CBSE Test Paper 01

Chapter 4 Determinants

1. The roots of the equation det. $\left|\begin{array}{ccc}1-x & 2 & 3 \\ 0 & 2-x & 0 \\ 0 & 2 & 3-x\end{array}\right|=0$ are
a. None of these
b. 2 and 3
c. 1, 2 and 3
d. 1 and 3
2. If A ' is the transpose of a square matrix A, then
a. $|A|+\left|A^{\prime}\right|=0$
b. $|\mathrm{A}|=\left|\mathrm{A}^{\prime}\right|$
c. $|\mathrm{A}| \neq\left|\mathrm{A}^{\prime}\right|$
d. None of these
3. If $\mathrm{f}(\mathrm{x})=\left|\begin{array}{ccc}2 \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|$ then, $\mathrm{f}\left(\frac{\pi}{3}\right)=$.
a. 0
b. 1
c. -1
d. 2
4. The roots of the equation $\left|\begin{array}{ccc}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 x & 5 x^{2}\end{array}\right|=0$ are
a. $-1,-2$
b. $-1,2$
c. $1,-2$
d. 1,2
5. If A and B are any 2×2 matrices, then det. $(\mathrm{A}+\mathrm{B})=0$ implies
a. $\operatorname{det} \mathrm{A}+\operatorname{det} \mathrm{B}=0$
b. $\operatorname{det} \mathrm{A}=0$ or $\operatorname{det} \mathrm{B}=0$
c. None of these
d. $\operatorname{det} \mathrm{A}=0$ and $\operatorname{det} \mathrm{B}=0$
6. If $\left|\begin{array}{cc}2 x & 5 \\ 8 & x\end{array}\right|=\left|\begin{array}{ll}6 & 5 \\ 8 & 3\end{array}\right|$, then x is \qquad .
7. Multiplying a determinant by k means multiplying the elements of only one row (or one column) by \qquad .
8. If elements of a row (or a column) in a determinant can be expressed as the sum of two or more elements, then the given determinant can be expressed as the \qquad of two or more determinants.
9. Find adj A for $A=\left[\begin{array}{ll}2 & 3 \\ 1 & 4\end{array}\right]$.
10. $A=\left[\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right]$ is singular or not.
11. Evaluate $2\left|\begin{array}{rr}7 & -2 \\ -10 & 5\end{array}\right|$.
12. Evaluate: $\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$.
13. Find the area of Δ whose vertices are $(3,8)(-4,2)$ and $(5,1)$.
14. Find the equation of the line joining $A(1,3)$ and $B(0,0)$ using det. Find K if $D(K, 0)$ is a point such that area of $\triangle A B D$ is 3 square unit.
15. If $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$, then find $\left(\mathrm{A}^{\prime}\right)^{-1}$.
16. If $A=\left[\begin{array}{cc}3 & -4 \\ -1 & 2\end{array}\right]$, find matrix B such that $\mathrm{AB}=\mathrm{I}$.
17. Using properties of determinants, prove that
$\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{ccc}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$.
18. Given $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and $B=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$. find $A B$ and use this
result in solving the following system of equation.
$x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1$

CBSE Test Paper 01

Chapter 4 Determinants

Solution

1. c. 1,2 and 3

Explanation: Expanding along C_{1}

$$
\left|\begin{array}{ccc}
1-x & 2 & 3 \\
0 & 2-x & 0 \\
0 & 2 & 3-x
\end{array}\right|=0 \Rightarrow(1-\mathrm{x})(2-\mathrm{x})(3-\mathrm{x})=0 \Rightarrow \mathrm{x}=1,2,3
$$

2.

