CBSE Test Paper 01

Chapter 6 Application of Derivatives

1. The instantaneous rate of change at $t=1$ for the function $f(t)=t e^{-t}+9$ is
a. 2
b. 9
c. -1
d. -0
2. The function $f(x)=x^{2}$, for all real x, is
a. Neither decreasing nor increasing
b. Increasing
c. Decreasing
d. None of these
3. The slope of the tangent to the curve $\mathrm{x}=\mathrm{a} \sin \mathrm{t}, \mathrm{y}=\mathrm{a}\left\{\cos t+\log \left(\tan \frac{t}{2}\right)\right\}$ at the point ' t ' is
a. $\tan \frac{t}{2}$
b. none of these
c. $\tan t$
d. $\cot t$
4. The function $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2 \mathrm{x}$ is strict decreasing in the interval
a. none of these
b. R
c. $[1, \infty)$
d. $(-\infty, 1)$
5. The equation of the tangent to the curve $y^{2}=4 a x$ at the point $\left(a t^{2}, 2 a t\right)$ is
a. $t y=x+a t^{2}$
b. none of these
c. $t x+y=a t^{3}$
d. $t y=x-a t^{2}$
6. The maximum value of $\left(\frac{1}{x}\right)^{x}$ is \qquad .
7. The minimum value of f if $f(x)=\sin x$ in $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$ is \qquad .
8. The equation of normal to the curve $y=\tan x$ at $(0,0)$ is \qquad .
9. Find the approximate value of $f(3.02)$ where $f(x)=3 x^{2}+5 x+3$.
10. If the line $a x+b y+c=0$ is a normal to the curve $x y=1$, then show that either $a>0, b<0$ or $\mathrm{a}<0, \mathrm{~b}>0$
11. Find the interval in which the function $f(x)=x^{2} e^{-x}$ is increasing.
12. The volume of a sphere is increasing at the rate of 3 cubic centimeter per second. Find the rate of increase of its surface area, when the radius is 2 cm .
13. Find the approximate value of $(1.999)^{5}$.
14. Show that the function $f(x)=4 x^{3}-18 x^{2}+27 x-7$ is always increasing on R.
15. Show that the height of the cylinder of maximum volume that can be inscribed in a sphere of radius a is $\frac{2 a}{\sqrt{3}}$.
16. A particle moves along the curve $6 y=x^{3}+2$. Find the points on the curve at which the y -coordinate is changing 8 times as fast as the x - coordinate.
17. Find the equation of tangent to the curve $y=\frac{x-7}{x^{2}-5 x+6}$ at the point, where it cuts the X -axis.
18. Show that semi - vertical angle of right circular cone of given surface area and maximum volume is $\sin ^{-1}\left(\frac{1}{3}\right)$.

CBSE Test Paper 01

Chapter 6 Application of Derivatives

Solution

1. (d) 0, Explanation: $f^{\prime}(t)=t e^{-t}(-1)+e^{-t} \Rightarrow f^{\prime}(1)=-e^{-1}+e^{-1}=0$
2. (a) Neither decreasing nor increasing, Explanation: $f(x)=x^{2}$
$\Rightarrow f^{\prime}(x)=2 x$ for all x in R.
Since $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}>0$ for $\mathrm{x}>0$, and $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}<0$ for $\mathrm{x}<0$, therefore on R, f is neither increasing nor decreasing. Infact, f is strict increasing on $[0, \infty)$ and strict decreasing on $(-\infty, 0]$.
3. (d) cot t, Explanation: Given, $x=a \sin t, y=a\left\{\cos t+\log \left(\tan \frac{t}{2}\right)\right\}$
$d x d t=a \cos t, \frac{d y}{d t}=a\left[-\sin t+\frac{1}{\tan \frac{t}{2}} \cdot \sec ^{2} \frac{t}{2} \cdot \frac{1}{2}\right]=a\left[-\sin t+\frac{1}{2 \sin \frac{t}{2} \cdot \cos \frac{t}{2}}\right]$
$=a\left[-\sin t+\frac{1}{\sin t}\right]=a \frac{\cos ^{2} t}{\sin t}$
Slope of the tangent $=\frac{d y}{d x}=\frac{\frac{d y}{d t}}{\frac{d x}{d t}}=\frac{a \frac{\cos ^{2} t}{\operatorname{sint}}}{a \cos t}=\cot t$
4. (d) $(-\infty, 1)$, Explanation: $\mathrm{f}^{\prime}(\mathrm{x})=2 \mathrm{x}-2=2(\mathrm{x}-1)<0$ if $\mathrm{x}<1$ i.e. $\mathrm{x} x \in(-\infty, 1)$. Hence f is strict decreasing in $(-\infty, 1)$
5. (a) ty $=\mathrm{x}+\mathrm{at}^{2}$, Explanation: $y^{2}=4 a x$
$\Rightarrow 2 y \frac{d y}{d x}=4 a$
$\Rightarrow \frac{d y}{d x}=\frac{2 a}{y}$
$\Rightarrow \frac{d y}{d x}$ at $\left(a t^{2}, 2 a t\right)$ is $\frac{2 a}{2 a t}=\frac{1}{t}$
\Rightarrow Slope of tangent $=m=\frac{1}{t}$
Hence, equation of tangent is $y-y_{1}=m\left(x-x_{1}\right)$
$\Rightarrow y-2 a t=\frac{1}{t}\left(x-a t^{2}\right)$
$\Rightarrow y t-2 a t^{2}=x-a t^{2}$
$\Rightarrow y t=x+a t^{2}$
6. $e^{\frac{1}{e}}$
7. -1
8. $x+y=0$
9. $x=3, \Delta x=0.02$

