}{d y}$ in eq (1),we get,
$v+y \frac{d v}{d y}=\frac{e^{v}(v-1)}{e^{v}+1}$
$\Rightarrow y \frac{d v}{d y}=\frac{v e^{v}-e^{v}}{e^{v}+1}-v$
$\Rightarrow y \frac{d v}{d y}=\frac{v e^{v}-e^{v}-v e^{v}-v}{e^{v}+1}$
$\Rightarrow-\int \frac{d y}{y}=\int \frac{e^{v}+1}{v+e^{v}} d v$
$\Rightarrow \log \left(e^{v}+v\right)=-\log (y)+c$
$\Rightarrow \log \left(\left(e^{v}+v\right) \cdot y\right)=c$
$\Rightarrow\left(e^{v}+v\right) y=e^{c}$
$\Rightarrow\left(e^{v}+v\right) y=A$ [Putting $\mathrm{e}^{\mathrm{c}}=\mathrm{A}$]
$\Rightarrow\left(e^{x / y}+\frac{x}{y}\right) y=A$
$\Rightarrow y e^{x / y}+x=A$