b. $|\mathrm{A}|=\left|\mathrm{A}^{\prime}\right|$

Explanation: The determinant of a matrix A and its transpose always same.
Because if we interchange the rows into column in a determinant the value of determinant remains unaltered.
3. c. -1
Explanation: $\left|\begin{array}{ccc}2 \cos x & 1 & 0 \\ 1 & 2 \cos x & 1 \\ 0 & 1 & 2 \cos x\end{array}\right|$
Put $\mathrm{x}=\frac{\pi}{3},\left|\begin{array}{ccc}2 \cos \frac{\pi}{3} & 1 & 0 \\ 1 & 2 \cos \frac{\pi}{3} & 1 \\ 0 & 1 & 2 \cos \frac{\pi}{3}\end{array}\right|$
$\Rightarrow\left|\begin{array}{ccc}2 . \frac{1}{2} & 1 & 0 \\ 1 & 2 . \frac{1}{2} & 1 \\ 0 & 1 & 2 . \frac{1}{2}\end{array}\right|$
$\Rightarrow\left|\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right| \Rightarrow 1(0)-1(1)=-1$
4. b. $-1,2$

Explanation: $\left|\begin{array}{ccc}1 & 4 & 20 \\ 1 & -2 & 5 \\ 1 & 2 x & 5 x^{2}\end{array}\right|=0$
Apply, $\mathrm{R}_{3} \rightarrow \mathrm{R}_{3}-\mathrm{R}_{1}, \mathrm{R}_{2} \rightarrow \mathrm{R}_{2}-\mathrm{R}_{1}$,

$$
\begin{aligned}
& \Rightarrow\left|\begin{array}{ccc}
1 & 4 & 20 \\
0 & -6 & -15 \\
0 & 2 x-4 & 5 x^{2}-20
\end{array}\right|=0 \\
& \Rightarrow-6\left(5 x^{2}-20\right)+15(2 x-4)=0 \\
& \Rightarrow(x-2)(x+1)=0 \Rightarrow x=2,-1 .
\end{aligned}
$$

5. c. None of these

Explanation: If det $(A+B)=0$ implies that $A+B$ a Singular matrix.
6. $x= \pm 3$
7. k
8. sum
9. $\operatorname{adj} A=\left[\begin{array}{cc}4 & -3 \\ -1 & 2\end{array}\right]$

$$
\because \quad A=
$$

change sign inter-change]
10. $|A|=\left|\begin{array}{ll}1 & 2 \\ 4 & 8\end{array}\right|$
$=8-8$
$=0$
Hence A is singular
11. According to the question, we have to evaluate $2\left|\begin{array}{rr}7 & -2 \\ -10 & 5\end{array}\right|$.

Now, $2\left|\begin{array}{rr}7 & -2 \\ -10 & 5\end{array}\right|=2[35-(20)]$
$=2 \times 15=30$
12. Let $\Delta=\left|\begin{array}{ccc}\cos \alpha \cos \beta & \cos \alpha \sin \beta & -\sin \alpha \\ -\sin \beta & \cos \beta & 0 \\ \sin \alpha \cos \beta & \sin \alpha \sin \beta & \cos \alpha\end{array}\right|$

