CBSE Test Paper 02

Chapter 6 Application of Derivatives

1. The curve y = $a~x^3+bx^2+c~x$ is inclined at 45° to the X – axis at (0, 0) but it touches X – axis at (1, 0) , then the values of a, b, c, are given by

a.
$$a = 1, b = -2, c = 1$$

b.
$$a = 1, b = 1, c = -2$$

c.
$$a = -2$$
, $b = 1$, $c = 1$

d.
$$a = -1$$
, $b = 2$, $c = 1$.

- 2. The function $f(x) = x^3 3x$ has a
 - a. local minima at x = 1
 - b. local maxima at x = 1
 - c. point of inflexion at 0
 - d. none of these
- 3. Minimum value of the function $f(x) = x^2 + x + 1$ is
 - a. none of these
 - b. 3
 - c. $\frac{3}{4}$
 - d. 1
- 4. The maximum value of $rac{\log x}{x}$ in $0 < x < \infty$ is
 - a. 0
 - b. none of these
 - с. -е
 - d. $\frac{1}{e}$
- 5. If the radius of a sphere is measures as 7m with an error of 0.02m then find the approximate error in calculating its volume.
 - a. None of these

- b. $1.96\pi \ m^2$
- c. 2.16π m^2
- d. 3.92π m^3
- 6. Maximum slope of the curve $y = -x^3 + 3x^2 + 9x 27$ is ______.
- 7. If x is real, the minimum value of x^2 8x + 17 is _____.
- 8. The function $f(x) = \frac{2x^2-1}{x^4}$, x > 0, decreases in the interval ______.
- 9. Find the maximum value of the function $f(x) = cosx + cos~(\sqrt{2}~x)$.
- 10. Find the interval in which the function $f(x) = \cot^{-1}x + x$ is increasing.
- 11. Show that the function given by $f\left(x
 ight)=e^{2x}$ is strictly increasing on R.
- 12. The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.
- 13. A balloon, which always remains spherical has a variables radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm.
- 14. Show that the tangents to the curve $y = 7x^3 = 11y = 7x^3 + 11$ at the points where x = 2 and x = -2 are parallel.
- 15. Find point on the curve $\frac{x^2}{4} + \frac{y^2}{25} = 1$ at which the tangents are
 - i. parallel to x –axis
 - ii. parallel to y axis.
- 16. Find the value(s) of x for which $y = [x(x-2)]^2$ is an increasing function.
- 17. An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when $\theta=\frac{\pi}{6}$.
- 18. A point on the hypotenuse of a right triangle is at distances a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$.

CBSE Test Paper 02

Chapter 6 Application of Derivatives

Solution

1. (a)
$$a = 1$$
, $b = -2$, $c = 1$

Explanation: $y = ax^3 + bx^2 + cx$

$$\Rightarrow \frac{dy}{dx} = 3ax^2 + 2bx + c.$$

At (0,0), slope of tangent = $\tan 45^\circ$ = 1. \Rightarrow c = 1. At (1,0), slope of tangent = 0.

$$\Rightarrow$$
 3a+2b+c=0. From this,we get ,3a+2b=-1.....(1)

Also, when x = 1, y = 0, therefore, a + b + c = 0. From this, we get, a+b=-1.....(2)

From(1) and (2), we get,

2. (a) local minima at x = 1

Explanation: Given, $f(x) = x^3 - 3x$

$$f'(x) = 3x^2 - 3$$

For point of inflexion we have f'(x) = 0

$$f'(x) = 0 \Rightarrow 3x^2 - 3 = 0 = 3(x - 1)(x + 1) \Rightarrow x = \pm 1$$

Hence, f(x) has a point of inflexion at x = 0.

When , x is slightly less than 1, f'(x) = (+)(-)(+) i.e, negative

When x is slightly greater than 1, f'(x) = (+)(+)(+) i.e, positive

Hence, f'(x) changes its sign from negative to positive as x increases through 1 and hence x = 1 is a point of local minimum.

