## CBSE Test Paper 02

Chapter 8 Application of Integrals

1. The area bounded by the curves $y=\sqrt{5-x^{2}}$ and $y=|x-1|$ is
a. $\frac{5 \pi-5}{4}$ sq. units
b. $\frac{5 \pi+2}{4}$ sq. units
c. $\frac{5 \pi-2}{4}$ sq. units
d. $\frac{\pi-5}{4}$ sq. units
2. The area of the loop between the curve $y=a \sin x$ and the $x-a x i s$ and $x=0, x=\pi$ is
a. 3 a
b. 2a square units
c. none of these
d. a
3. The area bounded by the curves $x^{2}=4 y$ and $x=4 y-2$ is
a. $\frac{9}{2}$ sq. units
b. $\frac{9}{8}$ sq.units
c. $\frac{9}{4}$ sq. units
d. 9 sq. units
4. The area bounded by the ellipse $x^{2}+9 y^{2}=9$ and the straight line $\mathrm{x}+3 \mathrm{y}=3$ is
a. $4 \pi$
b. $\Rightarrow \frac{3}{4}(\pi-2)$
c. $6 \pi$
d. $9 \pi$
5. The area lying in the first quadrant and bounded by the curve $y=x^{3}$, the $x$ - axis and the ordinates at $x=-2$ and $x=1$ is
a. 2
b. $\frac{15}{4}$
c. 3
d. 6
6. Find the area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the $x-$ axis.
7. Find the value of $c$ for which the area of figure bounded by the curve $y=3$, the straight lines $\mathrm{x}=1$ and $\mathrm{x}=\mathrm{c}$ and the x -axis is equal to $\frac{16}{3}$.
8. Find the area of the region enclosed by the lines $y=x, x=e$, and the curve $y=\frac{1}{x}$ and the positive x -axis.
9. Integrate the following function $\frac{1}{\sqrt{(x-1)(x-2)}}$.
10. Integrate the function $\frac{(1+\log x)^{2}}{x}$.
11. Integrate the functions $(4 x+2) \sqrt{x^{2}+x+1}$.
12. $\int_{0}^{\pi / 4} \log (1+\tan x) d x$.
13. Find $\int \frac{x^{3}}{x^{4}+3 x^{2}+2} d x$.
14. $\int \frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$.
15. Using integration, find the area of the region $\left\{(x, y): x^{2}+y^{2} \leq 16, x^{2} \leq 6 y\right\}$.

## CBSE Test Paper 02

## Chapter 8 Application of Integrals

## Solution

1. (c) $\frac{5 \pi-2}{4}$ sq. units

Explanation: Required area:
$\int_{-1}^{2} \sqrt{5-x^{2}} d x-\int_{-1}^{1}(1-x) d x-\int_{1}^{2}(x-1) d x$
$=\left[\frac{x \sqrt{5-x^{2}}}{2}+\frac{5}{2} \sin ^{-1} \frac{x}{\sqrt{5}}\right]_{-1}^{2}$
$-\left[x-\frac{x^{2}}{2}\right]_{-1}^{1}-\left[\frac{x^{2}}{2}-x\right]_{1}^{2}$
$=\left(\frac{5 \pi-2}{4}\right)$ sq. units
2. (b) 2a square units

Explanation: Required area $=\int_{0}^{\pi} a \sin \mathrm{x} d x$
$=a[-\cos x]_{0}^{\pi}$
$=a(-\cos \pi+\cos 0)=a(1+1)=2 a$
3. (b) $\frac{9}{8}$ sq.units

Explanation: Eliminating y, we get :
$x^{2}-x-2=0 \Rightarrow x=-1,2$
Required area $:=\int_{-1}^{2}\left(\frac{x}{4}+\frac{1}{2}-\frac{x^{2}}{4}\right) d x=\frac{1}{8}(4-1)+\frac{3}{2}-\frac{1}{12}(8+1)$
$=\frac{3}{8}+\frac{3}{2}-\frac{3}{4}=\frac{9}{8}$ sq.units
4. (b) $\Rightarrow \frac{3}{4}(\pi-2)$

