CBSE Test Paper 02

Chapter 3 Matrices

1. The system of equations, $\mathrm{x}+\mathrm{y}+\mathrm{z}=1,3 \mathrm{x}+6 \mathrm{y}+\mathrm{z}=8, \alpha \mathrm{x}+2 \mathrm{y}+3 \mathrm{z}=1$ has a unique solution for
a. all real α
b. α not equal to 0
c. all integral α
d. all rational α
2. If $\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$, then for all natural numbers n, A_{n} is equal to
a. $\left[\begin{array}{ll}1 & 0 \\ 1 & n\end{array}\right]$
b. $\left[\begin{array}{ll}n & 0 \\ 1 & 1\end{array}\right]$
c. $\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$
d. none of these
3. If A and B are square matrices of the same order and $A B=3 I$, then A^{-1} is equal to
a. $3 \mathrm{~B}^{-1}$
b. 3 B
c. $\frac{1}{3} B$
d. none of these
4. If A and B are square matrices of the same order, then $(A+B)^{2}=A^{2}+2 A B+B^{2}$ implies
a. none of these
b. $\mathrm{AB}=\mathrm{BA}$
c. $\mathrm{AB}+\mathrm{BA}=0$
d. $\mathrm{AB}=\mathrm{O}$
5. If A and B are two matrices such that $A B=B A$ and $B A=A$, then $A^{2}+B^{2}=$.
a. $\mathrm{A}+\mathrm{B}$
b. 2 BA
c. AB
d. 2 AB
6. If A and B are matrices of same order, then $(3 A-2 B)$ ' is equal to \qquad .
7. If A is matrix of order $m \times n$ and B is a matrix such that $A B^{\prime}$ and $B^{\prime} A$ are both defined, then order of matrix B is \qquad .
8. If A is a symmetric matrix, then A^{3} is a \qquad matrix.
9. Write the value of $\mathrm{x}-\mathrm{y}+\mathrm{z}$ from following equation.
$\left[\begin{array}{c}x+y+z \\ x+z \\ y+z\end{array}\right]=\left[\begin{array}{l}9 \\ 5 \\ 7\end{array}\right]$
10. If matrix $A=\left[\begin{array}{rr}1 & -1 \\ -1 & 1\end{array}\right]$ and $A^{2}=k A$, then write the value of k.
11. Given an example of matrix A and B such that $A B=0$ but $A \neq 0, B \neq 0$.
12. Show by an example that for $A \neq 0, B \neq 0, \mathrm{AB}=0$.
13. If the matrix A is both symmetric and skew symmetric, then prove that A will be a Zero matrix.
14. If $A=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]$, Prove that $\mathrm{A}-\mathrm{A}^{\mathrm{t}}$ is a skew symmetric matrix.
15. Find the matrix X so that $X\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$.
16. Express the matrix A as the sum of a symmetric and a skew symmetric matrix, where
$A=\left[\begin{array}{ccc}2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4\end{array}\right]$.
17. If $\mathrm{AB}=\mathrm{BA}$ for any two square matrices, then prove by mathematical induction that $A B^{n}=B A^{n}$ for all $n \in N$.
18. If $A=\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]$ and I is the identity matrix of order 2 , show that $I+A=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$.

CBSE Test Paper 02

Chapter 3 Matrices

Solution

1. c. all integral

Explanation: The given system of equations has unique solution,
if : $\left|\begin{array}{lll}1 & 1 & 1 \\ 3 & 6 & 1 \\ \alpha & 2 & 3\end{array}\right| \neq 0 \Rightarrow 1(18-2)-1(9-\alpha)+1(6-6 \alpha) \neq 0$
$\Rightarrow 13-5 \alpha \neq 0 \Rightarrow \alpha \neq \frac{13}{5}$.
Therefore, unique solution exists for all integral values of alpha α.
2.
c. $\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$

Explanation: $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]$,
$\mathrm{A}^{2}=\mathrm{A} . \mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 2 & 1\end{array}\right]$
$\mathrm{A}^{3}=\mathrm{A} \cdot \mathrm{A} \cdot \mathrm{A}=\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 3 & 1\end{array}\right]$,
$\ldots \mathrm{A}^{\mathrm{n}}=$ A.A.A........ $(\mathrm{n}$-times $)=\left[\begin{array}{ll}1 & 0 \\ n & 1\end{array}\right]$
3. c. $\frac{1}{3} B$

