CBSE Test Paper 01

Chapter 5 Continuity and Differentiability

1. Let $\mathrm{f}(\mathrm{x}+\mathrm{y})=\mathrm{f}(\mathrm{x})+\mathrm{f}(\mathrm{y}) \forall \mathrm{x}, \mathrm{y} \in \mathbf{R}$. Suppose that $\mathrm{f}(6)=5$ and f ‘ $(0)=1$, then $\mathrm{f}^{\text {‘ }}(6)$ is equal to
a. 1
b. 30
c. None of these
d. 25
2. Derivative of $\log |x|$ w.r.t. $|x|$ is
a. None of these
b. $\frac{1}{x}$
c. $\pm \frac{1}{x}$
d. $\frac{1}{|x|}$
3. The function $f(x)=1+|\sin x|$ is
a. differentiable everywhere
b. continuous everywhere
c. differentiable nowhere
d. continuous nowhere
4. $\underset{x \rightarrow 0}{\operatorname{Lt}} \frac{1-\cos x}{x \sin x}$ is equal to
a. 1
b. 2
c. 0
d. $\frac{1}{2}$
5. $\underset{x \rightarrow \pi / 4}{L t} \frac{\cos x-\sin x}{x-\frac{\pi}{4}}$ is equal to
a. $-\frac{2}{\sqrt{2}}$
b. -1
c. $-\frac{1}{\sqrt{2}}$
d. $\frac{2}{\sqrt{2}}$
6. The value of c in Mean value theorem for the function $f(x)=x(x-2), x \in[1,2]$ is
\qquad .
7. The set of points where the function f given by $f(x)=|2 x-1| \sin x$ is differentiable is
\qquad .
8. Differential coefficient of $\sec \left(\tan ^{-1} x\right)$ w.r.t. x is \qquad .
9. Discuss the continuity of the function $f(x)=\sin x \cdot \cos x$.
10. Determine the value of ' k ' for which the following function is continuous at $x=3: f(x)$

$$
=\left\{\begin{array}{l}
\frac{(x+3)^{2}-36}{x-3}, x \neq 3 \\
k \quad, x=3
\end{array}\right.
$$

11. Determine the value of the constant 'k' so that the function $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{k x}{|x|}, & \text { if } x<0 \\ 3, & \text { if } x \geq 0\end{array}\right.$ is continuous at $\mathrm{x}=0$.
12. Find $\frac{d y}{d x}, y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$
13. Show that the function defined by $f(x)=\cos \left(x^{2}\right)$ is a continuous function.
14. Determine if f defined by $f(x)=\left\{\begin{array}{c}x^{2} \sin \frac{1}{x}, \text { if } x \neq 0 \\ 0, \text { if } x=0\end{array}\right.$ is a continuous function.
15. Find the value of k so that the following function is continuous at $\mathrm{x}=2$.

$$
\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}
\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & x \neq 2 \\
k, & x=2
\end{array}\right\}
$$

16. If $\mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=\mathrm{a}^{\mathrm{b}}$, then find $\frac{d y}{d x}$.
17. If $\mathrm{e}^{\mathrm{y}}(\mathrm{x}+1)=1$, then show that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$.
18. Find $\frac{d y}{d x}$ if $y^{x}+x^{y}+x^{x}=a^{b}$.

CBSE Test Paper 01

Chapter 5 Continuity and Differentiability

Solution

1. a. 1

$$
\begin{aligned}
& \text { Explanation: } f^{\prime}(6)=\lim _{h \rightarrow 0} \frac{f(6+h)-f(6)}{h}=\lim _{h \rightarrow 0} \frac{f(6+h)-f(6+0)}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(6)+f(h)-\{f(6)+f(0)\}}{h} \\
& =\lim _{h \rightarrow 0} \frac{f(h)-f(0)}{h}=f^{\prime}(0)=1
\end{aligned}
$$

2.

d. $\frac{1}{|x|}$

Explanation: $\frac{d}{d|x|}(\log |x|)=\frac{1}{|x|}$
3. b. continuous everywhere

