CBSE Test Paper 02 Chapter 3 Matrices

- 1. The system of equations, x + y + z = 1, 3x + 6y + z = 8, $\alpha x + 2y + 3z = 1$ has a unique solution for
 - a. all real lpha
 - b. α not equal to 0
 - c. all integral α
 - d. all rational α

- a. $\begin{bmatrix} 1 & 0 \\ 1 & n \end{bmatrix}$ b. $\begin{bmatrix} n & 0 \\ 1 & 1 \end{bmatrix}$ c. $\begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$ d. none of these
- 3. If A and B are square matrices of the same order and AB = 3I, then A^{-1} is equal to
 - a. 3B⁻¹
 - b. 3 B
 - c. $\frac{1}{3}B$
 - d. none of these

4. If A and B are square matrices of the same order, then $(A + B)^2 = A^2 + 2AB + B^2$ implies

- a. none of these
- b. AB = BA
- c. AB + BA = O
- d. AB = 0

5. If A and B are two matrices such that AB = BA and BA = A, then $A^2 + B^2 =$.

- a. A + B
- b. 2 BA
- c. AB
- d. 2 AB

- 6. If A and B are matrices of same order, then (3A 2B)' is equal to _____.
- 7. If A is matrix of order m × n and B is a matrix such that AB' and B'A are both defined, then order of matrix B is _____
- 8. If A is a symmetric matrix, then A³ is a _____ matrix.
- 9. Write the value of x y + z from following equation.

$$egin{bmatrix} x+y+z \ x+z \ y+z \end{bmatrix} = egin{bmatrix} 9 \ 5 \ 7 \end{bmatrix}$$

- 10. If matrix $A = \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$ and $A^2 = kA$, then write the value of k.
- 11. Given an example of matrix A and B such that AB = 0 but A \neq 0, B \neq 0.
- 12. Show by an example that for $A \neq 0, \ B \neq 0$, AB = 0.
- 13. If the matrix A is both symmetric and skew symmetric, then prove that A will be a Zero matrix.

14. If
$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}$$
, Prove that A - A^t is a skew symmetric matrix.
15. Find the matrix X so that $X \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$

16. Express the matrix A as the sum of a symmetric and a skew symmetric matrix, where $\lceil 2 \rceil$ 4 - 6]

2

4

$$A = \begin{bmatrix} 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}.$$

17. If AB = BA for any two square matrices, then prove by mathematical induction that $AB^n=BA^n\,\, ext{for all}\,n\in N.$

18. If
$$A = \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix}$$
 and I is the identity matrix of order 2, show that $I + A = (I - A) \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$.

CBSE Test Paper 02 Chapter 3 Matrices

Solution

1. c. all integral

Explanation: The given system of equations has unique solution,

Therefore , unique solution exists for all integral values of alpha $\boldsymbol{\alpha}.$

2. c.
$$\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$$

Explanation: $A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix}$,
 $A^2 = A.A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 2 & 1 \end{bmatrix}$
 $A^3 = A.A.A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix}$,
...Aⁿ = A.A.A......A (n -times) = $\begin{bmatrix} 1 & 0 \\ n & 1 \end{bmatrix}$

3. c. $\frac{1}{3}B$

Explanation: If A and B are square matrices of the same order and AB = 3 I, then , $\frac{1}{3}AB = IA^{-1} = \frac{1}{3}B$.

4. b. AB = BA

Explanation:

If A and B are square matrices of same order, then, product of the matrices is not commutative.Therefore, the given result is true only when AB = BA.

5. a. A + B

Explanation: AB = B \Rightarrow (AB)A = BA \Rightarrow A(BA) = BA \Rightarrow A(A) = A, \Rightarrow A² = A

$$AB = B \Rightarrow B(AB) = BB$$
$$\Rightarrow (BA)B = B^{2}$$
$$\Rightarrow AB = B^{2}$$
$$\Rightarrow B = B^{2}$$
$$\therefore A^{2} + B^{2} = A + B$$

- 6. 3A' 2B'
- 7. m × n
- 8. symmetric
- 9. According to the question,

and $A^2 = kA$...(ii)

 $\lceil x+y+z \rceil$ **[**9⁻ $egin{array}{c|c} x+y+z \ x+z \end{array} = egin{array}{c|c} 9 \ 5 \end{array}$ |7|y+zEquating the corresponding elements, x + y + z = 9 ...(i) x + z = 5 ...(ii) and y + z = 7 ...(iii) Putting the value of x + z from Eq. (ii) in Eq. (i) $y + 5 = 9 \Rightarrow y = 4$ On putting y = 4 in Eq. (iii), we get z = 3 Again, putting z = 3 in Eq. (ii), we get x = 2. x - y + z = 2 - 4 + 3 = 1

10. According to the question, $A=\Big|$

$$\begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$
...(i)

Now,
$$A^2 = A \cdot A$$

$$= \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix} = \begin{bmatrix} 1+1 & -1-1 \\ -1-1 & 1+1 \end{bmatrix} \text{ [multiplying row by column]}$$

$$= \begin{bmatrix} 2 & -2 \\ -2 & 2 \end{bmatrix} = 2 \begin{bmatrix} 1 & -1 \\ -1 & 1 \end{bmatrix}$$

$$\Rightarrow A^2 = 2A \text{ [from Eq. (i)]}$$
Comparing with Eq. (ii),
 $k = 2$

11.
$$A = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix}$.
Therefore, $AB = \begin{bmatrix} 0 & -1 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
12. Let $A = \begin{bmatrix} 0 & -4 \\ 0 & 2 \end{bmatrix} \neq 0$ and $B = \begin{bmatrix} 3 & 5 \\ 0 & 0 \end{bmatrix} \neq 0$
 $\therefore AB = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} = 0$ Hence proved.

