CBSE Test Paper 02

Chapter 6 Application of Derivatives

1. The curve $\mathrm{y}=a x^{3}+b x^{2}+c x$ is inclined at 45° to the X - axis at $(0,0)$ but it touches X - axis at $(1,0)$, then the values of $\mathrm{a}, \mathrm{b}, \mathrm{c}$, are given by
a. $\mathrm{a}=1, \mathrm{~b}=-2, \mathrm{c}=1$
b. $a=1, b=1, c=-2$
c. $a=-2, b=1, c=1$
d. $\mathrm{a}=-1, \mathrm{~b}=2, \mathrm{c}=1$.
2. The function $f(x)=x^{3}-3 x$ has a
a. local minima at $\mathrm{x}=1$
b. local maxima at $\mathrm{x}=1$
c. point of inflexion at 0
d. none of these
3. Minimum value of the function $f(x)=x^{2}+x+1$ is
a. none of these
b. 3
c. $\frac{3}{4}$
d. 1
4. The maximum value of $\frac{\log x}{x}$ in $0<x<\infty$ is
a. 0
b. none of these
c. -e
d. $\frac{1}{e}$
5. If the radius of a sphere is measures as 7 m with an error of 0.02 m then find the approximate error in calculating its volume.
a. None of these
b. $1.96 \pi \mathrm{~m}^{2}$
c. $2.16 \pi m^{2}$
d. $3.92 \pi \mathrm{~m}^{3}$
6. Maximum slope of the curve $y=-x^{3}+3 x^{2}+9 x-27$ is \qquad .
7. If x is real, the minimum value of $x^{2}-8 x+17$ is \qquad .
8. The function $\mathrm{f}(\mathrm{x})=\frac{2 x^{2}-1}{x^{4}}, \mathrm{x}>0$, decreases in the interval \qquad .
9. Find the maximum value of the function $f(x)=\cos x+\cos (\sqrt{2} x)$.
10. Find the interval in which the function $f(x)=\cot ^{-1} x+x$ is increasing.
11. Show that the function given by $f(x)=e^{2 x}$ is strictly increasing on R .
12. The volume of a cube increases at a constant rate. Prove that the increase in its surface area varies inversely as the length of the side.
13. A balloon, which always remains spherical has a variables radius. Find the rate at which its volume is increasing with the radius when the later is 10 cm .
14. Show that the tangents to the curve $\mathrm{y}=7 \mathrm{x}^{3}=11 y=7 x^{3}+11$ at the points where $\mathrm{x}=$ 2 and $x=-2$ are parallel.
15. Find point on the curve $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1$ at which the tangents are
i. parallel to x -axis
ii. parallel to y - axis.
16. Find the value(s) of x for which $\mathrm{y}=[\mathrm{x}(\mathrm{x}-2)]^{2}$ is an increasing function.
17. An isosceles triangle of vertical angle 2θ is inscribed in a circle of radius a. Show that the area of triangle is maximum when $\theta=\frac{\pi}{6}$.
18. A point on the hypotenuse of a right triangle is at distances a and b from the sides of the triangle. Show that the minimum length of the hypotenuse is $\left(a^{\frac{2}{3}}+b^{\frac{2}{3}}\right)^{\frac{3}{2}}$.

CBSE Test Paper 02

Chapter 6 Application of Derivatives

Solution

1. (a) $a=1, b=-2, c=1$

Explanation: $y=a x^{3}+b x^{2}+c x$
$\Rightarrow \frac{d y}{d x}=3 a x^{2}+2 b x+c$.
At $(0,0)$, slope of tangent $=\tan 45^{\circ}=1 . \Rightarrow \mathrm{c}=1$. At $(1,0)$, slope of tangent $=0$.
$\Rightarrow 3 a+2 b+c=0$. From this, we get, $3 a+2 b=-1$
Also, when $\mathrm{x}=1, \mathrm{y}=0$, therefore , $\mathrm{a}+\mathrm{b}+\mathrm{c}=0$. From this, we get, $\mathrm{a}+\mathrm{b}=-1$
From(1) and (2),we get,
$\mathrm{a}=1, \mathrm{~b}=-2$ and $\mathrm{c}=1$
2. (a) local minima at $x=1$