Explanation: $\mathrm{f}(\mathrm{x})=1+|\sin \mathrm{x}|$ is not derivable at those x for which x for which $\sin x=0$, however, $1+|\sin x|$ is continuous everywhere (being the sum of two continuous functions)
4. d. $\frac{1}{2}$

Explanation: $\lim _{x \rightarrow 0} \frac{1-\cos x}{x \sin x}$
$=\lim _{x \rightarrow 0} \frac{1-\cos ^{2} x}{x \sin x(1+\cos x)} \lim _{x \rightarrow 0} \frac{\sin x}{x} \cdot \frac{1}{1+\cos x}=1 \cdot \frac{1}{1+1}=\frac{1}{2}$
5. a. $-\frac{2}{\sqrt{2}}$

Explanation: $\lim _{x \rightarrow \frac{\pi}{4}} \frac{\cos x-\sin x}{x-\frac{\pi}{4}}$

$$
=\lim _{x \rightarrow \frac{\pi}{4}} \frac{-\sin x-\cos x}{1}=-\sin \frac{\pi}{4}-\cos \frac{\pi}{4}=-\frac{2}{\sqrt{2}}=-\sqrt{2}
$$

6. $\frac{3}{2}$
7. $\mathrm{R}-\left\{\frac{1}{2}\right\}$
8. $\frac{x}{\sqrt{1+x^{2}}}$
9. Since $\sin \mathrm{x}$ and $\cos \mathrm{x}$ are continuous functions and product of two continuous function is a continuous function, therefore $f(x)=\sin x \cdot \cos x$ is a continuous function.
10. Given, $\mathrm{f}(\mathrm{x})= \begin{cases}\frac{(x+3)^{2}-36}{x-3}, & x \neq 3 \\ x, & x=3\end{cases}$

We shall use definition of continuity to find the value of k.
If $f(x)$ is continuous at $x=3$,
Then, we have $\lim _{x \rightarrow 3} f(x)=f(3)$
$\Rightarrow \quad \lim _{x \rightarrow 3} \frac{(x+3)^{2}-36}{x-3}=k$
$\Rightarrow \quad \lim _{x \rightarrow 3} \frac{(x+3)^{2}-6^{2}}{x-3}=k$
$\Rightarrow \lim _{x \rightarrow 3} \frac{(x+3-6)(x+3+6)}{x-3}=k\left[\because \mathrm{a}^{2}-\mathrm{b}^{2}=(\mathrm{a}-\mathrm{b})(\mathrm{a}+\mathrm{b})\right]$
$\Rightarrow \quad \lim _{x \rightarrow 3} \frac{(x-3)(x+9)}{(x-3)}=k$
$\Rightarrow \quad \lim _{x \rightarrow 3}(x+9)=k$
$\Rightarrow 3+9=\mathrm{k} \Rightarrow \mathrm{k}=12$
11. Let $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{ll}\frac{k x}{|x|}, & \text { if } x<0 \\ 3, & \text { if } x \geq 0\end{array}\right.$ be continuous at $\mathrm{x}=0$

Then, $\lim _{x \rightarrow 0^{+}} f(x)=\lim _{x \rightarrow 0^{-}} f(x)=f(0)$
$\Rightarrow \quad \lim _{h \rightarrow 0} f(0+h)=\lim _{h \rightarrow 0} f(0-h)=f(0)$
$\Rightarrow \quad 3=\lim _{h \rightarrow 0} \frac{k(-h)}{|-h|}=3$
$\Rightarrow \quad \lim _{h \rightarrow 0}\left(\frac{-k h}{h}\right)=3$
$\lim _{h \rightarrow 0}(-k)=3$
$\therefore \mathrm{k}=-3$
12. Given: $y=\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right), 0<x<1$