$$
f(x+\Delta x)=f(x)+f^{\prime}(x) \Delta x
$$

$f(x+\Delta x)=\left(3 x^{2}+5 x+3\right)+(6 x+5) \times 0.02$
Put $x=3, \Delta x=0.02$
$\mathrm{f}(3.02)=\{3(9)+5(3)+3\}+\{6(3)+5\} \times 0.02=45+0.46$
$\mathrm{f}(3.02)=45.46$
10. we have, $x y=1$
$\Rightarrow y=\frac{1}{x}$
$\therefore \frac{d y}{d x}=-\frac{1}{x^{2}}$
The slope of the normal $=x^{2}$
If $\mathrm{ax}+\mathrm{by}+\mathrm{c}=0$ is normal to the curve $\mathrm{xy}=1$, then
$x^{2}=-\frac{a}{b}\left[\because\right.$ slope of normal $\left.=-\frac{\text { coeff. of } x}{\text { coeff.of } y}\right]$
$\therefore-\frac{a}{b}>0$
$\Rightarrow a>0, b<0$ or $a<0, b>0$
11. $f(x)=x^{2} e^{-x}$

Differentiating w.r.t x , we get,
$\mathrm{f}^{\prime}(\mathrm{x})=-x^{2} e^{-x}+2 x e^{-x}=x e^{-x}(2-x)$
For increasing function, $\mathrm{f}^{\prime}(\mathrm{x}) \geq 0$
$x e^{-x}(2-x) \geq 0$
$x(2-x) \geq 0\left[\because e^{-x}\right.$ is always positive $]$
$x(x-2) \leq 0$ [since $-(\mathrm{x}-2)$ will change the inequality)
Here $\mathrm{x}<0 \&(\mathrm{x}-2)>0 \Rightarrow \mathrm{x}<0 \& \mathrm{x}>2 \Rightarrow 0<\mathrm{x}<2$
But when $\mathrm{x}>0$ \& $(\mathrm{x}-2)<0 \Rightarrow \mathrm{x}>0 \& \mathrm{x}<2$
$0 \leq x \leq 2$
12. Let r be the radius of sphere and V be its volume.