Expanding along first row,
$=\cos \alpha \cos \beta(\cos \alpha \cos \beta-0)-\cos \alpha \sin \beta(-\cos \alpha \sin \beta-0)$
$-\sin \alpha\left(-\sin \alpha \sin ^{2} \beta-\sin \alpha \cos ^{2} \beta\right)$
$=\cos ^{2} \alpha \cos ^{2} \beta+\cos ^{2} \alpha \sin ^{2} \beta+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)$
$=\cos ^{2} \alpha\left(\cos ^{2} \beta+\sin ^{2} \beta\right)+\sin ^{2} \alpha\left(\sin ^{2} \beta+\cos ^{2} \beta\right)$
$=\cos ^{2} \alpha+\sin ^{2} \alpha$
$=1$
13. $\Delta=\frac{1}{2}\left|\begin{array}{lll}x_{1} & y_{1} & 1 \\ x_{2} & y_{2} & 1 \\ x_{3} & y_{3} & 1\end{array}\right|$
$=\frac{1}{2}\left|\begin{array}{ccc}3 & 8 & 1 \\ -4 & 2 & 1 \\ 5 & 1 & 1\end{array}\right|$
$=\frac{1}{2}[3(2-1)-8(-4-5)+1(-4+10)]$
$=\frac{1}{2}[3+72-14]=\frac{61}{2}$
14. Let $P(x, y)$ be any point on $A B$. Then the equation of line $A B$ is,
$\frac{1}{2}\left|\begin{array}{lll}0 & 0 & 1 \\ 1 & 3 & 1 \\ x & y & 1\end{array}\right|=0$
$\mathrm{y}=3 \mathrm{x}$
Area $\triangle A B D=3$ square unit
$\frac{1}{2}\left|\begin{array}{ccc}1 & 3 & 1 \\ 0 & 0 & 1 \\ K & 0 & 1\end{array}\right|= \pm 3$
$k= \pm 2$
15. If $A=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$, then we have to find $\left(\mathrm{A}^{\prime}\right)^{-1}$.

Now, $\mathrm{A}=\left[\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right]$ Therefore, we have, $|A|=\left|\begin{array}{ccc}1 & -2 & 3 \\ 0 & -1 & 4 \\ -2 & 2 & 1\end{array}\right|$
$=1(-1-8)+2(0+8)+3(0-2)$
[expanding along R_{1}]
$=-9+16-6=1 \neq 0$
Therefore, A is non-singular matrix and hence its inverse exists.
Cofactors of an element of $|\mathrm{A}|$ are given by
$A_{11}=(-1)^{1+1}\left|\begin{array}{cc}-1 & 4 \\ 2 & 1\end{array}\right|=(-1-8)=-9$
$A_{12}=(-1)^{1}+2\left|\begin{array}{cc}0 & 4 \\ -2 & 1\end{array}\right|=-(0+8)=-8$

$$
\begin{aligned}
& A_{13}=(-1)^{1+3}\left|\begin{array}{cc}
0 & -1 \\
-2 & 2
\end{array}\right|=(0-2)=-2 \\
& A_{21}=(-1)^{2+1}\left|\begin{array}{cc}
-2 & 3 \\
2 & 1
\end{array}\right|=-(-2-6)=8 \\
& A_{22}=(-1)^{2+2}\left|\begin{array}{cc}
1 & 3 \\
-2 & 1
\end{array}\right|=(1+6)=7 \\
& A_{23}=(-1)^{2+3}\left|\begin{array}{cc}
1 & -2 \\
-2 & 2
\end{array}\right|=-(2-4)=2 \\
& A_{31}=(-1)^{3+1}\left|\begin{array}{ll}
-2 & 3 \\
-1 & 4
\end{array}\right|=(-8+3)=-5 \\
& A_{32}=(-1)^{3+2}\left|\begin{array}{ll}
1 & 3 \\
0 & 4
\end{array}\right|=-(4-0)=-4 \\
& A_{33}=(-1)^{3+3}\left|\begin{array}{ll}
1 & -2 \\
0 & -1
\end{array}\right|=(-1-0)=-1 \\
& \text { Thus, adj } \mathrm{A}=\left[\begin{array}{lll}
A_{11} & A_{21} & A_{31} \\
A_{12} & A_{22} & A_{32} \\
A_{13} & A_{23} & A_{33}
\end{array}\right]=\left[\begin{array}{lll}
-9 & 8 & -5 \\
-8 & 7 & -4 \\
-2 & 2 & -1
\end{array}\right] \\
& \begin{array}{l}
\text { Hence, } A^{-1}=\frac{1}{|A|} \operatorname{adj} A=\frac{1}{1}\left[\begin{array}{lll}
-9 & 8 & -5 \\
-8 & 7 & -4 \\
-2 & 2 & -1
\end{array}\right] \\
\text { Now, }\left(A^{\prime}\right)^{-1}=\left(\mathrm{A}^{-1}\right)^{\prime}=\left[\begin{array}{lll}
-9 & 8 & -5 \\
-8 & 7 & -4 \\
-2 & 2 & -1
\end{array}\right]^{\prime}=\left[\begin{array}{ccc}
-9 & -8 & -2 \\
8 & 7 & 2 \\
-5 & -4 & -1
\end{array}\right]
\end{array}
\end{aligned}
$$

