CBSE Test Paper 01

Chapter 8 Application of Integrals

1. The area bounded by the curves $y^{2}=20 x$ and $x^{2}=16 y$ is equal to
a. $\frac{320}{3}$ sq. units
b. 80π sq. units
c. none of these
d. 100π sq. units
2. The area of the region bounded by the parabola $(y-2)^{2}=x-1$, the tangent to the parabola at the point $(2,3)$ and the x -axis is equal to
a. none of these
b. 6 sq. units
c. 9 sq. units
d. 12 sq. units
3. The area bounded by the curves $y=\sqrt{x}, 2 \mathrm{y}+3=$ xand the x - axis in the first quadrant is
a. 36
b. 18
c. 9
d. none of these
4. If the area cut off from a parabola by any double ordinate is k times the corresponding rectangle contained by that double ordinate and its distance from the vertex, then k is equal to
a. $\frac{2}{3}$
b. 3
c. $\frac{1}{3}$
d. $\frac{3}{2}$
5. The area bounded by the curves $y=\cos x$ and $y=\sin x$ between the ordinates $x=0$
and $x=\frac{\pi}{2}$ is equal to
a. $2(\sqrt{2}+1)$ sq. units
b. $2(\sqrt{2}-1)$ sq. units
c. $(4 \sqrt{2}-1)$ sq. units
d. $(4 \sqrt{2}+1)$ sq. units
6. The area of the bounded by the lines $y=2, x=1, x=a$ and the curve $y=f(x)$, which cuts the last two lines above the first line for all $a \geq 1$, is equal to $\frac{2}{3}\left[(2 a)^{3 / 2}-3 a+3-2 \sqrt{2}\right]$. Find $f(x)$
7. Let $\mathrm{f}(\mathrm{x})$ be a continuous function such that the area bounded by the curve $\mathrm{y}=\mathrm{f}(\mathrm{x}), \mathrm{x}$ axis and the lines $\mathrm{x}=0$ and $\mathrm{x}=\mathrm{a}$ is $\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$, then find $f\left(\frac{\pi}{2}\right)$.
8. Find the area of the region enclosed by the curves $y=x, x=e, y=\frac{1}{x}$ and the positive x -axis.
9. Calculate the area of the region enclosed between the circles: $x^{2}+y^{2}=16$ and $(x+4)^{2}$ $+\mathrm{y}^{2}=16$.
10. Using integration, find the area of region bounded by the triangle whose vertices are $(-1,0),(1,3)$ and $(3,2)$.
11. Find the area of the region $\left\{(x, y) ; x^{2} \leqslant y \leqslant x\right\}$.
12. Evaluate $\lim _{x \rightarrow \infty}\left(\frac{x^{x}}{x!}\right)^{1 / x}$.
13. Evaluate $\lim _{x \rightarrow \infty}\left[\frac{1}{x}+\frac{x^{2}}{(x+1)^{3}}+\frac{x^{2}}{(x+2)^{3}}+\ldots \ldots \ldots+\frac{1}{8 x}\right]$.
14. Find the area of the region enclosed by the parabola $\mathrm{x}^{2}=\mathrm{y}$ and the line $\mathrm{y}=\mathrm{x}+2$.
15. Using integration, find the area of the region enclosed between the two circles $x^{2}+y^{2}$ $=4$ and $(x-2)^{2}+y^{2}=4$.

CBSE Test Paper 01

Chapter 8 Application of Integrals

Solution

1. (a) $\frac{320}{3}$ sq. units

Explanation: Eliminating y, we get: $x^{4}=256 \times 20 x$
$\Rightarrow x=0, x=8(10)^{\frac{1}{3}}$
Required area:
$=\int_{0}^{8(10)^{\frac{1}{3}}}\left(\sqrt{20 x}-\frac{x^{2}}{16}\right) d x$
$=\frac{640}{3}-\frac{320}{3}=\frac{320}{3}$ sq units
2. (c) 9 sq. units

