CBSE Test Paper 01

Chapter 4 Determinants

1. The roots of the equation det.
$$\begin{vmatrix} 1-x & 2 & 3 \\ 0 & 2-x & 0 \\ 0 & 2 & 3-x \end{vmatrix} = 0$$
 are

- a. None of these
- b. 2 and 3
- c. 1, 2 and 3
- d. 1 and 3
- 2. If A' is the transpose of a square matrix A, then

a.
$$|A| + |A'| = 0$$

b.
$$|A| = |A'|$$

c.
$$|A| \neq |A'|$$

d. None of these

3. If
$$f(x) = \begin{vmatrix} 2\cos x & 1 & 0 \\ 1 & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{vmatrix}$$
 then, $f(\frac{\pi}{3}) = 0$.

- a. 0
- b. 1
- c. -1
- d. 2

4. The roots of the equation
$$\begin{vmatrix} 1 & 4 & 20 \ 1 & -2 & 5 \ 1 & 2x & 5x^2 \ \end{vmatrix} = 0$$
 are

a.
$$-1, -2$$

5. If A and B are any 2×2 matrices, then det. (A+B) = 0 implies

a.
$$\det A + \det B = 0$$

b.
$$\det A = 0$$
 or $\det B = 0$

d.
$$\det A = 0$$
 and $\det B = 0$

6. If
$$\begin{vmatrix} 2x & 5 \\ 8 & x \end{vmatrix} = \begin{vmatrix} 6 & 5 \\ 8 & 3 \end{vmatrix}$$
, then x is _____.

- 7. Multiplying a determinant by k means multiplying the elements of only one row (or one column) by _____.
- 8. If elements of a row (or a column) in a determinant can be expressed as the sum of two or more elements, then the given determinant can be expressed as the _____ of two or more determinants.
- 9. Find adj A for $A = \begin{bmatrix} 2 & 3 \\ 1 & 4 \end{bmatrix}$.

- 10. $A = \begin{bmatrix} 1 & 2 \\ 4 & 8 \end{bmatrix}$ is singular or not. 11. Evaluate $2 \begin{vmatrix} 7 & -2 \\ -10 & 5 \end{vmatrix}$. 12. Evaluate: $\begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \end{vmatrix}$ $\sin \alpha \cos \beta \quad \sin \alpha \sin \beta \quad \cos \alpha$
- 13. Find the area of Δ whose vertices are (3, 8) (-4, 2) and (5, 1).
- 14. Find the equation of the line joining A (1, 3) and B (0, 0) using det. Find K if D (K, 0) is a point such that area of $\triangle ABD$ is 3 square unit.

15. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix}$$
, then find $(A')^{-1}$.

16. If $A = \begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$, find matrix B such that AB = I.

16. If
$$A = \begin{bmatrix} 3 & -4 \\ -1 & 2 \end{bmatrix}$$
 , find matrix B such that AB = I.

17. Using properties of determinants, prove that

$$egin{bmatrix} b+c & c+a & a+b \ q+r & r+p & p+q \ u+z & z+x & x+y \ \end{bmatrix} = 2 egin{bmatrix} a & b & c \ p & q & r \ x & y & z \ \end{bmatrix}.$$

17. Using properties of determinants, prove that
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}.$$
18. Given $A = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$. find AB and use this

result in solving the following system of equation.

$$x - y + z = 4$$
, $x - 2y - 2z = 9$, $2x + y + 3z = 1$

CBSE Test Paper 01

Chapter 4 Determinants

Solution

1. c. 1, 2 and 3

Explanation: Expanding along C₁

$$\begin{vmatrix} 1-x & 2 & 3 \\ 0 & 2-x & 0 \\ 0 & 2 & 3-x \end{vmatrix} = 0 \Rightarrow (1-x)(2-x)(3-x) = 0 \Rightarrow x = 1, 2, 3.$$

2. b. |A| = |A'|

Explanation: The determinant of a matrix A and its transpose always same.

Because if we interchange the rows into column in a determinant the value of determinant remains unaltered.

3. c. -1

Explanation:
$$\begin{vmatrix} 2\cos x & 1 & 0 \\ 1 & 2\cos x & 1 \\ 0 & 1 & 2\cos x \end{vmatrix}$$

Put $x = \frac{\pi}{3}$, $\begin{vmatrix} 2\cos\frac{\pi}{3} & 1 & 0 \\ 1 & 2\cos\frac{\pi}{3} & 1 \\ 0 & 1 & 2\cos\frac{\pi}{3} \end{vmatrix}$

4. b. -1, 2

Explanation:
$$\begin{vmatrix} 1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2x & 5x^2 \end{vmatrix} = 0$$

Apply,
$$R_3 \rightarrow R_3 - R_1$$
, $R_2 \rightarrow R_2 - R_1$,

$$\begin{vmatrix} 1 & 4 & 20 \\ 0 & -6 & -15 \\ 0 & 2x - 4 & 5x^2 - 20 \end{vmatrix} = 0$$

$$\Rightarrow -6(5x^2 - 20) + 15(2x - 4) = 0$$

$$\Rightarrow (x - 2)(x + 1) = 0 \Rightarrow x = 2, -1.$$

5. c. None of these

Explanation: If det (A+B)=0 implies that A+B a Singular matrix.