Explanation: Required area: $=\int_{0}^{3}\left(\frac{1}{3} \sqrt{3^{2}-x^{2}}-\frac{1}{3}(3-x)\right) d x$
$=\frac{1}{3}\left[\frac{x \sqrt{3^{2}-x^{2}}}{2}+\frac{3^{2}}{2} \sin ^{-1} \frac{x}{3}-3 x+\frac{x^{2}}{2}\right]_{0}^{3}$
$=\frac{1}{3}\left[0+\frac{3^{2}}{2} \sin ^{-1} 1-3^{2}+\frac{3^{2}}{2}\right]=\frac{1}{3}\left[0+\frac{3^{2}}{2} \sin ^{-1} 0-0+0\right]$
$=\frac{1}{3}\left[\frac{3^{2}}{2} \cdot \frac{\pi}{2}-\frac{3^{2}}{2}-0\right]=3 / 4(\pi-2)$
5. (b) $\frac{15}{4}$

Explanation: Required area $=\int_{-2}^{1} x^{3} d x=\left[\frac{x^{4}}{4}\right]_{-2}^{1}=\frac{15}{4}$
6. We have to find the area of the region bounded by the curves $y=|x-2|, x=1, x=3$ and the x -axis.
Required area $=\int_{1}^{2}(2-x) d x+\int_{2}^{3}(x-2) d x$
$=\left[2 x-x^{2}\right]_{1}^{2}+\left[x^{2}-2 x\right]_{2}^{3}$
$=[(4-4)-(2-1)]+[(9-6)-(4-4)]=-1+3=2$

7. we have, $\int_{0}^{c} 3 d x=\frac{16}{3}$
$3(x)_{0}^{c}=\frac{16}{3}$
$3 c=\frac{16}{3}$
$c=\frac{16}{9}$
8. Required area = the area of the region enclosed by the lines $y=x, x=e$, and the curve
$y=\frac{1}{x}$ and the positive x -axis
$=\int_{0}^{1} x d x+\int_{1}^{e} \frac{1}{x} d x$
$=\frac{1}{2}+1$
$=\frac{3}{2} s q u n i t s$
9. $\int \frac{1}{\sqrt{(x-1)(x-2)}} d x$
$=\int \frac{1}{\sqrt{x^{2}-2 x-x+2}} d x$
$=\int \frac{1}{\sqrt{x^{2}-3 x+2}} d x$
$=\int \frac{1}{\sqrt{x^{2}-3 x+\left(\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}+2}} d x$
$=\int \frac{1}{\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}} d x$
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{\left(x-\frac{3}{2}\right)^{2}-\left(\frac{1}{2}\right)^{2}}\right|+c$
$=\log \left|\left(x-\frac{3}{2}\right)+\sqrt{x^{2}-3 x+2}\right|+c$
10. Let $I=\int \frac{(1+\log x)^{2}}{x} d x \ldots$ (i)