3. (c)
$$\frac{3}{4}$$

Explanation: Given, $f(x) = x^2 + x + 1$

$$\Rightarrow$$
 f'(x) = 2x + 1

For minimum value of f(x) we have f'(x) = 0

$$\Rightarrow$$
 2x + 1 = 0 \Rightarrow x = $\frac{-1}{2}$

Now, f'(x) = 2 > 0, hence the minimum of f(x) exist at x = $\frac{-1}{2}$ and minimum value

$$=f\left(\frac{-1}{2}\right)=rac{3}{4}$$

4. (d)
$$\frac{1}{e}$$

Explanation: Consider $f(x) = \frac{logx}{x}$

Then, f(x) =
$$\frac{x \cdot \frac{1}{x} - log x \cdot 1}{x^2}$$
 = $\frac{1 - log x}{x^2}$

For maximum or minimum values of x we have f'(x) = 0

$$f'(x) = 0 \Rightarrow (1 - \log x) = 0$$

$$\Rightarrow$$
 logx = 1 \Rightarrow x = e.

Now,
$$f(x) = \frac{x^2 \cdot \frac{-1}{x} - (1 - \log x)2x}{x^4} = \left[\frac{-3 + 2\log x}{x^3}\right]$$

f''(x) at
$$at$$
 $x=e=rac{-3}{e^3}<0$

Therefore f(x) is maximum at x = e and the max. value = $\frac{loge}{e} = \frac{1}{e}$

5. (d) $3.92\pi m^3$

Explanation: Given, radius of the sphere is 7 m

Error in the measurement of radius = Δr = 0.02 m

We have volume of sphere = $V=rac{4}{3}\pi r^3$

Now,
$$dV=\left(rac{dV}{dx}
ight) riangle r=rac{4}{3}\pi.3r^2 riangle r=4\pi r^2$$
. $riangle r=4\pi imes49 imes0.02=3.92\pi$ m^3

- 6. 12
- 7. 1
- 8. $(1, \infty)$
- 9. we have, $f(x) = \cos x + \cos (\sqrt{2} x)$

using the inequality $|a+b| \leq |a| + |b|$

$$|\operatorname{f}(\operatorname{x})| = |cosx + cos\left(\sqrt{2} \ x\right)| \leq |cos \ x| + |cos\left(\sqrt{2} \ x\right)| \leq 1 + 1 = 2, \forall \ x \ inR$$

 $\sin ce - 1 \le \cos x \le 1 \Rightarrow |\cos x| \le 1$ Which is true for any given angle.

Hence, maximum value of f(x) = 2

10. Since, $f(x) = \cot^{-1} x + x$

On differentiating w.r.t x,we get

f'(x)=
$$-\frac{1}{1+x^2}+1=\frac{x^2}{1+x^2}\geq 0$$
, since for -ve values of x , the expression becomes positive since we have x².

Also when x = 0, the value is 0. And the positive values of x gives values greater than zero. Since the derivative of f(x) is non negative, f(x) is increasing function for all $x \in (-\infty, \infty)$.

11. Given: $f(x) = e^{2x}$

$$\therefore f'(x)=e^{2x}rac{d}{dx}(2x)=e^{2x}(2)=2e^{2x}>0$$
 i.e., positive for all $x\in R$

Therefore, f(x) is strictly increasing on R.

- 12. Let the side of a cube be x unit.
 - \therefore Volume of cube (V) = x^3

On differentiating both side w.r.t. t, we get

$$rac{dV}{dt}=3x^2rac{dx}{dt}=k$$
 [constant] $\Rightarrow rac{dx}{dt}=rac{k}{3x^2}$...(i)

Also, surface area of cube, $S = 6x^2$

On differentiating w.r.t. t, we get

$$egin{array}{l} rac{dS}{dt} &= 12x. \, rac{dx}{dt} \ \Rightarrow rac{dS}{dt} &= 12x. \, rac{k}{3x^2} \, ext{[using Eq. (i)]} \ \Rightarrow rac{dS}{dt} &= rac{12k}{3x} = 4 \left(rac{k}{x}
ight) \ \Rightarrow rac{dS}{dt} lpha rac{1}{x} \end{array}$$

Hence, the surface area of the cube varies inversely as the length of the side.

