CBSE Test Paper 02

Chapter 5 Continuity and Differentiability

1. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos x}{x^{2}}$ is equal to
a. 1
b. -1
c. $\frac{1}{2}$
d. 0
2. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{r}e^{1 / x}, x<0 \\ x, x \geqslant 0\end{array}\right.$, then $\operatorname{Lt}_{x \rightarrow 0} f(x)$.
a. does not exist
b. is equal to 0
c. is equal to non - zero real number
d. None of these
3. Let f and g be differentiable functions such that $\mathrm{fog}=\mathrm{I}$, the identity function. If $\mathrm{g}^{\prime}(\mathrm{a})=2$ and $g(a)=b$, then $f^{\prime}(b)=$.
a. -2
b. None of these
c. 2
d. $\frac{1}{2}$
4. $\frac{d^{4}}{d x^{4}}\left(\sin ^{3} x\right)$ is equal to
a. $\frac{3}{4} \cos x-\frac{3^{4} \cos 3 x}{4}$
b. None of these
c. $\frac{3 \sin x-3^{4} \sin 3 x}{4}$
d. $\frac{3}{4} \sin x-\frac{3^{4} \cos 3 x}{4}$
5. The differential coefficient of $\log (|\log x|)$ w.r.t. $\log x$ is
a. $\frac{1}{x|\log x|}$
b. $\frac{1}{x \log x}$
c. None of these
d. $\frac{1}{\log x}$
6. The value of c in Rolle's Theorem for the function $\mathrm{f}(\mathrm{x})=\mathrm{e}^{\mathrm{x}} \sin \mathrm{x}, \mathrm{x} \in[0, \pi]$ is \qquad .
7. The set of points where the functions f given by $f(x)=|x-3| \cos x$ is differentiable is
\qquad .
8. The derivative of $\log _{10} \mathrm{x}$ w.r.t. x is \qquad .
9. Differentiate the following function with respect to $\mathrm{x}: \sin (a x+b)$.
10. Differentiate the following function with respect to $\mathrm{x}: \cos \left(\log \mathrm{x}+\mathrm{e}^{\mathrm{x}}\right), \mathrm{x}>0$.
11. Find $\frac{d y}{d x}$ if $y=\frac{\sin (a x+b)}{\cos (c x+d)}$.
12. If $x=a \sec ^{3} \theta$ and $y=a \tan ^{3} \theta$, find $\frac{d y}{d x}$ at $\theta=\frac{\pi}{3}$.
13. Find $\frac{d y}{d x}$, if $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$.
14. Examine the continuity of the function $f(x)=x^{3}+2 x^{2}-1$ at $\mathrm{x}=1$.
15. Find the value of k so that the function f is continuous at the indicated point:

$$
f(x)=\left\{\begin{array}{c}
\frac{1-\cos k x}{x \sin x}, \text { if } x \neq 0 \\
\frac{1}{2}, \text { if } x=0
\end{array} \text { at } \mathrm{x}=0 .\right.
$$

16. If $\mathrm{y}=\left(x+\sqrt{1+x^{2}}\right)^{n}$, then show that $\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=n^{2} y$.
17. If $y^{x}=e^{y-x}$ prove that $\frac{d y}{d x}=\frac{(1+\log y)^{2}}{\log y}$.
18. Find $\frac{d y}{d x}$, if $y=(x \cos x)^{x}+(x \sin x)^{\frac{1}{x}}$.

CBSE Test Paper 02

Chapter 5 Continuity and Differentiability

Solution

1. c. $\frac{1}{2}$, Explanation: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x^{2}}=\lim _{x \rightarrow 0} \frac{\sin x}{2 x}=\frac{1}{2}$ (Using L'hospital Rule).
2. b. is equal to 0, Explanation: $\lim _{x \rightarrow 0^{-}} f(x)=\lim _{x \rightarrow 0^{-}} e^{\frac{1}{x}}=0$

$$
\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{+}} x=0 \therefore \lim _{x \rightarrow 0} f(x)=0
$$

3. d. $\frac{1}{2}$, Explanation: $(f o g)^{\prime}(x)=1 \forall x$

$$
\begin{aligned}
& \Rightarrow(f o g)^{\prime}(a)=1 \\
& \Rightarrow f^{\prime}(g(a)) g^{\prime}(a)=1 \\
& \Rightarrow f^{\prime}(b) g^{\prime}(a)=\frac{1}{2}
\end{aligned}
$$

