CBSE Test Paper 02

Chapter 4 Determinants

1. The value of the determinant
$$\begin{vmatrix} 1 & a & b+c \ 1 & b & c+a \ 1 & c & a+b \ \end{vmatrix}$$
 is

- a. a+b+c
- b. 0
- c. None of these
- d. 1 + a + b + c

2. The only integral root of the equation det.
$$\begin{vmatrix} 2-y & 2 & 3 \\ 2 & 5-y & 6 \\ 3 & 4 & 10-y \end{vmatrix} = 0$$
 is

- a. 2
- b. 1
- c. 3
- d. 4

3. Find the area of triangle with vertices (1, 1), (2, 2) and (3, 3).

- a. 1
- b. 3
- c. 0
- d. 2

4. The value of the determinant of a skew symmetric matrix of even order is

- a. A non zero perfect square
- b. None of these
- c. 0
- d. Negative

5. If the matrix AB = O, then

- a. A = O or B = O
- b. A = O and B = O
- c. It is not necessary that either A = O or B = O
- d. None of these

- 6. If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the determinant of A is_____.
- 7. If A is invertible matrix of order 3×3 , then $|A^{-1}| =$ ____
- 8. If we multiply each element of a row (or a column) of a determinant by constant k, then value of the determinant is
- 9. Find values of x for which $\begin{vmatrix} 3 & x \\ x & 1 \end{vmatrix} = \begin{vmatrix} 3 & 2 \\ 4 & 1 \end{vmatrix}$.
- 10. If $A = \begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix}$ then show that |2A| = 4|A|.

- 11. Find value of x, if $\begin{vmatrix} 2 & 4 \\ 5 & 1 \end{vmatrix} = \begin{vmatrix} 2x & 4 \\ 6 & x \end{vmatrix}$.

 12. Show that $\begin{vmatrix} \sin 10^0 & -\cos 10^0 \\ \sin 80^0 & \cos 80 \end{vmatrix} = 1$.

 13. In the determinant $\begin{vmatrix} 2 & -3 & 5 \\ 0 & 4 \end{vmatrix}$ Verify that $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33} = 0$.
- 14. Find the area of the triangle with vertices at the points given (1, 0), (6, 0), (4, 3).
- 15. Prove that $\begin{vmatrix} 1+a^2-b^2 & 2ab & -2b \\ 2a & & \\ 2b & -2a & 1-a^2-b^2 \end{vmatrix} = \frac{\left(1+a^2+b^2\right)^3 2ab}{1-a^2-b^2}$ 1
- 16. Using properties of determinants, prove that

$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz(x - y)(y - z)(z - x).$$

17. Using properties of determinants, prove that

$$\begin{vmatrix} x & x^2 & yz \\ y & y^2 & zx \\ z & z^2 & xy \end{vmatrix} = (x-y)(y-z)(z-x)(xy+yz+zx)$$
Verify A (adj. A) = (adj. A) A = |A| I for following matrix:

18. Verify A (adj. ^{l}A) = (adj. A) A = |A|I for following matrix:

$$\begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

Solution

1. b. 0

Explanation:
$$\begin{vmatrix} 1 & a & b+c \\ 1 & b & c+a \\ 1 & c & a+b \end{vmatrix}$$
Apply, $C_2 \rightarrow C_2 + C_3$,

Apply,
$$C_2 \rightarrow C_2 + C_3$$
,

Apply,
$$C_2 \rightarrow C_2 + C_3$$
,
$$\begin{vmatrix} 1 & a+b+c & b+c \\ 1 & a+b+c & c+a \\ 1 & a+b+c & a+b \end{vmatrix}$$

$$\Rightarrow (a+b+c) \begin{vmatrix} 1 & 1 & b+c \\ 1 & 1 & c+a \\ 1 & 1 & a+b \end{vmatrix}$$

$$= 0 (C_1 = C_2)$$

Since, C₁ and C₂ are identical

$$=(a+b+c)\times 0 = 0$$

2. b. 1

> **Explanation:** The value of determinant is 0 if any two rows or column are identical and Clearly, y = 1 satisfies it.

if we take common as 3 from C₃. Then, C₁ And C₃ Becomes identical after putting y=1.

3. c. 0

Explanation: AREA OFTRIANGLE=

$$\begin{array}{c|cccc} 1 & 1 & 1 \\ 2 & 2 & 1 \\ 3 & 3 & 1 \end{array} | \text{ (Since C_1 and C_2 are identical)}$$

So, value of determinant = 0

Hence, area of triangle = 0

4. a. A non zero perfect square

Explanation: The determinant of a skew symmetric matrix of even order is A

non zero perfect square and odd order is equal to 0.

5. c. It is not necessary that either A = O or B = O

Explanation: If the matrix AB = O, then , matrix A can be a non zero matrix as well as matrix B can be a non zero matrix because for the multiplication of two matrics to be equal to 0 the matrices need not to be equal to 0. So, it is not necessary that either A=0 or B=0.

