CBSE Test Paper 02

Chapter 2 Inverse Trigonometric Functions

1. $\tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{1}{3}$ is equal to
a. None of these
b. $\frac{\pi}{2}$
c. $\frac{\pi}{4}$
d. $\frac{3 \pi}{4}$
2. $\sin \left\{\sin ^{-1}\left(\frac{\sqrt{3}}{5}\right)+\cos ^{-1}\left(\frac{\sqrt{3}}{5}\right)\right\}$ is equal to
a. 1
b. $\frac{\pi}{2}$
c. None of these
d. 0
3. $\tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$ holds true for
a. all $x \in R-\{0\}$
b. all $\mathrm{x}>0$
c. all $\mathrm{x}>1$
d. all $x \in R$
4. $\cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)$ is equal to
a. $\frac{3 \pi}{4}$
b. None of these
c. $\frac{5 \pi}{4}$
d. $-\frac{\pi}{4}$
5. If $\sin ^{-1} x=\frac{\pi}{5}$, then $\cos ^{-1} x$ is equal to
a. $\frac{5 \pi}{4}$
b. $\frac{7 \pi}{4}$
c. $\frac{3 \pi}{10}$
d. $\frac{\pi}{10}$
6. The principle value branch of $\cos -1 \mathrm{x}$ is \qquad .
7. If $\cos \left(\tan ^{-1} x+\cot ^{-1} \sqrt{3}\right)=0$, then value of x is \qquad .
8. The set of values of $\sec ^{-1}\left(\frac{1}{2}\right)$ is \qquad .
9. Find the value of $\cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)$. (1)
10. Find the value of $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$. (1)
11. Using the principal values, evaluate $\tan ^{-1}(1)+\sin ^{-1}\left(-\frac{1}{2}\right)$.
12. If $2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 \operatorname{cosec} \theta)$ then show that $\theta=\frac{\pi}{4}$, where n is any integer. (2)
13. Evaluate: $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)$.
14. Evaluate: $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$. (2)
15. Find the value of $\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)$.
16. $\sin \left(\tan ^{-1} x\right)=$ (4)
17. Prove that $\tan ^{-1} \frac{1}{4}+\tan ^{-1} \frac{2}{9}=\frac{1}{2} \tan ^{-1} \frac{4}{3}$. (4)
18. If $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\alpha$. Prove that $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-2 \frac{x y}{a b} \cos \alpha=\sin ^{2} \alpha$.

CBSE Test Paper 02

Chapter 2 Inverse Trigonometric Functions

Solution

1. \quad c. $\frac{\pi}{4}$

Explanation: $\tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{3}{4} \Rightarrow \tan ^{-1} \frac{1}{7}+\tan ^{-1} \frac{2 \cdot \frac{1}{3}}{1-\left(\frac{1}{3}\right)^{2}}$
$=\tan ^{-1} \frac{1}{7}+2 \tan ^{-1} \frac{3}{4} \Rightarrow \tan ^{-1} \frac{\frac{1}{7}+\frac{3}{4}}{1-\frac{1}{7} \cdot \frac{3}{4}} \Rightarrow \tan ^{-1}(1)=\frac{\pi}{4}$
2. a. 1

Explanation: $\sin \left\{\sin ^{-1}\left(\frac{\sqrt{3}}{5}\right)+\cos ^{-1}\left(\frac{\sqrt{3}}{5}\right)\right\}=\sin (\pi / 2)=1$.[

$$
\left.\sin ^{-1}(x)+\cos ^{-1}(x)=\frac{\pi}{2}\right]
$$

3. b. all $\mathrm{x}>0$

Explanation: $\tan ^{-1} x+\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}$
$\tan ^{-1}\left(\frac{1}{x}\right)=\frac{\pi}{2}-\tan ^{-1} x=\cot ^{-1} x \forall x \in R$
$\therefore \tan ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} x$
$\Rightarrow \mathrm{x}>0$
Since, we know that $\tan ^{-1}\left(\frac{1}{x}\right)=\cot ^{-1} x$ when $\mathrm{x}>0$
4. a. $\frac{3 \pi}{4}$