Explanation: Given, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-3 \mathrm{x}$
$f^{\prime}(x)=3 x^{2}-3$
For point of inflexion we have $\mathrm{f}^{\prime}(\mathrm{x})=0$
$f^{\prime}(x)=0 \Rightarrow 3 x^{2}-3=0=3(x-1)(x+1) \Rightarrow x= \pm 1$
Hence, $\mathrm{f}(\mathrm{x})$ has a point of inflexion at $\mathrm{x}=0$.
When,x is slightly less than $1, f^{\prime}(x)=(+)(-)(+)$ i.e, negative
When x is slightly greater than $1, f^{\prime}(x)=(+)(+)(+)$ i.e, positive
Hence, $\mathrm{f}^{\prime}(\mathrm{x})$ changes its sign from negative to positive as x increases through 1 and hence $x=1$ is a point of local minimum.
3. (c) $\frac{3}{4}$

Explanation: Given, $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+\mathrm{x}+1$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}+1$
For minimum value of $f(x)$ we have $f^{\prime}(x)=0$
$\Rightarrow 2 \mathrm{x}+1=0 \Rightarrow \mathrm{x}=\frac{-1}{2}$
Now, $f^{\prime}(x)=2>0$, hence the minimum of $f(x)$ exist at $x=\frac{-1}{2}$ and minimum value $=f\left(\frac{-1}{2}\right)=\frac{3}{4}$
4. (d) $\frac{1}{e}$

Explanation: Consider $\mathrm{f}(\mathrm{x})=\frac{\log x}{x}$

Then, $\mathrm{f}^{\prime}(\mathrm{x})=\frac{x \cdot \frac{1}{x}-\log x .1}{x^{2}}=\frac{1-\log x}{x^{2}}$
For maximum or minimum values of x we have $f^{\prime}(x)=0$
$\mathrm{f}^{\prime}(\mathrm{x})=0 \Rightarrow(1-\log \mathrm{x})=0$
$\Rightarrow \log \mathrm{x}=1 \Rightarrow \mathrm{x}=\mathrm{e}$.
Now, $\mathrm{f}^{\prime}(\mathrm{x})=\frac{x^{2} \cdot \frac{-1}{x}-(1-\log x) 2 x}{x^{4}}=\left[\frac{-3+2 \log x}{x^{3}}\right]$
$\mathrm{f}^{\prime}(\mathrm{x})$ at $a t \quad x=e=\frac{-3}{e^{3}}<0$
Therefore $\mathrm{f}(\mathrm{x})$ is maximum at $\mathrm{x}=\mathrm{e}$ and the max. value $=\frac{\text { loge }}{e}=\frac{1}{e}$
5. (d) $3.92 \pi m^{3}$

Explanation: Given, radius of the sphere is 7 m
Error in the measurement of radius $=\Delta r=0.02 \mathrm{~m}$
We have volume of sphere $=V=\frac{4}{3} \pi r^{3}$
Now, $d V=\left(\frac{d V}{d x}\right) \triangle r=\frac{4}{3} \pi .3 r^{2} \triangle r=4 \pi r^{2} . \triangle r$

$$
=4 \pi \times 49 \times 0.02=3.92 \pi m^{3}
$$

6. 12
7. 1
8. $(1, \infty)$
9. we have, $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}+\cos (\sqrt{2} x)$
using the inequality $|a+b| \leq|a|+|b|$
$|\mathrm{f}(\mathrm{x})|=|\cos x+\cos (\sqrt{2} x)| \leq|\cos x|+|\cos (\sqrt{2} x)| \leq 1+1=2, \forall x$ inR
$\sin c e-1 \leq \cos x \leq 1 \Rightarrow|\cos x| \leq 1$ Which is true for any given angle.
Hence, maximum value of $f(x)=2$
10. Since, $f(x)=\cot ^{-1} x+x$