4. c. $\frac{3 \sin x-3^{4} \sin 3 x}{4}$, Explanation: $\frac{d}{d x}\left(\sin ^{3} x\right)=3 \sin ^{2} x \cos x$

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}}\left(\sin ^{3} x\right)=\frac{d}{d x}\left(3 \sin ^{2} x \cos x\right)=6 \sin x \cos ^{2} x-3 \sin ^{3} x \\
& \frac{d^{3}}{d x^{3}}\left(\sin ^{3} x\right)=\frac{d}{d x}\left(6 \sin ^{2} x \cos ^{2} x-3 \sin ^{3} x\right) \\
& =6 \cos ^{3} x-12 \sin ^{2} x \cos x-9 \sin ^{2} x \cos x=6 \cos ^{3} x-21 \sin ^{2} x \cos x \\
& \frac{d^{4}}{d x^{4}}\left(\sin ^{3} x\right)=\frac{d}{d x}\left(6 \cos ^{3} x-21 \sin ^{2} x \cos x\right) \\
& =-18 \cos ^{2} x \sin x-42 \sin x \cos ^{2} x+21 \sin ^{3} x \\
& =60 \sin x \cos ^{2} x+21 \sin ^{3} x=-60 \sin x\left(1-\sin ^{2} x\right)+21 \sin ^{3} x \\
& =-60 \sin x+60 \sin ^{3} x+21 \sin ^{3} x=-60 \sin x+81 \sin ^{3} x \\
& =-60 \sin x+81\left[\frac{3 \sin x-\sin 3 x}{4}\right]=\frac{3 \sin z-3^{4} \sin 3 z}{4}
\end{aligned}
$$

5. d. $\frac{1}{\log x}$, Explanation: Let $\mathrm{y}=\log (|\log \mathrm{x}|)$ and $\mathrm{z}=\log \mathrm{x}$, then , we have;

$$
\frac{d y}{d z}=\frac{\frac{d y}{d x}}{\frac{d z}{d x}}=\left(\frac{1}{\log x} \cdot \frac{1}{x}\right) /\left(\frac{1}{x}\right) \Rightarrow \frac{1}{\log x}
$$

6. $\frac{3 \pi}{4}$
7. $\mathrm{R}-\{3\}$
8. $\left(\log _{10} \mathrm{e}\right) \frac{1}{x}$
9. Let $y=\sin (a x+b)$

$$
\begin{aligned}
& \therefore \frac{d y}{d x}=\cos (a x+b) \frac{d}{d x}(a x+b) \\
& =\cos (a x+b)(a+0)
\end{aligned}
$$

$=a \cos (a x+b)$
10. Let $\mathrm{y}=\cos \left(\log \mathrm{x}+\mathrm{e}^{\mathrm{x}}\right)$
$\therefore \frac{d y}{d x}=-\sin \left(\log x+e^{x}\right) \frac{d}{d x}\left(\log x+e^{x}\right)$
$=-\sin \left(\log x+e^{x}\right) \cdot\left(\frac{1}{x}+e^{x}\right)$
11. $y=\frac{\sin (a x+b)}{\cos (c x+d)}$
$\frac{d y}{d x}=\frac{\cos (c x+d) \frac{d}{d x} \sin (a x+b)-\sin (a x+b) \frac{d}{d x} \cos (c x+d)}{\cos ^{2}(c x+d)}$
$\frac{d y}{d x}=\frac{\cos (c x+d) \cos (a x+b) \cdot a+\sin (a x+b) \sin (c x+d) \cdot c}{\cos ^{2}(c x+d)}$
12. We have $x=a \sec ^{3} \theta$ and $y=a \tan ^{3} \theta$

Differentiating w.r.t. θ, we get
$\frac{d x}{d \theta}=3 a \sec ^{2} \theta \frac{d}{d \theta}(\sec \theta)=3 a \sec ^{3} \theta \tan \theta$
and $\frac{d y}{d \theta}=3 a \tan ^{2} \theta \frac{d}{d \theta}(\tan \theta)=3 a \tan ^{2} \theta \sec ^{2} \theta$
Thus $\frac{d y}{d x}=\frac{\frac{d y}{d \theta}}{\frac{d x}{d \theta}}=\frac{3 a \tan ^{2} \theta \sec ^{2} \theta}{3 a \sec ^{3} \theta \tan \theta}=\frac{\tan \theta}{\sec \theta}=\sin \theta$
Hence, $\left(\frac{d y}{d x}\right)_{\text {at } \theta=\frac{\pi}{3}}^{d \theta}=\sin \frac{\pi}{3}=\frac{\sqrt{3}}{2}$
13. Given: $y=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$