Explanation: Given parabola is: $(y-2)^{2}=x-1 \Rightarrow \frac{d y}{d x}=\frac{1}{2(y-2)}$
When $\mathrm{y}=3, \mathrm{x}=2$
$\therefore \frac{d y}{d x}=\frac{1}{2}$
Therefore, tangent at (2,3) is $y-3=1 / 2(x-2)$. i.e. $x-2 y+4=0$. therefore required area is: $\int_{0}^{3}(y-2)^{2}+1 . d y-\int_{0}^{3}(2 y-4) d y=\left[\frac{(y-2)^{3}}{3}+y\right]_{0}^{3}-\left[y^{2}-4 y\right]_{0}^{3}=9$
3. (c) 9

Explanation: Required area: $\int_{0}^{9} \sqrt{x} d x-\int_{3}^{9}\left(\frac{x-3}{2}\right) d x$
$=\left[\frac{x^{\frac{3}{2}}}{3 / 2}\right]_{0}^{9}-\frac{1}{2}\left[\frac{x^{2}}{2}-3 x\right]_{3}^{9}=9$ sq.units
4. (a) $\frac{2}{3}$

Explanation: Required area: $2 \int_{0}^{a} \sqrt{4 a x} d x$
$=k \alpha(2 \sqrt{4 a \alpha})$
$=\frac{8 \sqrt{a}}{3} \alpha^{\frac{3}{2}}$
$=4 \sqrt{a} k \alpha^{\frac{3}{2}} \Rightarrow k=\frac{2}{3}$
5. (b) $2(\sqrt{2}-1)$ sq. units

Explanation: Required area $=\int_{0}^{\frac{\pi}{2}}|\sin x-\cos x| d x$
$=\int_{0}^{\frac{\pi}{4}}(\cos x-\sin x) d x+\int_{\frac{\pi}{4}}^{\frac{\pi}{2}}(\sin x-\cos x) d x$
$=[\sin x+\cos x]_{0}^{\frac{\pi}{4}}+[-\cos x-\sin x]_{\frac{\pi}{4}}^{\frac{\pi}{2}}$
$=\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-(0+1)-\left\{1-\left(\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right)\right\}$
$=\frac{4}{\sqrt{2}}-2=2 \sqrt{2}-2=2(\sqrt{2}-1)$
6. we are given,
$\int_{a}^{1}[f(x)-2] d x=\frac{2}{3}\left[(2 a)^{3 / 2}-3 a+3-2 \sqrt{2}\right]$
Differentiating w.r.t a, we get
$\mathrm{f}(\mathrm{a})-2=\frac{2}{3}\left[\frac{3}{2} \sqrt{2 a} .2-3\right]$
$\mathrm{f}(\mathrm{a})=2 \sqrt{2 a}, a \geq 1$
$\therefore f(x)=2 \sqrt{2 x}, x \geq 1$
7. we have, $\int_{0}^{a} f(x) d x=\frac{a^{2}}{2}+\frac{a}{2} \sin a+\frac{\pi}{2} \cos a$

Differentiating w.r.t a,we get,
$\mathrm{f}(\mathrm{a})=\mathrm{a}+\frac{1}{2}(\sin a+a \cos a)-\frac{\pi}{2} \sin a$
put $\mathrm{a}=\frac{\pi}{2}, f\left(\frac{\pi}{2}\right)=\frac{\pi}{2}+\frac{1}{2}-\frac{\pi}{2}=\frac{1}{2}$
8. We have $y=4 x^{2}$ and $y=\frac{1}{9} x^{2}$

Required area $=2 \int_{0}^{2}\left(3 \sqrt{y}-\frac{\sqrt{y}}{2}\right) d y$
$=2\left(\frac{5 y}{2} \frac{\sqrt{y}}{3 / 2}\right)_{0}^{2}$
$=2 \cdot \frac{5}{3} 2 \sqrt{2}=\frac{20 \sqrt{2}}{3}$
9.