- 6. ad -bc
- 7. $\frac{1}{|A|}$
- 8. multiplied

$$9.(3 - x)^2 = 3 - 8$$

$$3 - x^2 = 3 - 8$$

$$-x^2 = -8$$

$$x = \pm \sqrt{8}$$

$$x = \pm 2\sqrt{2}$$

10.
$$2A = 2\begin{bmatrix} 1 & 2 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 2 & 4 \\ 8 & 4 \end{bmatrix}$$

RHS =
$$4|A| = 4 \times (2-8) = 4 \times (-6) = -24$$

L.H.S =
$$|2A| = 8 - 32$$
 = -24

Hence Proved

11.
$$(2-20) = (2x^2-24)$$

$$-18 = 2x^2 - 24$$

$$-2x^2 = -24 + 18$$

$$-2x^2 = -6$$

$$2x^2 = 6$$

$$x^2 = 3$$

$$x = \pm \sqrt{3}$$

12. L.H.S=
$$\sin 10^{\circ} \cos 80^{\circ} + \cos 10^{\circ} \sin 80^{\circ}$$

$$=\sin(10^{\circ} + 80^{\circ})$$

$$[\because \sin A. \cos B + \cos A. \sin B = \sin(A+B)]$$

CBSE Test Paper 02

Chapter 4 Determinants

13. $a_{11} = 2$, $a_{12} = -3$, $a_{13} = 5$

$$A_{31} = -12 - 5 \times 0 = -12 - 0 = -12$$

 $A_{32} = -(8 - 30) = -(-22) = 22$
 $A_{33} = 2 \times 10 - (-18) = 0 + 18 = 18$
L.H.S= $a_{11}A_{31} + a_{12}A_{32} + a_{13}A_{33}$
= 2 (-12) + (-3) (22) +5 (18)
= -24 - 66 + 90
= -90 + 90

= 0 Hence proved.

14. Area of triangle =
$$\frac{1}{2}\begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$= \frac{1}{2}\begin{vmatrix} 1 & 0 & 1 \\ 6 & 1 & 1 \\ 4 & 3 & 1 \\ -3(1-6)] = \frac{1}{2}(-3)(-5) = \frac{15}{2} \text{ sq.units}$$
15. $L.H.S = \begin{vmatrix} 1 & 0 & 1 \\ 4 & 3 & 1 \\ -3(1-6)] = \frac{1}{2}(-3)(-5) = \frac{15}{2} \text{ sq.units}$

$$\begin{vmatrix} 1 & 2 & 0 & -2b \\ 2ab & 1 - a^2 + b^2 & 2a \\ 2b & -2a & 1 - a^2 - b^2 \end{vmatrix}$$

$$= \begin{vmatrix} 1 & 0 & 1 \\ 2ab & 1 - a^2 + b^2 & 0 & -2b \\ 0 & 1 + a^2 + b^2 & 2a \\ b(1 + a^2 + b^2) & -a(1 + a^2 + b^2) & 1 - a^2 - b^2 \end{vmatrix}$$

Taking $1+a^2+b^2$ common from each C_1 and C_2

Taking
$$1+a^2+b^2$$
 common from each C_1 and $=(1+a^2+b^2)^2\begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ -a & 1-a^2-b^2 \end{vmatrix}$ $=(1+a^2+b^2)^2\begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ 0 & -a & 1-a^2+b^2 \end{vmatrix}$ $=(1+a^2+b^2)^2\begin{vmatrix} 1 & 0 & -2b \\ 0 & 1 & 2a \\ -a & 1-a^2+b^2 \end{vmatrix}$ $=(1+a^2+b^2)^2(1-a^2+b^2+2a^2)$ $=(1+a^2+b^2)^3$ = R.H.S.

16. According to the question, We have to prove that

$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz (x - y) (y - z) (z - x)$$

We shall make use of the properties of determinants to prove the required result.

Let LHS =
$$\begin{vmatrix} x & y & z \\ x^2 & y^2 & z^2 \\ x^3 & y^3 & z^3 \end{vmatrix} = xyz \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$$
 [taking x, y and z common from C₁,

 C_2 and C_3 , respectively

On applying $C_1 \rightarrow C_1 - C_2$ and then $C_2 \rightarrow C_2 - C_3$,

We get

LHS = xyz
$$\begin{vmatrix} 0 & 0 & 1 \\ x - y & y - z & z \\ x^2 - y^2 & y^2 - z^2 & z^2 \end{vmatrix}$$

On expanding along R_1 , we get

LHS = xyz
$$\begin{vmatrix} x-y & y-z \\ x^2-y^2 & y^2-z^2 \end{vmatrix}$$

= xyz $\begin{vmatrix} x-y & y-z \\ (x-y)(x+y) & (y-z)(y+z) \end{vmatrix}$

On taking (x - y) common from C_1 and (y - z) from C_2 , we get

LHS = xyz (x-y) (y - z)
$$\begin{vmatrix} 1 & 1 \\ x+y & y+z \end{vmatrix}$$

$$= xyz (x - y)(y - z)[(y + z - (x + y))]$$

$$= xyz (x - y) (y - z) (z - x)$$

= RHS

17. Applying
$$R_1
ightarrow R_1 - R_3, R_2
ightarrow R_2 - R_3$$
 ,we get,

$$\Delta = \begin{vmatrix} (x-z) & (x^2-z^2) & yz - xy \\ y-z & y^2-z^2 & zx - xy \\ z & z^2 & xy \end{vmatrix}$$

$$= \begin{vmatrix} x-z & (x-z)(x+z) & -y(x-z) \\ y-z & (y-z)(y+z) & -x(y-z) \\ z & z^2 & xy \end{vmatrix}$$
Taking (x,z) someon from \mathbb{R} and (x,z) so