Explanation: If A and B are square matrices of the same order and $A B=3 I$, then, $\frac{1}{3} A B=I A^{-1}=\frac{1}{3} B$.
4. b. $\mathrm{AB}=\mathrm{BA}$

Explanation:

If A and B are square matrices of same order, then, product of the matrices is not commutative.Therefore, the given result is true only when $\mathrm{AB}=\mathrm{BA}$.
5. a. $\mathrm{A}+\mathrm{B}$

Explanation: $\mathrm{AB}=\mathrm{B} \Rightarrow(\mathrm{AB}) \mathrm{A}=\mathrm{BA}$
$\Rightarrow \mathrm{A}(\mathrm{BA})=\mathrm{BA} \Rightarrow \mathrm{A}(\mathrm{A})=\mathrm{A}$,
$\Rightarrow A^{2}=A$

$$
\begin{aligned}
& \mathrm{AB}=\mathrm{B} \Rightarrow \mathrm{~B}(\mathrm{AB})=\mathrm{BB} \\
& \Rightarrow(\mathrm{BA}) \mathrm{B}=\mathrm{B}^{2} \\
& \Rightarrow \mathrm{AB}=\mathrm{B}^{2} \\
& \Rightarrow \mathrm{~B}=\mathrm{B}^{2} \\
& \therefore \mathrm{~A}^{2}+\mathrm{B}^{2}=\mathrm{A}+\mathrm{B}
\end{aligned}
$$

6. $3 \mathrm{~A}^{\prime}-2 \mathrm{~B}^{\prime}$
7. $\mathrm{m} \times \mathrm{n}$
8. symmetric
9. According to the question,

$$
\left[\begin{array}{c}
x+y+z \\
x+z \\
y+z
\end{array}\right]=\left[\begin{array}{l}
9 \\
5 \\
7
\end{array}\right]
$$

Equating the corresponding elements,

$$
x+y+z=9 \ldots \text { (i) }
$$

$$
x+z=5 \ldots \text { (ii) }
$$

$$
\text { and } y+z=7 \ldots \text { (iii) }
$$

Putting the value of $x+z$ from Eq. (ii) in Eq. (i)
$y+5=9 \Rightarrow y=4$
On putting $y=4$ in Eq. (iii), we get $z=3$
Again, putting $z=3$ in Eq. (ii), we get $x=2$
$\therefore \mathrm{x}-\mathrm{y}+\mathrm{z}=2-4+3=1$
10. According to the question, $A=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
and $A^{2}=k A$..(ii)
Now, $\mathrm{A}^{2}=\mathrm{A} \cdot \mathrm{A}$
$=\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]=\left[\begin{array}{cc}1+1 & -1-1 \\ -1-1 & 1+1\end{array}\right]$ [multiplying row by column]
$=\left[\begin{array}{cc}2 & -2 \\ -2 & 2\end{array}\right]=2\left[\begin{array}{cc}1 & -1 \\ -1 & 1\end{array}\right]$
$\Rightarrow \mathrm{A}^{2}=2 \mathrm{~A}$ [from Eq. (i)]
Comparing with Eq. (ii),
$\mathrm{k}=2$
11. $A=\left[\begin{array}{cc}0 & -1 \\ 0 & 2\end{array}\right]$ and $B=\left[\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right]$.

