CBSE Test Paper 02

Chapter 4 Determinants

1. The value of the determinant $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$ is
a. $a+b+c$
b. 0
c. None of these
d. $1+a+b+c$
2. The only integral root of the equation det. $\left|\begin{array}{ccc}2-y & 2 & 3 \\ 2 & 5-y & 6 \\ 3 & 4 & 10-y\end{array}\right|=0$ is
a. 2
b. 1
c. 3
d. 4
3. Find the area of triangle with vertices $(1,1),(2,2)$ and $(3,3)$.
a. 1
b. 3
c. 0
d. 2
4. The value of the determinant of a skew symmetric matrix of even order is
a. A non zero perfect square
b. None of these
c. 0
d. Negative
5. If the matrix $\mathrm{AB}=\mathrm{O}$, then
a. $\mathrm{A}=\mathrm{O}$ or $\mathrm{B}=\mathrm{O}$
b. $\mathrm{A}=\mathrm{O}$ and $\mathrm{B}=\mathrm{O}$
c. It is not necessary that either $\mathrm{A}=\mathrm{O}$ or $\mathrm{B}=\mathrm{O}$
d. None of these
6. If $\mathrm{A}=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$, then the determinant of A is \qquad .
7. If A is invertible matrix of order 3×3, then $\left|A^{-1}\right|=$ \qquad .
8. If we multiply each element of a row (or a column) of a determinant by constant k, then value of the determinant is \qquad by k.
9. Find values of x for which $\left|\begin{array}{ll}3 & x \\ x & 1\end{array}\right|=\left|\begin{array}{ll}3 & 2 \\ 4 & 1\end{array}\right|$.
10. If $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]$ then show that $|2 A|=4|A|$.
11. Find value of x , if $\left|\begin{array}{ll}2 & 4 \\ 5 & 1\end{array}\right|=\left|\begin{array}{cc}2 x & 4 \\ 6 & x\end{array}\right|$.
12. Show that $\left|\begin{array}{cc}\sin 10^{0} & -\cos 10^{0} \\ \sin 80^{0} & \cos 80\end{array}\right|=1$.
13. In the determinant $\left|\begin{array}{lll}2 & -3 & 5 \\ 6 & 0 & 4 \\ 1 & 5 & -7\end{array}\right|$ Verify that $\mathrm{a}_{11} \mathrm{~A}_{31}+\mathrm{a}_{12} \mathrm{~A}_{32}+\mathrm{a}_{13} \mathrm{~A}_{33}=0$.
14. Find the area of the triangle with vertices at the points given $(1,0),(6,0),(4,3)$.
15. Prove that $\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ a^{2}+b^{2}\end{array}\left|\begin{array}{ccc}2 a & - & \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|=\left(1+a^{2}+b^{2}\right)^{3} 2 a b$
16. Using properties of determinants, prove that

$$
\left|\begin{array}{ccc}
x & y & z \\
x^{2} & y^{2} & z^{2} \\
x^{3} & y^{3} & z^{3}
\end{array}\right|=\operatorname{xyz}(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})(\mathrm{z}-\mathrm{x}) .
$$

17. Using properties of determinants, prove that
$\left|\begin{array}{lll}x & x^{2} & y z \\ y & y^{2} & z x \\ z & z^{2} & x y\end{array}\right|=(x-y)(y-z)(z-x)(x y+y z+z x)$
18. Verify $\mathrm{A}(\operatorname{adj} . \mathrm{A})=(\operatorname{adj} . \mathrm{A}) \mathrm{A}=|\mathrm{A}| \mathrm{I}$ for following matrix:
$\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$

CBSE Test Paper 02

Chapter 4 Determinants

Solution

1. b. 0

Explanation: $\left|\begin{array}{lll}1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b\end{array}\right|$
Apply, $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}+\mathrm{C}_{3}$,
$\left|\begin{array}{lll}1 & a+b+c & b+c \\ 1 & a+b+c & c+a \\ 1 & a+b+c & a+b\end{array}\right|$
$\Rightarrow(\mathrm{a}+\mathrm{b}+\mathrm{c})\left|\begin{array}{lll}1 & 1 & b+c \\ 1 & 1 & c+a \\ 1 & 1 & a+b\end{array}\right|$
$=0\left(C_{1}=C_{2}\right)$
Since, C_{1} and C_{2} are identical

$$
=(a+b+c) \times 0=0
$$

2. b. 1

Explanation: The value of determinant is 0 if any two rows or column are identical and Clearly, y = 1 satisfies it.
if we take common as 3 from C_{3}. Then, C_{1} And C_{3} Becomes identical after putting $\mathrm{y}=1$.
3. c. 0

Explanation: AREA OFTRIANGLE=
$\frac{1}{2}\left|\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 3 & 1\end{array}\right|$ (Since C_{1} and C_{2} are identical)
So, value of determinant $=0$
Hence, area of triangle $=0$
4. a. A non zero perfect square