Putting $1+\log x=t$
$\Rightarrow \frac{1}{x}=\frac{d t}{d x}$
$\Rightarrow \frac{d x}{x}=d t$
$\therefore$ From eq. (i), $I=\int t^{2} d t$
$=\frac{t^{3}}{3}+c$
$=\frac{1}{3}(1+\log x)^{3}+c$
11. Let $I=\int(4 x+2) \sqrt{x^{2}+x+1} d x$
$=\int 2(2 x+1) \sqrt{x^{2}+x+1} d x$
$=\int 2 \sqrt{x^{2}+x+1}(2 x+1) d x$...(i)
Putting $\mathrm{x}^{2}+\mathrm{x}+1=\mathrm{t}$
$\Rightarrow(2 x+1)=\frac{d t}{d x}$
$\Rightarrow(2 x+1) d x=d t$
$\therefore$ From eq. (i), $I=\int 2 \sqrt{t} d t$
$=2 \int t^{\frac{1}{2}} d t$
$=2 \frac{t^{\frac{3}{2}}}{\frac{3}{2}}+c$
$=\frac{4}{3} t^{\frac{3}{2}}+c$
$=\frac{4}{3}\left(x^{2}+x+1\right)^{\frac{3}{2}}+c$
12. $I=\int_{0}^{\pi / 4} \log (1+\tan x) d x$.
$I=\int_{0}^{\pi / 4} \log \left[1+\tan \left(\frac{\pi}{4}-x\right)\right] d x$
$=\int_{0}^{\pi / 4} \log \left[1+\frac{\tan \frac{\pi}{4}-\tan x}{1+\tan \frac{\pi}{4} \cdot \tan x}\right] d x$
$=\int_{0}^{\pi / 4} \log \left[1+\frac{1-\tan x}{1+\tan x}\right) d x$
$=\int_{0}^{\pi / 4} \log \left[\frac{1+\tan x+1-\tan x}{1+\tan x}\right] d x$
$=\int_{0}^{\pi / 4} \log \left[\frac{2}{1+\tan x}\right] d x$
$=\int_{0}^{\pi / 4} \log 2 d x-\int_{0}^{\pi / 4} \log (1+\tan x) d x$
$=\log 2[x]_{0}^{\pi / 4}-I$
$2 I=\log 2\left[\frac{\pi}{4}-0\right]$
$I=\log 2 \cdot \frac{\pi}{8}$
13. According to the question, $I=\int \frac{x^{3}}{x^{4}+3 x^{2}+2} d x$
$I=\int \frac{x^{2} \cdot x}{x^{4}+3 x^{2}+2} d x$
Let $x^{2}=t \Rightarrow 2 x d x=d t$
$\Rightarrow \quad x d x=\frac{d t}{2}$
$\therefore \quad I=\frac{1}{2} \int \frac{t}{t^{2}+3 t+2} d t$
$=\frac{1}{2} \int \frac{t}{(t+2)(t+1)} d t$
By using partial fractions,
$\frac{t}{(t+2)(t+1)}=\frac{A}{t+2}+\frac{B}{t+1}$
$I=\frac{1}{2} \int \frac{t}{(t+2)(t+1)} d t=\frac{1}{2} \int \frac{A}{t+2}+\frac{B}{t+1} d t \ldots(\mathrm{i})$
$t=A(t+1)+B(t+2)$
if $t=-2 \Rightarrow-2=A(-1), \therefore A=2$
if $t=-1 \Rightarrow-1=B(1), \therefore B=-1$
put values of A and B in (i)
$I=\frac{1}{2}\left[\int \frac{2}{t+2} d t-\int \frac{1}{t+1} d t\right]$
$=\frac{1}{2}[2 \log |t+2|-\log |t+1|]+C$
$=\log |t+2|-\frac{1}{2} \log |t+1|+C$
$=\log |t+2|-\log \sqrt{t+1}+C$
$=\log \left|\frac{t+2}{\sqrt{t+1}}\right|+C$
put $t=x^{2}$
$I=\log \left|\frac{x^{2}+2}{\sqrt{x^{2}+1}}\right|+C$
14. $\int \frac{d x}{\sqrt{\sin ^{3} x \sin (x+\alpha)}}$
$\int \frac{d x}{\sqrt{\sin ^{4} x \cdot \frac{\sin (x+\alpha)}{\sin x}}}$
$\int \frac{d x}{\sin ^{2} x \sqrt{\frac{\sin (x+\alpha)}{\sin x}}}=\int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\frac{\sin (x+\alpha)}{\sin x}}}$
$=\int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\frac{\sin x \cdot \cos \alpha+\cos x \cdot \sin \alpha}{\sin x}}}$
$=\int \frac{\operatorname{cosec}^{2} x d x}{\sqrt{\cos \alpha+\cot x \cdot \sin \alpha}}$
put $\cos \alpha+\cot x \cdot \sin \alpha=t$
$0-\operatorname{cosec} 2 \cdot \sin \alpha d x=d t$
$=\int-\frac{1}{\sin \alpha} \frac{d t}{\sqrt{t}}=-\frac{1}{\sin \alpha} \cdot \frac{t^{1 / 2}}{1 / 2}+C$
$=\frac{-2}{\sin \alpha} \sqrt{\cos \alpha+\cot x \cdot \sin \alpha}+C$
15. According to the question, given region is (x, y) : $x^{2}+y^{2} \leq 16, x^{2} \leq 6 y$ Above region consists a parabola whose vertex is $(0,0)$ and Axis of parabola is along Y-axis.
Above region also consists a circle $\mathrm{x}^{2}+\mathrm{y}^{2}=16$ whose centre is $(0,0)$ and
Radius of circle is $=4$.
First, let us sketch the region, as shown below:
$D(-2 \sqrt{3}, 2)$