16. $|A|=2 \neq 0$

Therefore A^{-1} exists
$\mathrm{AB}=\mathrm{I}$
$\mathrm{A}^{-1} \mathrm{AB}=\mathrm{A}^{-1} \mathrm{I}$
$B=A^{-1}$
$\operatorname{adj} A=\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$
$A^{-1}=\frac{1}{|A|}(\operatorname{adj} A)$
$=\frac{1}{2}\left[\begin{array}{ll}2 & 4 \\ 1 & 3\end{array}\right]$
$=\left[\begin{array}{ll}1 & 2 \\ \frac{1}{2} & \frac{3}{2}\end{array}\right]$

Hence $B=\left[\begin{array}{cc}1 & 2 \\ \frac{1}{2} & \frac{3}{2}\end{array}\right]$
17. According to the question,we have to use properties of determinants to prove that,
$\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$
Let LHS $=\left|\begin{array}{lll}b+c & c+a & a+b \\ q+r & r+p & p+q \\ y+z & z+x & x+y\end{array}\right|$
Therefore,on applying $\mathrm{C}_{1} \rightarrow \mathrm{C}_{1}+\mathrm{C}_{2}+\mathrm{C}_{3}$ we get,

$$
\Delta=\left|\begin{array}{lll}
2(a+b+c) & c+a & a+b \\
2(p+q+r) & r+p & p+q \\
2(x+y+z) & z+x & x+y
\end{array}\right|
$$

on taking 2 common from C_{1}, we get,
$\Delta=2\left|\begin{array}{lll}a+b+c & c+a & a+b \\ p+q+r & r+p & p+q \\ x+y+z & z+x & x+y\end{array}\right|$
On applying $\mathrm{C}_{2} \rightarrow \mathrm{C}_{2}-\mathrm{C}_{1}$ and $\mathrm{C}_{3} \rightarrow \mathrm{C}_{3}-\mathrm{C} 12$,
we get
$\Delta=2\left|\begin{array}{lll}a+b+c & -b & -c \\ p+q+r & -q & -r \\ x+y+z & -y & -z\end{array}\right|$
on applying $C_{1} \rightarrow C_{1}+C_{2}+C_{3}$, we get,
$\Delta=2\left|\begin{array}{lll}a & -b & -c \\ p & -q & -r \\ x & -y & -z\end{array}\right|$
$\therefore \Delta=2\left|\begin{array}{lll}a & b & c \\ p & q & r \\ x & y & z\end{array}\right|$ [taking (-1) common from both C_{2} and C_{3}]
$=$ RHS
18. $\mathrm{x}-\mathrm{y}+\mathrm{z}=4$
$x-2 y-2 z=9$
$2 x+y+3 z=1$

Let $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right] X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] C=\left[\begin{array}{l}4 \\ 9 \\ 1\end{array}\right]$
$A X=C$
$A B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]=\left[\begin{array}{lll}8 & 0 & 0 \\ 0 & 8 & 0 \\ 0 & 0 & 8\end{array}\right]$
$\mathrm{AB}=8 \mathrm{I}$
$A^{-1}=\frac{1}{8} B\left[\begin{array}{c}\because A^{-1} A B=8 A^{-1} I \\ B=8 A^{-1}\end{array}\right]$
$=\frac{1}{8}\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$
$\mathrm{X}=\mathrm{A}^{-1} \mathrm{C}$
$\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ -1\end{array}\right]$
$x=3, y=-2, z=-1$