Then $\mathrm{V}=\frac{4}{3} \pi r^{3}$.
Given, $\frac{d V}{d t}=3 \mathrm{~cm}^{3} / \mathrm{s}$
Differentiating (i) both sides w.r.t x,we get,
$\frac{d V}{d t}=\frac{4}{3} \pi\left(3 r^{2}\right) \frac{d r}{d t}$
$\Rightarrow \quad 3=\frac{4}{3}\left(3 \pi r^{2}\right) \frac{d r}{d t}$
$\Rightarrow \quad \frac{d r}{d t}=\frac{3}{4 \pi r^{2}}$.
Now, let S be the surface area of sphere, then $S=4 \pi r^{2}$
$\Rightarrow \quad \frac{d S}{d t}=4 \pi(2 r) \frac{d r}{d t}$
$\Rightarrow \quad \frac{d S}{d t}=8 \pi r\left(\frac{3}{4 \pi r^{2}}\right)$ [using Eq.(ii)]
$\Rightarrow \quad\left(\frac{d S}{d t}\right)=\frac{6}{r}$
when $\mathrm{r}=2$, then $\frac{d S}{d t}=\frac{6}{2}=3 \mathrm{~cm}^{2} / \mathrm{s}$
Therefore, the rate of inrcrease of the surface area of sphere is $3 \mathrm{~cm}^{2} / \mathrm{s}$ when it's radius is 2 cm
13. Let $\mathrm{x}=2$
and $\Delta x=-0.001[\because 2-0.001=1.999]$
let $y=x^{5}$
On differentiating both sides w.r.t. x, we get
$\frac{d y}{d x}=5 x^{4}$
Now, $\Delta y=\frac{d y}{d x} . \Delta x=5 x^{4} \times \Delta x$
$=5 \times 2^{4} \times[-0.001]$
$=-80 \times 0.001=-0.080$
$\therefore(1.999)^{5}=y+\Delta y$
$=2^{5}+(-0.080)$
$=32-0.080=31.920$
14. Here, $f(x)=4 x^{3}-18 x^{2}+27 x-7$

On differentiating both sides w.r.t. x, we get
$f^{\prime}(x)=12 x^{2}-36 x+27$
$\Rightarrow f^{\prime}(x)=3\left(4 x^{2}-12+9\right)$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x})=3(\mathrm{x}-3)^{2}$
$\Rightarrow \mathrm{f}^{\prime}(\mathrm{x}) \geq 0$
Since, a perfect square number cannot be negative]
\therefore Given function $\mathrm{f}(\mathrm{x})$ is an increasing function on R .
15.

$v=\pi r^{2} .2 x\left[\begin{array}{l}\because O L=x \\ L M=2 x\end{array}\right]$
$=\pi \cdot\left(a^{2}-x^{2}\right) .2 x$
$V=2 \pi\left(a^{2} x-x^{3}\right)$

```
\(\frac{d v}{d x}=2 \pi\left(a^{2}-3 x^{2}\right)\)
\(\frac{d^{2} v}{d x^{2}}=2 \pi[0-6 x]\)
\(=-12 \pi x\)
```

For maximum/minimum
$\frac{d v}{d x}=0$
$2 \pi\left[a^{2}-3 x^{2}\right]=0$
$a^{2}=3 x^{2} \Rightarrow \sqrt{\frac{a^{2}}{3}}=x$
$\Rightarrow x=\frac{a}{\sqrt{3}}$
$\left.\frac{d^{2} v}{d x^{2}}\right]_{x=\frac{a}{\sqrt{3}}}=-12 \pi \cdot \frac{a}{\sqrt{3}}$
= - tive maximum
Volume is maximum at $x=\frac{a}{\sqrt{3}}$
Height of cylinder of maximum volume is
$=2 \mathrm{x}$
$=2 \times \frac{a}{\sqrt{3}}$
$=\frac{2 a}{\sqrt{3}}$
16. Given curve is $6 \mathrm{y}=\mathrm{x}^{3}+2 \ldots$ (i)
so, $6 \frac{d y}{d t}=3 x^{2} \frac{d x}{d t}$
$\Rightarrow 6 \times 8 \frac{d x}{d t}=3 x^{2} \frac{d x}{d t}\left[\because \frac{d y}{d t}=8 \frac{d x}{d t}\right]$
$\Rightarrow 16=x^{2}$
$\Rightarrow x= \pm 4$
Put the value of x in equation (1)
When $\mathrm{x}=4$
$6 y=(4)^{3}+2$
$\Rightarrow 6 \mathrm{y}=64+2$
$\Rightarrow 6 y=66$
$\therefore y=\frac{66}{6}=11$
So, point is $(4,11)$
Now, When $\mathrm{x}=-4$
$6 y=(-4)^{3}+2$
$=-64+2$
$\therefore y=\frac{-62}{6}=\frac{-31}{3}$
So the point is $\left(-4, \frac{-31}{3}\right)$
17. Given equation of curve is
$y=\frac{x-7}{x^{2}-5 x+6}$
On differentiating both sides w.r.t. x, we get
$\frac{d y}{d x}=\frac{\left(x^{2}-5 x+6\right) \cdot 1-(x-7)(2 x-5)}{\left(x^{2}-5 x+6\right)^{2}}\left[\because \frac{d}{d x}\left(\frac{u}{v}\right)=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}\right]$
$\Rightarrow \frac{d y}{d x}=\frac{\left[\left(x^{2}-5 x+6\right)-y\left(x^{2}-5 x+6\right)(2 x+5)\right]}{\left(x^{2}-5 x+6\right)^{2}}$
$\Rightarrow \frac{d y}{d x}=\frac{1-(2 x-5) y}{x^{2}-5 x+6}$ [dividing numerator and denominator by $\mathrm{x}^{2}-5 \mathrm{x}+6$]
Also, given that curve cuts X -axis, so its y -coordinate is zero.
Put $\mathrm{y}=0$ in Eq. (i), we get
$\frac{x-7}{x^{2}-5 x+6}=0$
$\Rightarrow \mathrm{x}=7$
So, curve passes through the point $(7,0)$.
Now, slope of tangent at $(7,0)$ is
$m=\left(\frac{d y}{d x}\right)_{(2,0)}=\frac{1-0}{49-35+6}=\frac{1}{20}$
Hence, the required equation of tangent passing through the point $(7,0)$ having slope $1 / 20$ is
$\mathrm{y}-0=\frac{1}{20}(\mathrm{x}-7)$
$\Rightarrow 20 \mathrm{y}=\mathrm{x}-7$
$\therefore \mathrm{x}-20 \mathrm{y}=7$
18.