On differentiating w.r.t x,we get
$\mathrm{f}^{\prime}(\mathrm{x})=-\frac{1}{1+x^{2}}+1=\frac{x^{2}}{1+x^{2}} \geq 0$, since for -ve values of x , the expression becomes
positive since we have x^{2}.
Also when $x=0$, the value is 0 . And the positive values of x gives values greater than zero. Since the derivative of $f(x)$ is non negative, $f(x)$ is increasing function for all x $\in(-\infty, \infty)$.
11. Given: $f(x)=e^{2 x}$
$\therefore f^{\prime}(x)=e^{2 x} \frac{d}{d x}(2 x)=e^{2 x}(2)=2 e^{2 x}>0$ i.e., positive for all $x \in R$
Therefore, $\mathrm{f}(\mathrm{x})$ is strictly increasing on R .
12. Let the side of a cube be x unit.
\therefore Volume of cube (V) $=\mathrm{x}^{3}$
On differentiating both side w.r.t. t, we get
$\frac{d V}{d t}=3 x^{2} \frac{d x}{d t}=k$ [constant]
$\Rightarrow \frac{d x}{d t}=\frac{k}{3 x^{2}} \ldots$ (i)
Also, surface area of cube, $S=6 x^{2}$
On differentiating w.r.t. t, we get
$\frac{d S}{d t}=12 x \cdot \frac{d x}{d t}$
$\Rightarrow \frac{d S}{d t}=12 x \cdot \frac{k}{3 x^{2}}$ [using Eq. (i)]
$\Rightarrow \frac{d S}{d t}=\frac{12 k}{3 x}=4\left(\frac{k}{x}\right)$
$\Rightarrow \frac{d S}{d t} \alpha \frac{1}{x}$
Hence, the surface area of the cube varies inversely as the length of the side.
13. Since, $V=\frac{4}{3} \pi x^{3}$
$\therefore \frac{d V}{d x}=\frac{d}{d t}\left(\frac{4}{3} \pi r^{3}\right)$
$=\frac{4}{3} \pi .3 r^{2}=4 \pi r^{2}$
At $\mathrm{x}=10 \mathrm{~cm}$
$\Rightarrow \frac{d V}{d x}=4 \pi(10)^{2}=400 \pi$
Therefore, the volume is increasing at the rate of $400 \pi \mathrm{~cm}^{3} / \mathrm{sec}$.
14. Given: Equation of the curve $\mathrm{y}=7 \mathrm{x}^{3}+11$
\therefore Slope of tangent at $(x, y)=\frac{d y}{d x}=21 x^{2}$
At the point $\mathrm{x}=2$, Slope of the tangent $=21(2)^{2}=21 \times 4=84$
At the point $x=-2$, Slope of the tangent $=21(-2)^{2}=21 \times 4=84$
Since, the slopes of the two tangents are equal.
Therefore, tangents at $\mathrm{x}=2$ and $\mathrm{x}=-2$ are parallel.
15. $\frac{x^{2}}{4}+\frac{y^{2}}{25}=1 \ldots$ (i)

Differentiate both sides w.r.t. to x
$\frac{2 x}{4}+\frac{2 y}{25} \frac{d y}{d x}=0$
$\frac{d y}{d x}=\frac{-25}{4} \cdot \frac{x}{y}$
For tangent || to x - axis the slope of tangent is zero
$\frac{0}{1}=\frac{-25 x}{4 y}$
$\mathrm{x}=0$

Put $\mathrm{x}=0$ in equation (1)
$y= \pm 5$
Points are $(0,5)$ and $(0,-5)$
now the tangent is $\|$ is to y - axis
$y=0$
Put $\mathrm{y}=0$ in equation (1)
$x= \pm 2$
So points on the curve are $(2,0)$ and $(-2,0)$
16. Given function is $y=[x(x-2)]^{2}=\left[x^{2}-2 x\right]^{2}$.

Therefore,on differentiating both sides w.r.t x , we get,
$\frac{d y}{d x}=2\left(x^{2}-2 x\right) \frac{d}{d x}\left(x^{2}-2 x\right)$
$=2\left(\mathrm{x}^{2}-2 \mathrm{x}\right)(2 \mathrm{x}-2)$
$=4 \mathrm{x}(\mathrm{x}-2)(\mathrm{x}-1)$
Therefore, on putting $\frac{d y}{d x}=0$, we get,
$4 \mathrm{x}(\mathrm{x}-2)(\mathrm{x}-1)=0 \Rightarrow \mathrm{x}=0,1$ and 2 .
Now, we find interval in which $f(x)$ is strictly increasing or strictly decreasing.

Interval	$\mathbf{f}^{\prime}(\mathbf{x})=\mathbf{1 2 x}(\mathbf{x}+\mathbf{1})(\mathbf{x}-\mathbf{2)}$	Sign of $\mathbf{f}^{\prime}(\mathbf{x})$
$(-\infty, 0)$	$(-)(-)(-)$	-ve
$(0,1)$	$(+)(-)(-)$	+ve
$(1,2)$	$(+)(-)(+)$	-ve
$(2, \infty)$	$(+)(+)(+)$	+ve

Therefore, y is strictly increasing in $(0,1)$ and $(2, \infty)$.
Also, y is a polynomial function, so it continuous at $\mathrm{x}=0,1$ and 2 .
Hence, y is increasing in $[0,1] \cup[2, \infty)$.
17. Let ABC be an isosceles triangle inscribed in the circle with radius a such that $\mathrm{AB}=\mathrm{AC}$.
$A D=A O+O D=a+a \cos 2 \theta$ and $B C=2 B D=2 a \sin 2 \theta$ (see fig.)