- 13. It is given that $A^t = A \& A^t = -A$
 - $\Rightarrow A = -A$ $\Rightarrow 2A = O$ $\Rightarrow A = O$

14. Let
$$P = A - A^{t}$$

$$= \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix} + \begin{bmatrix} -2 & -4 \\ -3 & -5 \end{bmatrix}$$

$$= \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

$$P' = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$

$$P' = - \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$

P' = -P

Hence A - A^t is a skew symmetric matrix.

15. Let
$$X = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$$

 $\therefore \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$
 $\begin{bmatrix} a+4b & 2a+5b & 3a+6b \\ c+4d & 2c+5d & 3c+6d \end{bmatrix} = \begin{bmatrix} -7 & -8 & -9 \\ 2 & 4 & 6 \end{bmatrix}$
On solving a + 4b = -7 and 2a + 5b = -8 & c + 4d=2 and 2c+5d=4
we get a = 1, b = -2, c = 2, d = 0
 $X = \begin{bmatrix} 1 & -2 \\ 2 & 0 \end{bmatrix}$

16. We have

$$A = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 1 & -2 & 4 \end{bmatrix}, \text{ then } A' = \begin{bmatrix} 2 & 7 & 1 \\ 4 & 3 & -2 \\ -6 & 5 & 4 \end{bmatrix}$$
$$\text{Hence } \frac{A+A'}{2} = \frac{1}{2} \begin{bmatrix} 4 & 11 & -5 \\ 11 & 6 & 3 \\ -5 & 3 & 8 \end{bmatrix} = \begin{bmatrix} 2 & \frac{11}{2} & \frac{5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 4 \end{bmatrix}$$
$$\text{And } \frac{A-A'}{2} = \frac{1}{2} \begin{bmatrix} 0 & -3 & -7 \\ 3 & 0 & 7 \\ 7 & -7 & 0 \end{bmatrix} = \begin{bmatrix} 0 & -\frac{3}{2} & -\frac{7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & -\frac{7}{2} & 0 \end{bmatrix}$$

Therefore,

$$\frac{A+A'}{2} + \frac{A-A'}{2} = \begin{bmatrix} 2 & \frac{11}{2} & \frac{-5}{2} \\ \frac{11}{2} & 3 & \frac{3}{2} \\ \frac{-5}{2} & \frac{3}{2} & 4 \end{bmatrix} + \begin{bmatrix} 0 & \frac{-3}{2} & \frac{-7}{2} \\ \frac{3}{2} & 0 & \frac{7}{2} \\ \frac{7}{2} & \frac{-7}{2} & 0 \end{bmatrix} = \begin{bmatrix} 2 & 4 & -6 \\ 7 & 3 & 5 \\ 0 & -2 & 4 \end{bmatrix} = A$$

17. For n = 1,we have,
$$AB^1 = B^1A$$

 $\Rightarrow AB = BA$, which is true.
Let it be true for n = m i.e $AB^m = BA^m$(1)
Then,for n = m + 1,
 $AB^{m+1} = A(B^m B) = (AB^m)B = (B^m A)B$ [by (1)]
 $= B^m(AB) = B^m(AB)$ [as $AB=BA$, given]
 $= (B^m B)A = B^{m+1}A$. So ,it is true for n=m+1
 $\therefore AB^n = B^nA$

18. L.H.S.
$$I + A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} + \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix} = \begin{bmatrix} 1 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 1 \end{bmatrix}$$

Now, $N - A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} - \begin{bmatrix} 0 & -\tan\frac{\alpha}{2} \\ \tan\frac{\alpha}{2} & 0 \end{bmatrix} = \begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix}$
R.H.S. $= (I - A) \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix} = \begin{bmatrix} 1 & \tan\frac{\alpha}{2} \\ -\tan\frac{\alpha}{2} & 1 \end{bmatrix} \begin{bmatrix} \cos\alpha & -\sin\alpha \\ \sin\alpha & \cos\alpha \end{bmatrix}$

$$= \begin{bmatrix} \cos \alpha + \sin \alpha \tan \frac{\alpha}{2} & -\sin \alpha + \cos \alpha \tan \frac{\alpha}{2} \\ -\cos \alpha \tan \frac{\alpha}{2} + \sin \alpha & \sin \alpha \tan \frac{\alpha}{2} + \cos \alpha \end{bmatrix}$$
$$= \begin{bmatrix} \cos \alpha + \sin \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & -\sin \alpha + \cos \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ -\cos \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \sin \alpha & \sin \alpha \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} + \cos \alpha \end{bmatrix}$$
$$\begin{bmatrix} \frac{\cos \alpha \cos \frac{\alpha}{2} + \sin \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{-\sin \alpha \cos \frac{\alpha}{2} + \cos \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ \frac{\cos \alpha \cos \frac{\alpha}{2} + \sin \alpha \cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\sin \alpha \sin \frac{\alpha}{2} + \cos \alpha \sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \\ \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\cos (\alpha - \frac{\alpha}{2})}{\cos \frac{\alpha}{2}} & \frac{-\sin (\alpha - \frac{\alpha}{2})}{\cos \frac{\alpha}{2}} \\ \frac{\sin (\alpha - \frac{\alpha}{2})}{\cos \frac{\alpha}{2}} & \frac{\cos (\alpha - \frac{\alpha}{2})}{\cos \frac{\alpha}{2}} \end{bmatrix}$$
$$= \begin{bmatrix} \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{-\sin \alpha}{2} \\ \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\cos \alpha}{2} \\ \frac{\sin \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} & \frac{\cos \frac{\alpha}{2}}{\cos \frac{\alpha}{2}} \end{bmatrix}$$

∴ L.H.S. = R.H.S. Proved.

Vidya Champ