To simplify the given Inverse Trigonometric function, we put, $x=\tan \theta$
$\Rightarrow y=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)=\sin ^{-1}(\sin 2 \theta)=2 \theta$
$\Rightarrow y=2 \tan ^{-1} x$
$\Rightarrow \frac{d y}{d x}=2 \cdot \frac{1}{1+x^{2}}=\frac{2}{1+x^{2}}$
14. We have, $f(x)=x^{3}+2 x^{2}-1$ at $\mathrm{x}=1$
$\therefore \lim _{x \rightarrow 1^{+}} f(x)=\lim _{h \rightarrow 0}(1+h)^{3}+2(1+h)^{2}-1=2$
and $\lim _{x \rightarrow 1^{-}} f(x)=\lim _{h \rightarrow 0}(1-h)^{3}+2(1-h)^{2}-1=2$
$\therefore \lim _{x \rightarrow 1^{+}} f(x)=\lim _{x \rightarrow 1^{-}} f(x)$ and $f(1)=1+2-1=2$
So, $\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=1$.
15. We have, $f(x)=\left\{\begin{array}{c}\frac{1-\cos k x}{x \sin x}, \text { if } x \neq 0 \\ \frac{1}{2}, \text { if } x=0\end{array}\right.$

At $\mathrm{x}=0, L H L=\lim _{x \rightarrow 0^{-}} \frac{1-\cos k x}{x \sin x}=\lim _{h \rightarrow 0} \frac{1-\cos k(0-h)}{(0-h) \sin (0-h)}$
$=\lim _{h \rightarrow 0} \frac{1-\cos (-k h)}{-h \sin (-h)}$
$=\lim _{h \rightarrow 0} \frac{1-\cos k h}{h \sin h}[\because \cos (-\theta)=\cos \theta, \sin (-\theta)=-\sin \theta]$
$=\lim _{h \rightarrow 0} \frac{1-1+2 \sin ^{2} \frac{k h}{2}}{h \sin h}\left[\because \cos \theta=1-2 \sin ^{2} \frac{\theta}{2}\right]$
$=\lim _{h \rightarrow 0} \frac{2 \sin ^{2} \frac{k h}{2}}{h \sin h}$
$=\lim _{h \rightarrow 0} \frac{2 \sin \frac{k h}{2}}{\frac{k h}{2}} \cdot \frac{\sin \frac{k h}{2}}{\frac{k h}{2}} \cdot \frac{1}{\frac{\sin h}{h}} \cdot \frac{k^{2} h / 4}{h}$
$=\frac{2 k^{2}}{4}=\frac{k^{2}}{2}\left[\because \lim _{h \rightarrow 0} \frac{\sinh }{h}=1\right]$
Also, $f(0)=\frac{1}{2} \Rightarrow \frac{k^{2}}{2}=\frac{1}{2} \Rightarrow k= \pm 1$
16. According to the question, $\mathrm{y}=\left(x+\sqrt{1+x^{2}}\right)^{n}$