Putting $x=\tan \theta$
$y=\cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$=\cos ^{-1}(\cos 2 \theta)=2 \theta=2 \tan ^{-1} x$
$\therefore \frac{d y}{d x}=2 \cdot \frac{1}{1+x^{2}}=\frac{2}{1+x^{2}}$
13. Let $f(x)=x^{2}$ and $g(x)=\cos x$, then
$(g \circ f)(x)=g[f(x)]=g\left(x^{2}\right)=\cos x^{2}$
Now f and g being continuous it follows that their composite (gof) is continuous.
Hence $\cos x^{2}$ is continuous function.
14. Here, $\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x^{2} \sin \frac{1}{x}=0 \mathrm{x}$ a finite quantity $=0$
$\left[\because \sin \frac{1}{x}\right.$ lies between -1 and 1$]$
Also $\mathrm{f}(0)=0$
Since, $\lim _{x \rightarrow 0} f(x)=f(0)$ therefore, the function f is continuous at $\mathrm{x}=0$.
Also,when $x \neq 0$,then $\mathrm{f}(\mathrm{x})$ is the product of two continuous functions and hence Continuous.Hence, $\mathrm{f}(\mathrm{x})$ is continuous everywhere.
15. According to the question, $\mathrm{f}(\mathrm{x})=\left\{\begin{array}{cc}\frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}, & x \neq 2 \\ k, & x=2\end{array}\right\}$ is continuous at $x=2$.

Now, we have $f(2)=k$
$\lim _{x \rightarrow 2} f(x)=\lim _{x \rightarrow 2} \frac{x^{3}+x^{2}-16 x+20}{(x-2)^{2}}$
$=\lim _{x \rightarrow 2} \frac{(x-2)\left(x^{2}+3 x-10\right)}{(x-2)^{2}}$
$=\lim _{x \rightarrow 2} \frac{(x-2)(x+5)(x-2)}{(x-2)^{2}}$
$=\lim _{x \rightarrow 2}(x+5)=2+5=7$
$\mathrm{f}(\mathrm{x})$ is continuous at $\mathrm{x}=2$.
$\therefore \lim _{x \rightarrow 2} f(x)=\mathrm{f}(2) \Rightarrow 7=\mathrm{k} \Rightarrow \mathrm{k}=7$
16. We have, $\mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=\mathrm{a}^{\mathrm{b}}$.

Let $\mathrm{x}^{\mathrm{y}}=\mathrm{v}$ and $\mathrm{y}^{\mathrm{x}}=\mathrm{u}$.
Therefore,on putting these values in Eq. (i), we get,
$\mathrm{v}+\mathrm{u}=\mathrm{a}^{\mathrm{b}}$
Therefore,on differentiating both sides w.r.t. x, we get,
$\frac{d v}{d x}+\frac{d u}{d x}=0$
Now consider, $\mathrm{x}^{\mathrm{y}}=\mathrm{v}$ [from Eq.(ii)]
Therefore,on taking log both sides, we get,
$\log x^{y}=\log v$
$\Rightarrow \mathrm{y} \log \mathrm{x}=\log \mathrm{v}$
Therefore,on differentiating both sides w.r.t. x, we get,
$y \cdot \frac{1}{x}+\log x \cdot \frac{d y}{d x}=\frac{1}{v} \frac{d v}{d x}$
$\Rightarrow v\left(\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right)=\frac{d v}{d x}$
$\Rightarrow \quad \frac{d v}{d x}=x^{y}\left(\frac{y}{x}+\log x \frac{d y}{d x}\right) \ldots$. (iv) [From Eq.(ii)]