6.
$$x = \pm 3$$

9.
$$adjA=\left[egin{array}{cc} 4 & -3 \ -1 & 2 \end{array}
ight]$$

$$\begin{bmatrix} \therefore & A = \\ \\ change sign & inter-change \end{bmatrix}$$

10.
$$|A| = \begin{vmatrix} 1 & 2 \\ 4 & 8 \end{vmatrix}$$
= 8 - 8
= 0

Hence A is singular

11. According to the question, we have to evaluate $2\begin{vmatrix} 7 & -2 \\ -10 & 5 \end{vmatrix}$.

Now,
$$2igg| egin{array}{cc} 7 & -2 \ -10 & 5 \ \end{array} igg| = 2[35-(20)] \ = 2 imes 15 = 30$$

12. Let
$$\Delta = \begin{vmatrix} \cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha \end{vmatrix}$$

Expanding along first row,

$$=\coslpha\coseta(\coslpha\coseta-0)-\coslpha\sineta(-\coslpha\sineta-0)$$

$$-\sin\alpha\left(-\sin\alpha\sin^2\beta-\sin\alpha\cos^2\beta\right)$$

$$=\cos^2\!lpha\!\cos^2\!eta+\cos^2\!lpha\!\sin^2\!eta+\sin^2\!lpha\left(\sin^2\!eta+\cos^2\!eta
ight)$$

$$=\cos^2\!lpha\left(\cos^2\!eta+\sin^2\!eta
ight)+\sin^2\!lpha\left(\sin^2\!eta+\cos^2\!eta
ight)$$

$$=\cos^2\alpha+\sin^2\alpha$$

13.
$$\Delta = \frac{1}{2} \begin{vmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{vmatrix}$$

$$= \frac{1}{2} \begin{vmatrix} 3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1 \end{vmatrix}$$

$$= \frac{1}{2} [3(2-1) - 8(-4-5) + 1(-4+10)]$$

$$= \frac{1}{2} [3 + 72 - 14] = \frac{61}{2}$$

14. Let P (x, y) be any point on AB. Then the equation of line AB is,

$$egin{array}{c|ccc} rac{1}{2} & 0 & 0 & 1 \ 1 & 3 & 1 \ x & y & 1 \ \end{array} = 0$$

$$y = 3x$$

Area $\Delta ABD=3$ square unit

$$\begin{vmatrix} 1 & 3 & 1 \\ 0 & 0 & 1 \\ K & 0 & 1 \end{vmatrix} = \pm 3$$

$$k=\pm 2$$

15. If A =
$$\begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix}$$
, then we have to find (A')⁻¹.

15. If
$$A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix}$$
, then we have to find (A')⁻¹.

Now, $A = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix}$ Therefore, we have, $|A| = \begin{bmatrix} 1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1 \end{bmatrix}$

$$= 1 (-1 - 8) + 2 (0 + 8) + 3 (0 - 2)$$

[expanding along R₁]

Therefore, A is non-singular matrix and hence its inverse exists.

Cofactors of an element of |A| are given by

$$A_{11} = (-1)^{1+1} \begin{vmatrix} -1 & 4 \\ 2 & 1 \end{vmatrix} = (-1-8) = -9$$
 $A_{12} = (-1)^1 + 2 \begin{vmatrix} 0 & 4 \\ -2 & 1 \end{vmatrix} = -(0+8) = -8$

$$A_{13} = (-1)^{1+3} \begin{vmatrix} 0 & -1 \\ -2 & 2 \end{vmatrix} = (0-2) = -2$$

$$A_{21} = (-1)^{2+1} \begin{vmatrix} 2 & 3 \\ 2 & 1 \end{vmatrix} = -(-2-6) = 8$$

$$A_{22} = (-1)^{2+2} \begin{vmatrix} 1 & 3 \\ -2 & 1 \end{vmatrix} = (1+6) = 7$$

$$A_{23} = (-1)^{2+3} \begin{vmatrix} 1 & -2 \\ -2 & 2 \end{vmatrix} = -(2-4) = 2$$

$$A_{31} = (-1)^{3+1} \begin{vmatrix} -2 & 3 \\ -1 & 4 \end{vmatrix} = (-8+3) = -5$$