13. Since, $V = \frac{4}{3}\pi x^3$

$$egin{aligned} \therefore rac{dV}{dx} &= rac{d}{dt} \left(rac{4}{3}\pi r^3
ight) \ &= rac{4}{3}\pi.3r^2 = 4\pi r^2 \end{aligned}$$

At
$$x = 10$$
 cm

$$\Rightarrow \frac{dV}{dx} = 4\pi (10)^2 = 400\pi$$

Therefore, the volume is increasing at the rate of $400\pi cm^3/\sec$.

14. Given: Equation of the curve $y = 7x^3 + 11$

$$\therefore$$
 Slope of tangent at $(x,y)=rac{dy}{dx}=21x^2$

At the point x = 2, Slope of the tangent = $21(2)^2$ = $21 \times 4 = 84$

At the point x = -2, Slope of the tangent = $21(-2)^2 = 21 \times 4 = 84$

Since, the slopes of the two tangents are equal.

Therefore, tangents at x = 2 and x = -2 are parallel.

15.
$$\frac{x^2}{4} + \frac{y^2}{25} = 1$$
...(i)

Differentiate both sides w.r.t. to x

$$\frac{2x}{4} + \frac{2y}{25} \frac{dy}{dx} = 0$$

$$\frac{dy}{dx} = \frac{-25}{4} \cdot \frac{x}{y}$$

For tangent $| \cdot |$ to x – axis the slope of tangent is zero

$$\frac{0}{1} = \frac{-25x}{4y}$$

$$x = 0$$

Put x = 0 in equation (1)

$$y = \pm 5$$

Points are (0, 5) and (0, -5)

now the tangent is | | is to y – axis

$$y = 0$$

Put y = 0 in equation (1)

$$x = \pm 2$$

So points on the curve are (2,0) and (-2,0)

16. Given function is $y = [x(x-2)]^2 = [x^2 - 2x]^2$.

Therefore, on differentiating both sides w.r.t x, we get,

$$rac{dy}{dx}=2\left(x^2-2x
ight)rac{d}{dx}ig(x^2-2xig)$$

$$= 2(x^2 - 2x)(2x - 2)$$

$$=4x(x-2)(x-1)$$

Therefore, on putting $\frac{dy}{dx} = 0$, we get,

$$4x(x-2)(x-1) = 0 \Rightarrow x = 0, 1 \text{ and } 2.$$

Now, we find interval in which f(x) is strictly increasing or strictly decreasing.

Interval	f'(x) = 12x(x + 1)(x - 2)	Sign of f'(x)
(-∞,0)	(-)(-)(-)	-ve
(0, 1)	(+)(-)(-)	+ve
(1, 2)	(+)(-)(+)	-ve
(2,∞)	(+)(+)(+)	+ve

Therefore, y is strictly increasing in (0, 1) and (2, ∞).

Also, y is a polynomial function, so it continuous at x = 0, 1 and 2.

Hence, y is increasing in [0, 1] \cup [2, ∞).

17. Let ABC be an isosceles triangle inscribed in the circle with radius a such that AB = AC.

$$AD=AO+OD=a+a\cos2 heta$$
 and $BC=2BD=2a\sin2 heta$ (see fig.)