Differentiating both sides w.r.t x,
$\Rightarrow \frac{d y}{d x}=n\left(x+\sqrt{1+x^{2}}\right)^{n-1}\left(1+\frac{2 x}{2 \sqrt{1+x^{2}}}\right)$ [Using chain rule of derivative]
$\Rightarrow \quad \frac{d y}{d x}=n\left(x+\sqrt{1+x^{2}}\right)^{n-1}\left(\frac{x+\sqrt{1+x^{2}}}{\sqrt{1+x^{2}}}\right)$
$\Rightarrow \quad \frac{d y}{d x}=\frac{n\left(x+\sqrt{1+x^{2}}\right)^{n}}{\sqrt{1+x^{2}}}$
$\Rightarrow \quad \frac{d y}{d x}=\frac{n y}{\sqrt{1+x^{2}}}$ [From Equation(i)]
$\Rightarrow \sqrt{1+x^{2}} \frac{d y}{d x}=n y$
Differentiating both sides w.r.t x again,
$\Rightarrow \sqrt{1+x^{2}} \frac{d^{2} y}{d x^{2}}+\frac{2 x}{2 \sqrt{1+x^{2}}} \cdot \frac{d y}{d x}=n \frac{d y}{d x}$
$\Rightarrow\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=n \cdot \sqrt{1+x^{2}} \frac{d y}{d x}$ [multiplying both sides by $\sqrt{1+x^{2}}$]
$\Rightarrow\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=n \sqrt{1+x^{2}} \cdot \frac{n y}{\sqrt{1+x^{2}}}$ [From Equation(ii)]
$\therefore\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}=n^{2} y$ Hence Proved
17. We have, $y^{x}=e^{y-x}$
$\Rightarrow \log y^{x}=\log e^{y-x}$
$\Rightarrow x \log y=(y-x) \cdot \log e=(y-x)[\because \log e=1]$
$\Rightarrow \log y=\frac{(y-x)}{x}$
Now, differentiating w.r.t. x , we get
$\frac{d}{d x} \log y \cdot \frac{d y}{d x}=\frac{d}{d x} \frac{(y-x)}{x}$
$\Rightarrow \frac{1}{y} \cdot \frac{d y}{d x}=\frac{x \cdot \frac{d}{d x}(y-x)-(y-x) \cdot \frac{d}{d x} \cdot x}{x^{2}}$
$\Rightarrow \frac{1}{y} \frac{d y}{d x}=\frac{x\left(\frac{d y}{d x}-1\right)-(y-x)}{x^{2}}$
$\Rightarrow \frac{x^{2}}{y} \cdot \frac{d y}{d x}=x \frac{d y}{d x}-x-y+x$
$\Rightarrow \frac{d y}{d x}\left(\frac{x^{2}}{y}-x\right)=-y$
$\therefore \frac{d y}{d x}=\frac{-y^{2}}{x^{2}-x y}=\frac{-y^{2}}{x(x-y)}$
$=\frac{y^{2}}{x^{2}(y-x)} \cdot x=\frac{y^{2}}{x^{2}} \cdot \frac{1}{\frac{(y-x)}{x}}$
$=\frac{(1+\log y)^{2}}{\log y}\left[\because \log y=\frac{y-x}{x} \Rightarrow \log y=\frac{y}{x}-1 \Rightarrow 1+\log y=\frac{y}{x}\right]$
Hence Proved.
18. Let $y=u+v$

Where $u=(x \cos x)^{x}, v=(x \cdot \sin x)^{\frac{1}{x}}$
$u=(x \cos x)^{x}$
Taking log both sides
$\log u=\log (x \cos x)^{x}$
$\log u=x \cdot \log (x \cdot \cos x)$
Differentiating both sides
$\frac{1}{u} \cdot \frac{d u}{d x}=x \cdot \frac{1}{x \cos x}(-x \sin x+\cos x .1)+\log (x \cos x) .1$
$\frac{d u}{d x}=u[-x \tan x+1+\log (x \cdot \cos x)]$
$v=(x \cdot \sin x)^{\frac{1}{x}}$
Taking log both side
$\log v=\log (x \cdot \sin x)^{\frac{1}{x}}$
$\log v=\frac{1}{x} \cdot \log (x \cdot \sin x)$
Differentiate
$\frac{1}{v} \cdot \frac{d v}{d x}=\frac{1}{x} \cdot \frac{1}{x \cdot \sin x}(x \cos x+\sin x .1)+\log (x \cdot \sin x)\left(-\frac{1}{x^{2}}\right)$
$\frac{d v}{d x}=v\left[\frac{\cot x}{x}+\frac{1}{x^{2}}-\frac{\log (x \sin x)}{x^{2}}\right]$
$\frac{d y}{d x}=\frac{d u}{d x}+\frac{d v}{d x}$
$=(x \cos x)^{x}[-x \cdot \tan x \cdot 1+\log (x \cdot \log x)]+(x \cdot \sin x)^{\frac{1}{x}}\left[\frac{\cot x}{x}+\frac{1}{x^{2}}-\frac{\log (x \cdot \sin x)}{x^{2}}\right]$