Also, $\mathrm{y}^{\mathrm{x}}=\mathrm{u}$ [From Eq(ii)]
Therefore,on taking log both sides, we get,
$\log \mathrm{y}^{\mathrm{x}}=\log \mathrm{u} \Rightarrow \mathrm{x} \log \mathrm{y}=\log \mathrm{u}$
Therefore, on differentiating both sides w.r.t. 'x', we get,
$x \cdot \frac{1}{y} \frac{d y}{d x}+1 \cdot \log y=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \quad \frac{x}{y} \frac{d y}{d x}+\log y=\frac{1}{u} \frac{d u}{d x}$
$\Rightarrow \quad u\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=\frac{d y}{d x}$
$\Rightarrow \quad y^{x}\left[\frac{x}{y} \frac{d y}{d x}+\log y\right]=\frac{d u}{d x} \ldots . . .$. (v) [From Eq(ii)]
Therefore,on substituting the values of $\frac{d v}{d x}$ and $\frac{d u}{d x}$ from Eqs. (iv) and (v) respectively in Eq. (iii), we get
$x^{y}\left(\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right)+y^{x}\left(\frac{x}{y} \frac{d y}{d x}+\log y\right)=0$
$\Rightarrow x^{y} \frac{y}{x}+x^{y} \log x \cdot \frac{d y}{d x}+y^{x} \cdot \frac{x}{y} \frac{d y}{d x}+y^{x} \log y=0$
$\Rightarrow x^{y} \log x \cdot \frac{d y}{d x}+y^{x} \frac{x}{y} \cdot \frac{d y}{d x}=-x^{y} \frac{y}{x}-y^{x} \log y$
$\Rightarrow \quad \frac{d y}{d x}\left[x^{y} \log x+y^{x} \cdot \frac{x}{y}\right]=-x^{y} \cdot \frac{y}{x}-y^{x} \log y$
$\therefore \quad \frac{d y}{d x}=\frac{-x^{y-1} \cdot y-y^{x} \log y}{x^{y} \log x+y^{x-1} \cdot x}$
17. According to the question, $e^{y}(x+1)=1$

Taking log both sides,
$\Rightarrow \log \left[e^{y}(x+1)\right]=\log 1$
$\Rightarrow \log e^{y}+\log (x+1)=\log 1$
$\Rightarrow y+\log (x+1)=\log 1\left[\because \log \mathrm{e}^{\mathrm{y}}=\mathrm{y}\right]$
differentiating both sides w.r.t. x ,
$\Rightarrow \frac{d y}{d x}+\frac{1}{x+1}=0$.
Differentiating both sides w.r.t. 'x',
$\Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{1}{(x+1)^{2}}=0$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}-\left(-\frac{d y}{d x}\right)^{2}=0$ [From Equation(i)]
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}-\left(\frac{d y}{d x}\right)^{2}=0$
$\Rightarrow \quad \frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
18. Let $u=y^{x}, v=x^{y}, w=x^{x}$
$u+v+w=a^{b}$
Therefore $\frac{d u}{d x}+\frac{d w}{d x}+\frac{d v}{d x}=0 \ldots$...(1)
$u=y^{x}$
Taking log both side
$\log u=\log y^{x}$
$\log u=x \cdot \log y$
Differentiate both side w.r.t. to x
$\frac{1}{u} \cdot \frac{d u}{d x}=x \cdot \frac{1}{y} \cdot \frac{d y}{d x}+\log y .1$
$\frac{d u}{d x}=u\left[\frac{x}{y} \cdot \frac{d y}{d x}+\log y\right]$
$\frac{d u}{d x}=y^{x}\left[\frac{x}{y} \cdot \frac{d y}{d x}+\log y\right] \ldots$.
$v=x^{y}$
Taking log both side
$\log v=\log x^{y}$
$\log v=y \cdot \log x$
$\frac{1}{v} \cdot \frac{d v}{d x}=y \cdot \frac{1}{x}+\log x \cdot \frac{d y}{d x}$
$\frac{d v}{d x}=v\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right]$
$\frac{d v}{d x}=x^{y}\left[\frac{y}{x}+\log x \cdot \frac{d y}{d x}\right] \ldots$ (3)
$w=x^{x}$
Taking log both side
$\log w=\log x^{x}$
$\log w=x \log x$
$\frac{1}{w} \cdot \frac{d w}{d x}=x \cdot \frac{1}{x}+\log x .1$
$\frac{1}{w} \cdot \frac{d w}{d x}=1+\log x$
$\frac{d w}{d x}=w(1+\log x)$
$\frac{d w}{d x}=x^{x}(1+\log x) \ldots$ (4)
$\frac{d y}{d x}=\frac{-x^{x}(1+\log x)-y \cdot x^{y-1}-y^{x} \log y}{x \cdot y^{x-1}+x^{y} \log x .}$ (by putting 2,3 and 4 in 1)