Therefore, area of the triangle ABC i.e.
$$\triangle = \frac{1}{2}BC.AD$$

$$=rac{1}{2}2a\sin2 heta.\left(a+a\cos2 heta
ight)$$

$$=a^{2}\sin 2 heta \left(1+\cos 2 heta
ight)$$

$$\Rightarrow riangle = a^2 \sin 2 heta + rac{1}{2}a^2 \sin 4 heta$$

Therefore,
$$rac{d\Delta}{d heta}=2a^2\cos2 heta+2a^2\cos4 heta$$

$$=2a^2(\cos 2 heta +\cos 4 heta)$$

$$rac{d\Delta}{d heta}=0\Rightarrow\cos2 heta=-\cos4 heta=\cos(\pi-4 heta)$$

Therefore,
$$2 heta=\pi-4 heta\Rightarrow heta=rac{\pi}{6}$$

$$rac{d^2\Delta}{d heta^2}=2a^2\left(-2\sin2 heta-4\sin4 heta
ight)<0\left(at\; heta=rac{\pi}{6}
ight)$$

Therefore, Area of triangle is maximum when $heta=rac{\pi}{\kappa}.$

18. Let P be a point on the hypotenuse AC of right-angled Δ ABC, Such that $PL \perp AB$ and PL=a and $PM \perp BC$ and PM=b.

Let
$$\angle APL = \angle ACB = \theta$$
 [say]

Then,
$$AP = a \sec \theta, PC = b \ cosec\theta$$

Let I be the length of the hypotenuse, then

$$l = AP + PC$$

$$\Rightarrow l = a \sec \theta + b \ cosec \theta, 0 < \theta < \frac{\pi}{2}$$

On differentiating both sides w.r.t. θ , we get,

$$\frac{dl}{d\theta} = a \sec \theta \tan \theta - b \csc \theta \cot \theta$$
....(i)

For maxima or minima, put $rac{dl}{d heta}=0$

$$\Rightarrow a \sec \theta \tan \theta = b \csc \theta \cot \theta$$

$$\Rightarrow \frac{a\sin\theta}{\cos^2\theta} = \frac{b\cos\theta}{\sin^2\theta}$$

$$egin{array}{ll} \Rightarrow & rac{a\sin heta}{\cos^2 heta} = rac{b\cos heta}{\sin^2 heta} \ \Rightarrow & an heta = \left(rac{b}{a}
ight)^{1/3} \end{array}$$

Again, on differentiating both sides of Eq.(i) w.r.t. θ we get

$$rac{d^{2}l}{d heta^{2}}=a\left(\sec heta imes\sec^{2} heta+ an heta imes\sec heta an heta
ight)-b\left[\left.cosec heta\left(-\left.cosec^{2} heta
ight)
ight.$$

$$+\cot\theta(-\csc\theta\cot\theta)$$
]

$$=a\sec heta\left(\sec^2 heta+ an^2 heta
ight)+b\ cosec heta\left(\ cosec^2 heta+\cot^2 heta
ight)$$

For $0< heta<rac{\pi}{2}$, all trigonometric ratios are positive

Also, a > 0 and b > 0

 $\therefore \frac{d^2l}{d\theta^2}$ is positive.

Thus, l is least when $an heta=\left(rac{b}{a}
ight)^{rac{1}{3}}$

:: Least value of,

$$egin{aligned} l &= a \sec heta + b \ cosec heta \ &= a rac{\sqrt{a^{2/3} + b^{2/3}}}{a^{1/3}} + b rac{\sqrt{a^{2/3} + b^{2/3}}}{b^{1/3}} \ &= \sqrt{a^{2/3} + b^{2/3}} \left(a^{2/3} + b^{2/3}
ight) = \left(a^{2/3} + b^{2/3}
ight)^{3/2} \ &\left[\therefore ext{in } \Delta EFG, an heta &= rac{b^{1/3}}{a^{1/3}}, ext{sec } heta &= rac{\sqrt{a^{2/3} + b^{2/3}}}{a^{1/3}} ext{and } ext{cos} \ ec heta &= rac{\sqrt{a^{2/3} + b^{2/3}}}{b^{1/3}}
ight] \end{aligned}$$