$$A_{32} = (-1)^{3+2} \begin{vmatrix} 1 & 3 \\ 0 & 4 \end{vmatrix} = -(4-0) = -4$$

$$A_{33} = (-1)^{3+3} \begin{vmatrix} 1 & -2 \\ 0 & -1 \end{vmatrix} = (-1-0) = -1$$
Thus, adj $A = \begin{bmatrix} A_{11} & A_{21} & A_{31} \\ A_{12} & A_{22} & A_{32} \\ A_{13} & A_{23} & A_{33} \end{bmatrix} = \begin{bmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{bmatrix}$
Hence, $A^{-1} = \frac{1}{|A|}$ adj $A = \frac{1}{1} \begin{bmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{bmatrix}$
Now, $(A)^{-1} = (A^{-1})^{1} = \begin{bmatrix} -9 & 8 & -5 \\ -8 & 7 & -4 \\ -2 & 2 & -1 \end{bmatrix} = \begin{bmatrix} -9 & -8 & -2 \\ 8 & 7 & 2 \\ -5 & -4 & -1 \end{bmatrix}$

16.
$$|A| = 2 \neq 0$$

Therefore A⁻¹ exists

$$AB = I$$

$$A^{-1}AB = A^{-1}I$$

$$B = A^{-1}$$

$$adjA = egin{bmatrix} 2 & 4 \ 1 & 3 \end{bmatrix} \ A^{-1} = rac{1}{|A|}(adjA) \ = rac{1}{2}egin{bmatrix} 2 & 4 \ 1 & 3 \end{bmatrix} \ = egin{bmatrix} 1 & 2 \ rac{1}{2} & rac{3}{2} \end{bmatrix}$$

Hence
$$B = \left[egin{array}{cc} 1 & 2 \ rac{1}{2} & rac{3}{2} \end{array}
ight]$$

17. According to the question, we have to use properties of determinants to prove that,

Let LHS =
$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix} = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$

$$\begin{vmatrix} b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y \end{vmatrix}$$

Therefore, on applying $C_1 \rightarrow C_1 + C_2 + C_3$ we get,

$$\Delta = egin{array}{cccc} 2(a+b+c) & c+a & a+b \ 2(p+q+r) & r+p & p+q \ 2(x+y+z) & z+x & x+y \ \end{array}$$

on taking 2 common from C_1 , we get,

$$\Delta=2egin{array}{cccc} a+b+c & c+a & a+b\ p+q+r & r+p & p+q\ x+y+z & z+x & x+y \end{array}$$

On applying $C_2 \rightarrow C_2$ - C_1 and $C_3 \rightarrow C_3$ - C12,

we get

$$\Delta=2egin{array}{c|c} a+b+c & -b & -c \ p+q+r & -q & -r \ x+y+z & -y & -z \ \end{array}$$

on applying $C_1 o C_1 + C_2 + C_3, we \ get,$

$$\Delta=2egin{array}{ccc|c} a & -b & -c\ p & -q & -r\ x & -y & -z\ \end{array}$$

$$\Delta = 2 \begin{vmatrix} a & -b & -c \\ p & -q & -r \\ x & -y & -z \end{vmatrix}$$

$$\therefore \Delta = 2 \begin{vmatrix} a & b & c \\ p & q & r \\ x & y & z \end{vmatrix}$$
 [taking (-1) common from both C₂ and C₃]

= RHS

18.
$$x - y + z = 4$$

 $x - 2y - 2z = 9$
 $2x + y + 3z = 1$

Let
$$A=egin{bmatrix}1&-1&1\\1&-2&-2\\2&1&3\end{bmatrix}X=egin{bmatrix}x\\y\\z\end{bmatrix}C=egin{bmatrix}4\\9\\1\end{bmatrix}$$

$$AX = C$$

$$AB = egin{bmatrix} 1 & -1 & 1 \ 1 & -2 & -2 \ 2 & 1 & 3 \end{bmatrix} egin{bmatrix} -4 & 4 & 4 \ -7 & 1 & 3 \ 5 & -3 & -1 \end{bmatrix} = egin{bmatrix} 8 & 0 & 0 \ 0 & 8 & 0 \ 0 & 0 & 8 \end{bmatrix}$$

$$AB = 8I$$

$$A^{-1} = \frac{1}{8}B \begin{bmatrix} \because A^{-1}AB = 8A^{-1}I \\ B = 8A^{-1} \end{bmatrix}$$
$$= \frac{1}{8}\begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$$

$$X = A^{-1}C$$

$$\left[egin{array}{c} x \ y \ z \end{array}
ight] = \left[egin{array}{c} 3 \ -2 \ -1 \end{array}
ight]$$

$$x = 3, y = -2, z = -1$$