 $\mid z \qquad z^2 \qquad xy \mid$ Taking (x-z) common from R_1 and (y-z) common from R_2 ,we have

$$\Delta = (x-z)(y-z) \begin{vmatrix} 1 & x+y & -(y) \\ 1 & y+z & -x \\ z & z^2 & xy \end{vmatrix}$$

Applying $R_1 \to R_1 - R_2$, we get,

Taking (x-y) common from
$$R_1$$
, we get,
$$\begin{vmatrix}
0 & x-y & x-y \\
1 & y+z & -x \\
z & z^2 & xy
\end{vmatrix}$$

$$\Delta = (x-z)(y-z)(x-y)\begin{vmatrix} 0 & 1 & 1 \\ 1 & y+z & -x \\ z & z^2 & xy \end{vmatrix}$$

Expanding along R_1 , we get

$$\begin{split} &\Delta = \left(x-y\right)\left(y-z\right)\left(x-z\right)\left[-1\left(xy+zx\right)+1\left(z^2-yz-z^2\right)\right]\\ &= \left(x-y\right)\left(y-z\right)\left(x-z\right)\left[-xy-zx-yz\right]\\ &= \left(x-y\right)\left(y-z\right)\left(z-x\right)\left[xy+zx+yz\right] \end{split}$$

18. Let
$$A = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\Rightarrow |A| = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$\therefore A_{11} = + \begin{vmatrix} 0 & -2 \\ 0 & 3 \end{vmatrix} = +0 + 0 = 0, A_{12} = - \begin{vmatrix} 3 & -2 \\ 1 \end{vmatrix} = -(9+2) = -11$$

$$\begin{vmatrix} 1 & 0 & 3 \\ 0 & -2 \\ 0 & 3 \end{vmatrix} = +0 + 0 = 0, A_{12} = -\begin{vmatrix} 3 & -2 \\ 1 & \end{vmatrix} = -(9+2) = -11$$

$$\begin{vmatrix} +\begin{vmatrix} 3 & 0 \\ 1 & 0 \\ 1 & 2 \\ 0 & 1 \end{vmatrix} = +\begin{vmatrix} -1 & 3 \\ 0 & 2 \\ -1 & 3 \end{vmatrix} - (-3-0) = 3$$

$$= +\begin{vmatrix} 1 & 2 \\ 0 & 2 \\ 1 & 3 \end{vmatrix} = 3 - 2 = \begin{vmatrix} 1 & 1 \\ 0 & 2 \\ -1 & 3 \end{vmatrix} - (0+1) = -1$$

$$= +\begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 2 - 0$$

$$\begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 2 - 0$$

$$\begin{vmatrix} -1 & 2 \\ 0 & -2 \end{vmatrix} = 2, A_{32} = -\begin{vmatrix} 1 \\ 3 & 2 \\ -2 \end{vmatrix} = -(-2-6) = 8$$

$$\begin{vmatrix} -1 & -1 \\ 3 & 0 \end{vmatrix} = 3 + 0 = 3$$

$$\therefore adj. A = \begin{vmatrix} 0 & -11 & 0 \\ 3 & 1 & -1 \\ 2 & 8 & 3 \end{vmatrix}$$

$$= \begin{vmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{vmatrix}$$

$$\therefore A \cdot (adj \cdot A) = \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix} \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix}$$

$$\begin{bmatrix} 0+11+0 & 3-1-2 & 2-8+6 \\ 0-0-0 & 9+0+2 & 6+0-6 \\ 0+0+0 & 3+0-3 & 2+0+9 \end{bmatrix}$$

$$= \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \dots (i)$$

$$= \begin{bmatrix} 0 & 3 & 2 \\ -11 & 1 & 8 \\ 0 & -1 & 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 0 + 9+2 & 0+0+0 & 0-6+6 \\ 0-3+3+8 & 11+0+0 & -22-2+24 \\ 0-3+3 & 0-0+0 & 0+2+9 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & 11 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \dots (ii)$$

$$= \begin{bmatrix} 1 & -1 & 2 \\ 3 & 0 & -2 \\ 1 & 0 & 3 \end{bmatrix}$$

$$= 1(0-0) - (-1)(9+2) + 2(0-0) = 0 + 11 + 0 = 11$$

$$Also |A|I = |A|I_3 = 11 \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 11 & 0 & 0 \\ 0 & 11 & 0 \\ 0 & 0 & 11 \end{bmatrix} \dots (iii)$$

From eq. (i), (ii) and (iii) A. (adj. A) = (adj. A). A = |A|