Explanation: We know that principle value branch of $\cos ^{-1}$ is $[0, \pi]$
and $\frac{3 \pi}{4} \notin[0, \pi]$ but $\left(2 \pi-\frac{5 \pi}{4}\right) \in[0, \pi]$
$\therefore \cos ^{-1}\left(\cos \frac{5 \pi}{4}\right)=\cos ^{-1}\left(\cos \left(2 \pi-\frac{5 \pi}{4}\right)\right)=\cos ^{-1}\left(\cos \left(\frac{3 \pi}{4}\right)\right)=\frac{3 \pi}{4}$
5. c. $\frac{3 \pi}{10}$

Explanation: $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2}$
$\cos ^{-1} x=\frac{\pi}{2}-\sin ^{-1} x=\frac{\pi}{2}-\frac{\pi}{5}=\frac{3 \pi}{10}$
6. $[0, \pi]$
7. $\sqrt{3}$
8. ϕ
9. $\cos \left(\sec ^{-1} x+\operatorname{cosec}^{-1} x\right)$

$$
\cos \frac{\pi}{2}=0
$$

10. $\tan ^{-1} \sqrt{3}-\cot ^{-1}(-\sqrt{3})$
$=\tan ^{-1} \sqrt{3}-\left(\pi-\cot ^{-1} \sqrt{3}\right)\left[\because \cot ^{-1}(-x)=\pi-\cot ^{-1} x\right]$
$=\tan ^{-1} \sqrt{3}-\pi+\cot ^{-1} \sqrt{3}$
$=\left(\tan ^{-1} \sqrt{3}+\cot ^{-1} \sqrt{3}\right)-\pi\left[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right]$
$=\frac{\pi}{2}-\frac{\pi}{1}=\frac{-\pi}{2}$
11. using the principal values, we have to evaluate $\tan ^{-1}(1)+\sin ^{-1}\left(-\frac{1}{2}\right)$.
$=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)+\sin ^{-1}\left(-\sin \frac{\pi}{6}\right)$
$\left[\because \tan \frac{\pi}{4}=1\right.$ and $\left.\sin \frac{\pi}{6}=\frac{1}{2}\right]$
$=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)+\sin ^{-1}\left[\sin \left(-\frac{\pi}{6}\right)\right]$
$[\therefore-\sin \theta=\sin (-\theta)]$
$=\frac{\pi}{4}-\frac{\pi}{6}=\frac{\pi}{12}$
$\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \epsilon\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)\right.$ and $\left.\sin ^{-1}(\sin \theta)=\theta ; \forall \theta \epsilon\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]\right]$
12. We have, $2 \tan ^{-1}(\cos \theta)=\tan ^{-1}(2 \operatorname{cosec} \theta)$,
$\Rightarrow \tan ^{-1}\left(\frac{2 \cos \theta}{1-\cos ^{2} \theta}\right)=\tan ^{-1}(2 \operatorname{cosec} \theta)$
$\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)\right]$
$\Rightarrow\left(\frac{2 \cos \theta}{\sin ^{2} \theta}\right)=(2 \cos e c \theta)$
$\Rightarrow(\cot \theta .2 \operatorname{cosec} \theta)=(2 \operatorname{cosec} \theta) \Rightarrow \cot \theta=1$
$\Rightarrow \cot \theta=\cot \frac{\pi}{4} \Rightarrow \theta=\frac{\pi}{4}$
13. $\tan ^{-1} \sqrt{3}-\sec ^{-1}(-2)=\tan ^{-1} \sqrt{3}-\left[\pi-\sec ^{-1} 2\right]$
$=\frac{\pi}{3}-\pi+\cos ^{-1}\left(\frac{1}{2}\right)$
$=-\frac{2 \pi}{3}+\frac{\pi}{3}=-\frac{\pi}{3}$
14. Let $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)=y$
$\Rightarrow \sec y=\frac{2}{\sqrt{3}}$
$\Rightarrow \sec y=\sec \frac{\pi}{6}$
Since, the principal value branch of $\sec ^{-1}$ is $[0, \pi]$.
Therefore, Principal value of $\sec ^{-1}\left(\frac{2}{\sqrt{3}}\right)$ is $\frac{\pi}{6}$.
15. Let $\tan ^{-1} \frac{2}{3}=x$ and $\tan ^{-1} \sqrt{3}=y$
so that $\tan x=\frac{2}{3}$ and $\tan y=\sqrt{3}$
Therefore,
$\sin \left(2 \tan ^{-1} \frac{2}{3}\right)+\cos \left(\tan ^{-1} \sqrt{3}\right)$
$=\sin (2 x)+\cos y$
$=\frac{2 \tan x}{1+\tan ^{2} x}+\frac{1}{\sqrt{1+\tan ^{2} y}}$
$=\frac{2 \cdot \frac{2}{3}}{1+\frac{4}{9}}+\frac{1}{\sqrt{1+(\sqrt{3})^{2}}}$
$=\frac{12}{13}+\frac{1}{2}=\frac{37}{26}$
16. Let $\tan ^{-1} x=\theta$
$=\frac{x}{1}=\tan \theta$
$\Rightarrow \sin \theta=\frac{x}{\sqrt{1+x^{2}}}$
$\Rightarrow \theta=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}$
$\Rightarrow \tan ^{-1} x=\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}$
$\Rightarrow \sin \left(\tan ^{-1} x\right)=\sin \left(\sin ^{-1} \frac{x}{\sqrt{1+x^{2}}}\right)$
$=\frac{x}{\sqrt{1+x^{2}}}$
17. To prove, $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{4}{3}\right)$
$\Rightarrow 2\left[\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)\right]=\tan ^{-1}\left(\frac{4}{3}\right)$
$\mathbf{L H S}=2\left[\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)\right]$
$=2\left[\tan ^{-1}\left(\frac{\frac{1}{4}+\frac{2}{9}}{1-\frac{1}{4} \times \frac{2}{9}}\right)\right]\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right]$
$=2 \tan ^{-1}\left(\frac{\frac{9+8}{36}}{\frac{36-2}{36}}\right)$
$=2 \tan ^{-1}\left(\frac{17}{34}\right)$
$=2 \tan ^{-1}\left(\frac{1}{2}\right)$
$=\tan ^{-1}\left(\frac{2 \times\left(\frac{1}{2}\right)}{1-\left(\frac{1}{2}\right)^{2}}\right)\left[\because 2 \tan ^{-1} x=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right) ;-1<x<1\right]$
$=\tan ^{-1}\left(\frac{1}{1-\frac{1}{4}}\right)$
$=\tan ^{-1}\left(\frac{4}{3}\right)=\mathbf{R H S}$
$\therefore \tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)=\frac{1}{2} \tan ^{-1}\left(\frac{4}{3}\right)$