Therefore, area of the triangle ABC i.e. $\triangle=\frac{1}{2} B C . A D$
$=\frac{1}{2} 2 a \sin 2 \theta \cdot(a+a \cos 2 \theta)$
$=a^{2} \sin 2 \theta(1+\cos 2 \theta)$
$\Rightarrow \triangle=a^{2} \sin 2 \theta+\frac{1}{2} a^{2} \sin 4 \theta$
Therefore, $\frac{d \Delta}{d \theta}=2 a^{2} \cos 2 \theta+2 a^{2} \cos 4 \theta$
$=2 a^{2}(\cos 2 \theta+\cos 4 \theta)$
$\frac{d \Delta}{d \theta}=0 \Rightarrow \cos 2 \theta=-\cos 4 \theta=\cos (\pi-4 \theta)$
Therefore, $2 \theta=\pi-4 \theta \Rightarrow \theta=\frac{\pi}{6}$
$\frac{d^{2} \Delta}{d \theta^{2}}=2 a^{2}(-2 \sin 2 \theta-4 \sin 4 \theta)<0\left(\right.$ at $\left.\theta=\frac{\pi}{6}\right)$
Therefore, Area of triangle is maximum when $\theta=\frac{\pi}{6}$.
18. Let P be a point on the hypotenuse AC of right-angled $\triangle \mathrm{ABC}$, Such that $P L \perp A B$ and $\mathrm{PL}=\mathrm{a}$ and $P M \perp B C$ and $\mathrm{PM}=\mathrm{b}$.
Let $\angle A P L=\angle A C B=\theta$ [say]
Then, $A P=a \sec \theta, P C=b \operatorname{cosec} \theta$
Let l be the length of the hypotenuse, then
$\mathrm{l}=\mathrm{AP}+\mathrm{PC}$
$\Rightarrow l=a \sec \theta+b \operatorname{cosec} \theta, 0<\theta<\frac{\pi}{2}$
On differentiating both sides w.r.t. θ, we get,
$\frac{d l}{d \theta}=a \sec \theta \tan \theta-b \operatorname{cosec} \theta \cot \theta$.
For maxima or minima, put $\frac{d l}{d \theta}=0$
$\Rightarrow a \sec \theta \tan \theta=b \operatorname{cosec} \theta \cot \theta$
$\Rightarrow \quad \frac{a \sin \theta}{\cos ^{2} \theta}=\frac{b \cos \theta}{\sin ^{2} \theta}$
$\Rightarrow \quad \tan \theta=\left(\frac{b}{a}\right)^{1 / 3}$

Again, on differentiating both sides of Eq.(i) w.r.t. θ we get
$\frac{d^{2} l}{d \theta^{2}}=a\left(\sec \theta \times \sec ^{2} \theta+\tan \theta \times \sec \theta \tan \theta\right)-b\left[\operatorname{cosec} \theta\left(-\operatorname{cosec}^{2} \theta\right)\right.$
$+\cot \theta(-\operatorname{cosec} \theta \cot \theta)]$
$=a \sec \theta\left(\sec ^{2} \theta+\tan ^{2} \theta\right)+b \operatorname{cosec} \theta\left(\operatorname{cosec}^{2} \theta+\cot ^{2} \theta\right)$

For $0<\theta<\frac{\pi}{2}$, all trigonometric ratios are positive
Also, $\mathrm{a}>0$ and $\mathrm{b}>0$
$\because \frac{d^{2} l}{d \theta^{2}}$ is positive.
Thus, l is least when $\tan \theta=\left(\frac{b}{a}\right)^{\frac{1}{3}}$

\because Least value of,
$l=a \sec \theta+b \operatorname{cosec} \theta$
$=a \frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{a^{1 / 3}}+b \frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{b^{1 / 3}}$
$=\sqrt{a^{2 / 3}+b^{2 / 3}}\left(a^{2 / 3}+b^{2 / 3}\right)=\left(a^{2 / 3}+b^{2 / 3}\right)^{3 / 2}$
$\left[\therefore\right.$ in $\Delta E F G, \tan \theta=\frac{b^{1 / 3}}{a^{1 / 3}}, \sec \theta=\frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{a^{1 / 3}}$ and $\left.\operatorname{cosec} \theta=\frac{\sqrt{a^{2 / 3}+b^{2 / 3}}}{b^{1 / 3}}\right]$