$s=\pi r^{2}+\pi r l$ (given)
$\Rightarrow l=\frac{s-\pi r^{2}}{\pi r}$
Let v be the volume
$v=\frac{1}{3} \pi r^{2} h$
$\Rightarrow v^{2}=\frac{1}{9} \pi^{2} r^{4} h^{2}\left[h^{2}=l^{2}-r^{2}\right]$
$\Rightarrow v^{2}=\frac{1}{9} \pi^{2} r^{4}\left(l^{2}-r^{2}\right)$
$\Rightarrow v^{2}=\frac{1}{9} \pi^{2} r^{4}\left[\left(\frac{s-\pi r^{2}}{\pi r}\right)^{2}-r^{2}\right]$
$=\frac{1}{9} \pi^{2} r^{4}\left[\frac{\left(s-\pi r^{2}\right)^{2}}{\pi^{2} r^{2}}-\frac{r^{2}}{1}\right]$
$=\frac{1}{9} r^{2}\left[\left(s-\pi r^{2}\right)^{2}-\pi^{2} r^{4}\right]$
$=\frac{1}{9} r^{2}\left[s^{2}+\pi^{2} r^{4}-2 s \pi r^{2}-\pi^{2} r^{4}\right]$
$=\frac{1}{9} r^{2}\left[s^{2}-2 s \pi r^{2}\right]$
$z=\frac{1}{9}\left[s^{2} r^{2}-2 s \pi r^{4}\right]$
$\left[\because v^{2}=z\right]$
Now $\frac{d z}{d r}=\frac{1}{9}\left[2 r s^{2}-8 s \pi r^{3}\right]$
$0=\frac{1}{9}\left[2 r s^{2}-8 s \pi r^{3}\right]$
$8 s \pi r^{2}=2 r s^{2}$
$\Longrightarrow 4 \pi r^{2}=s$
Now $\frac{d^{2} z}{d x^{2}}=\frac{1}{9}\left[2 s^{2}-24 s \pi r^{2}\right]$
$\left.\frac{d^{2} z}{d x^{2}}\right]_{r^{2}=\frac{s}{4 \pi}}=\frac{1}{9}\left[25^{2}-24 \pi \cdot \frac{5}{4 \pi}\right]$
$=+\mathrm{ve}$
Hence minimum
Now $s=4 \pi r^{2}$
We have $s=\pi r l+\pi r^{2}$
$4 \pi r^{2}=\pi r l+\pi r^{2}$
$\Rightarrow 3 \pi r^{2}=\pi r l$
$\Rightarrow 3 \mathrm{r}=1$
$\Rightarrow \frac{r}{l}=\frac{1}{3}$
$\Rightarrow \sin \alpha=\frac{1}{3}$
$\therefore \alpha=\sin ^{-1}\left(\frac{1}{3}\right)$