Hence proved.

18. $\cos ^{-1} \frac{x}{a}+\cos ^{-1} \frac{y}{b}=\alpha$
$\left[\because \cos ^{-1} x+\cos ^{-1} y=\cos ^{-1}\left(x y-\sqrt{1-x^{2}} \sqrt{1-y^{2}}\right)\right]$
$\cos ^{-1}\left[\frac{x}{a} \cdot \frac{y}{b}-\sqrt{1-\frac{x^{2}}{a^{2}}} \cdot \sqrt{1-\frac{y^{2}}{b^{2}}}\right]=\alpha$
$\frac{x y}{a b}-\sqrt{1-\frac{x^{2}}{a^{2}}} \cdot \sqrt{1-\frac{y^{2}}{b^{2}}}=\cos \alpha$
$\frac{x y}{a b}-\cos \alpha=\sqrt{1-\frac{x^{2}}{a^{2}}} \sqrt{1-\frac{y^{2}}{b^{2}}}$
Squaring both sides,

$$
\begin{aligned}
& \left(\frac{x y}{a b}-\cos \alpha\right)^{2}=\left(\sqrt{1-\frac{x^{2}}{a^{2}}} \sqrt{1-\frac{y^{2}}{b^{2}}}\right)^{2} \\
& \frac{x^{2} y^{2}}{a^{2} b^{2}}+\cos ^{2} \alpha-2 \cdot \frac{x y}{a b} \cdot \cos \alpha=\left(1-\frac{x^{2}}{a^{2}}\right)\left(1-\frac{y^{2}}{b^{2}}\right) \\
& \frac{x^{2} y^{2}}{a^{2} b^{2}}+\cos ^{2} \alpha-2 \cdot \frac{x y}{a b} \cdot \cos \alpha=1-\frac{y^{2}}{b^{2}}-\frac{x^{2}}{a^{2}}+\frac{x^{2} y^{2}}{a^{2} b^{2}} \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-2 \frac{x y}{a b} \cos \alpha=1-\cos ^{2} \alpha \\
& \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-2 \frac{x y}{a b} \cos \alpha=\sin ^{2} \alpha
\end{aligned}
$$