$x^{2}+y^{2}=16$
$(x+4)^{2}+y^{2}=16$
Intersecting at $\mathrm{x}=-2$
Area $=4 \int_{-4}^{-2} \sqrt{16-x^{2}} d x$
$=4\left[\int_{-4}^{-2} \sqrt{4^{2}-x^{2}} d x\right]=4\left[\frac{x}{2} \sqrt{1-x^{2}}+\frac{4^{2}}{2} \sin ^{-1} \frac{x}{4}\right]_{-4}^{-2}$
$=4\left[\left(-2 \sqrt{3}-\frac{4 \pi}{3}\right)-(-4 \pi)\right]$
$=\left(-8 \sqrt{3}+\frac{32 \pi}{3}\right)$
10.

A $(-1,0) \mathrm{B}(1,3) \mathrm{C}(3,2)$
Equation of AB
$y-y_{1}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}\left(x-x_{1}\right)$
$y-0=\frac{3-0}{1+1}(x+1)$
$y=\frac{3}{2}(x+1)$
Similarly,
Equation of $\mathrm{BC} y=\frac{-1}{2}(x-7)$
Equation of $\mathrm{AC}=\frac{1}{2}(x+1)$
Area $\Delta A B C=\int_{-1}^{1} \frac{3}{2}(x+1) d x+\int_{1}^{3} \frac{1}{2}(x-7) d x-\int_{-1}^{3} \frac{1}{2}(x+1) d x$
$=\frac{3}{2}\left[\frac{x^{2}}{2}+x\right]_{-1}^{1}+\frac{1}{2}\left[7 x-\frac{x^{2}}{2}\right]_{1}^{3}-\left[\frac{x^{2}}{2}+x\right]_{-1}^{3}$
$=\frac{3}{2}\left[\left(\frac{1}{2}+1\right)-\left(\frac{1}{2}-1\right)\right]+\frac{1}{2}\left[\left(21-\frac{9}{2}\right)-\left(7-\frac{1}{2}\right]\right.$
$-\frac{1}{2}\left[\left(\frac{9}{2}+3\right)-\left(\frac{1}{2}-1\right)\right]$
$=\frac{3}{2}(2)+\frac{1}{2}(10)-\frac{1}{2}(8)=3+5-4$
$=4$ sq. units
11. $\mathrm{y}=\mathrm{x}^{2}$

$y=x$
$\Rightarrow x=0, y=0$
$\mathrm{x}=1, \mathrm{y}=1$
Area $=\int_{0}^{1} x d x-\int_{0}^{1} x^{2} d x$
$=\int_{0}^{1}\left(x-x^{2}\right) d x$
$=\left[\frac{x^{2}}{2}-\frac{x^{3}}{3}\right]_{0}^{1}$
$=\frac{1}{2}-\frac{1}{3}$
$=\frac{1}{6}$ sq. units
12. Given $L=\lim _{x \rightarrow \infty}\left(\frac{x^{x}}{x!}\right)^{1 / x}$

Taking logarithm on both sides
$\log L=\lim _{x \rightarrow \infty} \frac{1}{x}\left(\log \frac{x}{1}+\log \frac{x}{2}+\ldots \ldots+\log \frac{x}{x}\right)$
$=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{r=1}^{x} \log \frac{x}{r}$
$=\lim _{x \rightarrow \infty} \frac{1}{x} \sum_{r=1}^{x} \log \frac{1}{(r / x)}$
$=\int_{0}^{1} \log \frac{1}{x} d x$
$=-\int_{0}^{1} \log x d x$
$=-[x \log x+x]_{0}^{1}$
$=-[(1 \log 1+1)-(0 \log 0-0)]=1$
$\therefore \log L=1$
$\Rightarrow L=e$
$\Rightarrow \lim _{x \rightarrow \infty}\left(\frac{x^{x}}{x!}\right)^{1 / x}=e$
13. Given, $\lim _{x \rightarrow \infty}\left[\frac{1}{x}+\frac{x^{2}}{(x+1)^{3}}+\frac{x^{2}}{(x+2)^{3}}+\ldots \ldots \ldots+\frac{1}{8 x}\right]$
$=\lim _{x \rightarrow \infty} \sum_{r=0}^{x} \frac{x^{2}}{(x+r)^{3}}$
$=\lim _{x \rightarrow \infty} \sum_{r=0}^{x} \frac{1 / x}{(1+r / x)^{2}}$
$=\int_{0}^{1} \frac{d y}{(1+y)^{3}}$, replace $\frac{r}{x}$ by y and $\frac{1}{x}$ by dy
$=\left[\frac{-1}{2(1+y)^{2}}\right]_{0}^{1}$
$=\left[\frac{-1}{2\left(1+1^{2}\right)}-\frac{-1}{2\left(1+0^{2}\right)}\right]$
$=\left[\frac{-1}{2(2)}-\frac{-1}{2(1)}\right]$
$=\left[\frac{-1}{4}-\frac{-1}{2}\right]=\frac{1}{4}$
14. We have, $x^{2}=y$ and $y=x+2$
$\Rightarrow x^{2}=x+2$
$\Rightarrow x^{2}-x-2=0$
$\Rightarrow x^{2}-2 x+x-2=0$
$\Rightarrow x(x-2)+1(x-2)=0$
$\Rightarrow(x+1)(x-2)=0$
$\Rightarrow x=-1,2$