Explanation: The determinant of a skew symmetric matrix of even order is A
non zero perfect square and odd order is equal to 0 .
5. c. It is not necessary that either $\mathrm{A}=\mathrm{O}$ or $\mathrm{B}=\mathrm{O}$

Explanation: If the matrix $\mathrm{AB}=\mathrm{O}$, then, matrix A can be a non zero matrix as well as matrix B can be a non zero matrix because for the multiplication of two matrics to be equal to 0 the matrices need not to be equal to 0 . So, it is not necessary that either $\mathrm{A}=0$ or $\mathrm{B}=0$.
6. ad -bc
7. $\frac{1}{|A|}$
8. multiplied
9. $(3-x)^{2}=3-8$
$3-x^{2}=3-8$
$-x^{2}=-8$
$x= \pm \sqrt{8}$
$x= \pm 2 \sqrt{2}$
10. $2 A=2\left[\begin{array}{ll}1 & 2 \\ 4 & 2\end{array}\right]=\left[\begin{array}{ll}2 & 4 \\ 8 & 4\end{array}\right]$
$\mathrm{RHS}=4|A|=4 \times(2-8)=4 \times(-6)=-24$
L.H.S $=|2 A|=8-32=-24$

Hence Proved

11. $(2-20)=\left(2 x^{2}-24\right)$
$-18=2 \mathrm{x}^{2}-24$
$-2 x^{2}=-24+18$
$-2 x^{2}=-6$
$2 x^{2}=6$
$\mathrm{x}^{2}=3$
$x=\doteq \sqrt{3}$
12. L.H.S $=\sin 10^{\circ} \cos 80^{\circ}+\cos 10^{\circ} \sin 80^{\circ}$
$=\sin \left(10^{\circ}+80^{\circ}\right)$
$[\because \sin A \cdot \cos B+\cos A \cdot \sin B=\sin (A+B)]$
$=\sin 90^{\circ}$
$=1$

CBSE Test Paper 02
Chapter 4 Determinants
13. $a_{11}=2, a_{12}=-3, a_{13}=5$
$A_{31}=-12-5 \times 0=-12-0=-12$
$\mathrm{A}_{32}=-(8-30)=-(-22)=22$
$A_{33}=2 \times 10-(-18)=0+18=18$
L.H.S $=\mathrm{a}_{11} \mathrm{~A}_{31}+\mathrm{a}_{12} \mathrm{~A}_{32}+\mathrm{a}_{13} \mathrm{~A}_{33}$
$=2(-12)+(-3)(22)+5(18)$
$=-24-66+90$
$=-90+90$
$=0$ Hence proved.
14. Area of triangle $=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{ccc}1 & 0 & 1 \\ 6 & 0 & 1 \\ 4 & 3 & 1\end{array}\right|_{-3(1-6)]={ }_{1}(-3)(-5)=\frac{15}{2} \text { sq.units }}$
15. L.H.S $S=\left|\begin{array}{ccc}1+a^{2}-b^{2} & 2 a b & -2 b \\ 2 a b & 1-a^{2}+b^{2} & 2 a \\ 2 b & -2 a & 1-a^{2}-b^{2}\end{array}\right|$
$\left[C_{1} \rightarrow C_{1}-b C_{3}\right.$ and $\left.C_{2} \rightarrow C_{2}+a C_{3}\right]$
$=\left|\begin{array}{ccc}1+a^{2}+b^{2} & 0 & -2 b \\ 0 & 1+a^{2}+b^{2} & 2 a \\ b\left(1+a^{2}+b^{2}\right) & -a\left(1+a^{2}+b^{2}\right) & 1-a^{2}-b^{2}\end{array}\right|$
Taking $1+a^{2}+b^{2}$ common from each C_{1} and C_{2}
$=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc}1 & 0 & -2 b \\ 0 & 1 & 2 a \\ b & -a & 1-a^{2}-b^{2}\end{array}\right|$
$\left[R_{3} \rightarrow R_{3}-b R_{1}\right]$
$=\left(1+a^{2}+b^{2}\right)^{2}\left|\begin{array}{ccc}1 & 0 & -2 b \\ 0 & 1 & 2 a \\ 0 & -a & 1-a^{2}+b^{2}\end{array}\right|$
$=\left(1+a^{2}+b^{2}\right)^{2}\left(1-a^{2}+b^{2}+2 a^{2}\right)$
$=\left(1+a^{2}+b^{2}\right)^{3}=$ R.H.S.
16. According to the question, We have to prove that
$\left|\begin{array}{lll}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=\mathrm{xyz}(\mathrm{x}-\mathrm{y})(\mathrm{y}-z)(\mathrm{z}-\mathrm{x})$
We shall make use of the properties of determinants to prove the required result.
Let LHS $=\left|\begin{array}{ccc}x & y & z \\ x^{2} & y^{2} & z^{2} \\ x^{3} & y^{3} & z^{3}\end{array}\right|=x y z\left|\begin{array}{ccc}1 & 1 & 1 \\ x & y & z \\ x^{2} & y^{2} & z^{2}\end{array}\right|$ [taking x, y and z common from C_{1},
C_{2} and C_{3}, respectively]

On applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}-\mathrm{C}_{2}$ and then $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{3}$,
We get
LHS $=\mathrm{xyz}\left|\begin{array}{ccc}0 & 0 & 1 \\ x-y & y-z & z \\ x^{2}-y^{2} & y^{2}-z^{2} & z^{2}\end{array}\right|$
On expanding along R_{1}, we get
LHS $=\mathrm{xyz}\left|\begin{array}{cc}x-y & y-z \\ x^{2}-y^{2} & y^{2}-z^{2}\end{array}\right|$
$=\mathrm{xyz}\left|\begin{array}{cc}x-y & y-z \\ (x-y)(x+y) & (y-z)(y+z)\end{array}\right|$
On taking $(\mathrm{x}-\mathrm{y})$ common from C_{1} and $(\mathrm{y}-\mathrm{z})$ from C_{2}, we get
LHS $=\operatorname{xyz}(\mathrm{x}-\mathrm{y})(\mathrm{y}-\mathrm{z})\left|\begin{array}{cc}1 & 1 \\ x+y & y+z\end{array}\right|$
$=x y z(x-y)(y-z)[(y+z-(x+y)]$
$=x y z(x-y)(y-z)(z-x)$
$=$ RHS
17. Applying $R_{1} \rightarrow R_{1}-R_{3}, R_{2} \rightarrow R_{2}-R_{3}$,we get,
$\Delta=\left|\begin{array}{ccc}(x-z) & \left(x^{2}-z^{2}\right) & y z-x y \\ y-z & y^{2}-z^{2} & z x-x y \\ z & z^{2} & x y\end{array}\right|$
$=\left|\begin{array}{ccc}x-z & (x-z)(x+z) & -y(x-z) \\ y-z & (y-z)(y+z) & -x(y-z) \\ z & z^{2} & x y\end{array}\right|$
Taking (x-z) common from R_{1} and (y-z) common from R_{2}, we have
$\Delta=(x-z)(y-z)\left|\begin{array}{ccc}1 & x+y & -(y) \\ 1 & y+z & -x \\ z & z^{2} & x y\end{array}\right|$
Applying $R_{1} \rightarrow R_{1}-R_{2}$,we get,
$\Delta=(x-z)(y-z)\left|\begin{array}{ccc}0 & x-y & x-y \\ 1 & y+z & -x \\ z & z^{2} & x y\end{array}\right|$
Taking (x-y) common from R_{1}, we get,
$\Delta=(x-z)(y-z)(x-y)\left|\begin{array}{ccc}0 & 1 & 1 \\ 1 & y+z & -x \\ z & z^{2} & x y\end{array}\right|$
Expanding along R_{1},weget,
$\Delta=(x-y)(y-z)(x-z)\left[-1(x y+z x)+1\left(z^{2}-y z-z^{2}\right)\right]$
$=(x-y)(y-z)(x-z)[-x y-z x-y z]$
$=(x-y)(y-z)(z-x)[x y+z x+y z]$
18. Let $A=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$\Rightarrow|A|=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$\therefore A_{11}=+\left|\begin{array}{cc}0 & -2 \\ 0 & 3\end{array}\right|=+0+0=0, A_{12}=-\left|\begin{array}{cc}3 & -2 \\ 1 & \end{array}\right|=-(9+2)=-11$

$\therefore a d j . A=\left|\begin{array}{ccc}0 & -11 & 0 \\ 3 & 1 & -1 \\ 2 & 8 & 3\end{array}\right|$
$=\left|\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right|$
$\therefore A .(a d j . A)=\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]$
$\left[\begin{array}{ccc}0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0+0+0 & 3+0-3 & 2+0+9\end{array}\right]$
$=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \ldots$ (i)
Again (adj. A). A $=\left[\begin{array}{ccc}0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right]$
$=\left[\begin{array}{ccc}0+9+2 & 0+0+0 & 0-6+6 \\ -11 \\ 0-3+3 & 11+0+0 & -22-2+24 \\ 0+0+0 & 0+2+9\end{array}\right]$
$=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right]$
And $|A|=\left|\begin{array}{ccc}1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3\end{array}\right|$
$=1(0-0)-(-1)(9+2)+2(0-0)=0+11+0=11$
Also $|A| I=|A| I_{3}=11\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]=\left[\begin{array}{ccc}11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11\end{array}\right] \ldots$
\therefore From eq. (i), (ii) and (iii) A. (adj. A) $=(\operatorname{adj} . A) . A=|A|$