For finding the points of intersection of two curves, we have
$x^{2}+y^{2}=16$ $\qquad$
and $x^{2}=6 y$
On putting $x^{2}=6 y$ from Eq.(ii) in Eq. (i), we get
$y^{2}+6 y-16=0$
$y^{2}+8 y-2 y-16=0$
$y(y+8)-2(y+8)=0$
$(y-2)(y+8)=0$
$y=2$ or -8
When $y=2$, then from Eq. (ii), we get
$\mathrm{x}= \pm \sqrt{12}= \pm 2 \sqrt{3}$
When $y=-8$, then from Eq. (ii), we get
$x^{2}=-48$ which is not possible $[\because$ square root of negative terms does not exist.]

So, $\mathrm{y}=-8$ is rejected.
Here, we consider only one value of y i.e. 2
Thus, the two curves meet at points $\mathrm{C}(2 \sqrt{3}, 2)$ and $\mathrm{D}(-2 \sqrt{3}, 2)$.
Now,
Required area $=$ Area of shaded region OCBDO
$=2$ [ Area of region OACO + Area of region ABCA]
$=2\left[\int_{0}^{2} x_{(\text {parabola) }} d y+\int_{2}^{4} x_{(\text {circle })} d y\right]$
$=2\left[\int_{0}^{2} \sqrt{6 y} d y+\int_{2}^{4} \sqrt{16-y^{2}} d y\right]$
$=2\left[\sqrt{6} \int_{0}^{2} \sqrt{y} d y+\int_{2}^{4} \sqrt{16-y^{2}} d y\right]$
$=2\left(\left[\sqrt{6} \cdot y^{3 / 2} \cdot \frac{2}{3}\right]_{0}^{2}+\left[\frac{y}{2} \sqrt{16-y^{2}}+\frac{16}{2} \sin ^{-1} \frac{y}{4}\right]_{2}^{4}\right)$
$=2\left\{\left[\frac{2 \sqrt{6}}{3} y^{3 / 2}\right]_{0}^{2}+\left[0+8 \sin ^{-1} 1-\sqrt{12}-8 \sin ^{-1} \frac{1}{2}\right]\right\}$
$=2\left[\frac{2 \times \sqrt{2} \times \sqrt{3}}{3} \times\left[(\sqrt{2})^{2}\right]^{3 / 2}+8 \sin ^{-1}\left(\sin \frac{\pi}{2}\right)-2 \sqrt{3}-8 \sin ^{-1}\left(\sin \frac{\pi}{6}\right)\right]$
$=2\left[\frac{2 \sqrt{2} \times \sqrt{3}}{3} \times 2 \sqrt{2}+4 \pi-2 \sqrt{3}-\frac{8 \pi}{6}\right]$
$=2\left[\frac{8 \sqrt{3}}{3}+4 \pi-2 \sqrt{3}-\frac{4 \pi}{3}\right]$
$=2\left[\frac{2 \sqrt{3}}{3}+\frac{8 \pi}{3}\right]$
$=\left(\frac{4 \sqrt{3}}{3}+\frac{16 \pi}{3}\right)$
$\therefore I=\frac{4 \sqrt{3}}{3}+\frac{16 \pi}{3}$ sq units.