\therefore Required area of shaded region, $=\int_{-1}^{2}\left(x+2-x^{2}\right) d x=\left[\frac{x^{2}}{2}+2 x-\frac{x^{3}}{3}\right]_{-1}^{2}$
$=\left(8-3-\frac{1}{2}\right)=\frac{9}{2}$
15. Given circles are $x^{2}+y^{2}=4 \ldots$ (i)
$(x-2)^{2}+y^{2}=4 \ldots$ (ii)

Eq. (i) is a circle with centre origin and
Radius $=2$.
Eq. (ii) is a circle with centre C $(2,0)$ and
Radius $=2$.
On solving Eqs. (i) and (ii), we get
$(x-2)^{2}+y^{2}=x^{2}+y^{2}$
$\Rightarrow x^{2}-4 x+4+y^{2}=x^{2}+y^{2}$
$\Rightarrow x=1$
On putting $x=1$ in Eq. (i), we get
$y= \pm \sqrt{3}$
Thus, the points of intersection of the given circles are $\mathrm{A}(1, \sqrt{3})$ and $\mathrm{A}^{\prime}(1,-\sqrt{3})$.

Clearly, required area= Area of the enclosed region OACA'O between circles
$=2$ [Area of the region ODCAO]
$=2$ [Area of the region ODAO + Area of the region DCAD]
$=2\left[\int_{0}^{1} y_{2} d x+\int_{1}^{2} y_{1} d x\right]$
$=2\left[\int_{0}^{1} \sqrt{4-(x-2)^{2}} d x+\int_{1}^{2} \sqrt{4-x^{2}} d x\right]$
$=2\left[\frac{1}{2}(x-2) \sqrt{4-(x-2)^{2}}+\frac{1}{2} \times 4 \sin ^{-1}\left(\frac{x-2}{2}\right)\right]_{0}^{1}$
$+2\left[\frac{1}{2} x \sqrt{4-x^{2}}+\frac{1}{2} \times 4 \sin ^{-1} \frac{x}{2}\right]_{1}^{2}$
$=\left[(x-2) \sqrt{4-(x-2)^{2}}+4 \sin ^{-1}\left(\frac{x-2}{2}\right)\right]_{0}^{1}+\left[x \sqrt{4-x^{2}}+4 \sin ^{-1} \frac{x}{2}\right]_{1}^{2}$
$=\left[\left\{-\sqrt{3}+4 \sin ^{-1}\left(\frac{-1}{2}\right)\right\}-0-4 \sin ^{-1}(-1)\right]+\left[0+4 \sin ^{-1} 1-\sqrt{3}-4 \sin ^{-1} \frac{1}{2}\right]$
$=\left[\left(-\sqrt{3}-4 \times \frac{\pi}{6}\right)+4 \times \frac{\pi}{2}\right]+\left[4 \times \frac{\pi}{2}-\sqrt{3}-4 \times \frac{\pi}{6}\right]$
$=\left(-\sqrt{3}-\frac{2 \pi}{3}+2 \pi\right)+\left(2 \pi-\sqrt{3}-\frac{2 \pi}{3}\right)$
$=\frac{8 \pi}{3}-2 \sqrt{3}$ sq units.