Therefore, $A B=\left[\begin{array}{cc}0 & -1 \\ 0 & 2\end{array}\right]\left[\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$.
12. Let $A=\left[\begin{array}{cc}0 & -4 \\ 0 & 2\end{array}\right] \neq 0$ and $B=\left[\begin{array}{ll}3 & 5 \\ 0 & 0\end{array}\right] \neq 0$
$\therefore A B=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$ Hence proved.
13. It is given that $A^{t}=A \& A^{t}=-A$
$\Rightarrow \mathrm{A}=-\mathrm{A}$
$\Rightarrow 2 \mathrm{~A}=0$
$\Rightarrow \mathrm{A}=0$
14. Let $\mathrm{P}=\mathrm{A}-\mathrm{A}^{\mathrm{t}}$
$=\left[\begin{array}{ll}2 & 3 \\ 4 & 5\end{array}\right]+\left[\begin{array}{ll}-2 & -4 \\ -3 & -5\end{array}\right]$
$=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$P^{\prime}=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]$
$P^{\prime}=-\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$
$\mathrm{P}^{\prime}=-\mathrm{P}$
Hence $A-A^{t}$ is a skew symmetric matrix.
15. Let $X=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$
$\therefore\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
$\left[\begin{array}{lll}a+4 b & 2 a+5 b & 3 a+6 b \\ c+4 d & 2 c+5 d & 3 c+6 d\end{array}\right]=\left[\begin{array}{ccc}-7 & -8 & -9 \\ 2 & 4 & 6\end{array}\right]$
On solving $a+4 b=-7$ and $2 a+5 b=-8 \& c+4 d=2$ and $2 c+5 d=4$
we get $a=1, b=-2, c=2, d=0$
$X=\left[\begin{array}{cc}1 & -2 \\ 2 & 0\end{array}\right]$
16. We have
$A=\left[\begin{array}{ccc}2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4\end{array}\right]$, then $A^{\prime}=\left[\begin{array}{ccc}2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4\end{array}\right]$
Hence $\frac{A+A^{\prime}}{2}=\frac{1}{2}\left[\begin{array}{ccc}4 & 11 & -5 \\ 11 & 6 & 3 \\ -5 & 3 & 8\end{array}\right]=\left[\begin{array}{ccc}2 & \frac{11}{2} & \frac{5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 4\end{array}\right]$
And $\frac{A-A^{\prime}}{2}=\frac{1}{2}\left[\begin{array}{ccc}0 & -3 & -7 \\ 3 & 0 & 7 \\ 7 & -7 & 0\end{array}\right]=\left[\begin{array}{ccc}0 & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & -\frac{7}{2} & 0\end{array}\right]$
Therefore,
$\frac{A+A^{\prime}}{2}+\frac{A-A^{\prime}}{2}=\left[\begin{array}{ccc}2 & \frac{11}{2} & \frac{-5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 4\end{array}\right]+\left[\begin{array}{ccc}0 & \frac{-3}{2} & \frac{-7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & \frac{-7}{2} & 0\end{array}\right]=\left[\begin{array}{ccc}2 & 4 & -6 \\ 7 & 3 & 5 \\ 0 & -2 & 4\end{array}\right]=A$
17. For $\mathrm{n}=1$, we have, $\mathrm{AB}^{1}=\mathrm{B}^{1} \mathrm{~A}$
$\Rightarrow \mathrm{AB}=\mathrm{BA}$, which is true.
Let it be true for $n=m$ i.e $A B^{m}=B A^{m}$.
Then,for $\mathrm{n}=\mathrm{m}+1$,
$A B^{m+1}=A\left(B^{m} B\right)=\left(A B^{m}\right) B=\left(B^{m} A\right) B[b y(1)]$
$=\mathrm{B}^{\mathrm{m}}(\mathrm{AB})=\mathrm{B}^{\mathrm{m}}(\mathrm{AB})$ [as $\mathrm{AB}=\mathrm{BA}$, given]
$=\left(B^{m} B\right) A=B^{m+1} A$. So ,it is true for $n=m+1$
$\therefore \mathrm{AB}^{\mathrm{n}}=\mathrm{B}^{\mathrm{n}} \mathrm{A}$
18. L.H.S. $I+A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]=\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]$

Now, $N-A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{cc}0 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 0\end{array}\right]=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]$
R.H.S. $=(I-A)\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{cc}1 & \tan \frac{\alpha}{2} \\ -\tan \frac{\alpha}{2} & 1\end{array}\right]\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}\cos \alpha+\sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha+\cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2}+\sin \alpha & \sin \alpha \tan \frac{\alpha}{2}+\cos \alpha\end{array}\right]$
$=\left[\begin{array}{cc}\cos \alpha+\sin \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & -\sin \alpha+\cos \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ -\cos \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}+\sin \alpha & \sin \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}+\cos \alpha\end{array}\right]$
$\left[\begin{array}{cc}\frac{\cos \alpha \cos \frac{\alpha}{2}+\sin \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{-\sin \alpha \cos \frac{\alpha}{2}+\cos \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ \frac{-\cos \alpha \sin \frac{\alpha}{2}+\sin \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\sin \alpha \sin \frac{\alpha}{2}+\cos \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}\end{array}\right]$
$=\left[\begin{array}{cc}\frac{\cos \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} & \frac{-\sin \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} \\ \frac{\sin \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}} & \frac{\cos \left(\alpha-\frac{\alpha}{2}\right)}{\cos \frac{\alpha}{2}}\end{array}\right]=\left[\begin{array}{cc}\frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{-\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}}\end{array}\right]=\left[\begin{array}{cc}1 & -\tan \frac{\alpha}{2} \\ \tan \frac{\alpha}{2} & 1\end{array}\right]$
\therefore L.H.S. $=$ R.H.S. Proved.

