CBSE Test Paper 01

Chapter 2 Inverse Trigonometric Functions

1. The period of the function $f(x)=\cos 4 x+\tan 3 x$ is
a. $\frac{\pi}{3}$
b. π
c. None of these
d. $\frac{\pi}{2}$
2. If $3 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$. Then, $\mathrm{x}=$.
a. $\frac{1}{\sqrt{3}}$
b. $\frac{1}{\sqrt{2}}$
c. 2
d. 1
3. The value of $\tan 15^{0}+\cot 15^{\circ}$ is
a. 4
b. Not defined
c. $\sqrt{3}$
d. $2 \sqrt{3}$
4. The values of x which satisfy the trigonometric equation $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$ are:
a. ± 2
b. $\pm \frac{1}{2}$
c. $\pm \frac{1}{\sqrt{2}}$
d. $\pm \sqrt{2}$
5. The minimum value of $\sin x-\cos x$ is
a. $-\sqrt{2}$
b. -1
c. 0
d. 1
6. The principle value of $\tan ^{-1} \sqrt{3}$ is \qquad .
7. If $\mathrm{y}=2 \tan ^{-1} \mathrm{X}+\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ for all x , then \qquad $<y<$ \qquad .
8. The value of $\cos \left(\sin ^{-1} x+\cos ^{-1} x\right),|x| \leq 1$ is \qquad .
9. Find the principal value of $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$.
10. Write the principal value of $\cos ^{-1} 1\left[\cos (680)^{\circ}\right]$.
11. Prove that $\tan ^{-1} \sqrt{x}=\frac{1}{2} \cos ^{-1}\left(\frac{1-x}{1+x}\right)$.
12. Find the value of the expression $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$.
13. Solve the equation: $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$.
14. Find the value of $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$. (2)
15. Prove that $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$.
16. Solve for $\mathrm{x}, \tan ^{-1} \frac{x}{2}+\tan ^{-1} \frac{x}{3}=\frac{\pi}{4}, \sqrt{6}>x>0$.
17. Find the value of the following: $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$.
18. Show that $\sin ^{-1} \frac{12}{13}+\cos ^{-1} \frac{4}{5}+\tan ^{-1} \frac{63}{16}=\pi$.

CBSE Test Paper 01

Chapter 2 Inverse Trigonometric Functions

Solution

1. b. π, Explanation: $f(\pi)=(\cos 4 \pi+\tan 3 \pi)$ gives the same value as $\mathrm{f}(0)$. Therefore, the period of the function is π.
2. a. $\frac{1}{\sqrt{3}}$, Explanation: $3 \sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)-4 \cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)+2 \tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\frac{\pi}{3}$ Put $\mathrm{x}=\tan \theta$
$3 \sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)-4 \cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)+2 \tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)=\frac{\pi}{3}$
$3 \sin ^{-1}(\sin 2 \theta)-4 \cos ^{-1}(\cos 2 \theta)+2 \tan ^{-1}(\tan 2 \theta)=\frac{\pi}{3}$
$3.2 \theta-4.2 \theta+2.2 \theta=\frac{\pi}{3} \Rightarrow 2 \theta=\frac{\pi}{3} \Rightarrow \theta=\frac{\pi}{6}$
$\therefore \tan ^{-1} x=\frac{\pi}{6} \Rightarrow x=\tan \left(\frac{\pi}{6}\right)=\frac{1}{\sqrt{3}}$
3. a. 4, Explanation: $\tan 15^{0}+\cot 15^{0}=\frac{\sqrt{3}-1}{\sqrt{3}+1}+\frac{\sqrt{3}+1}{\sqrt{3}-1}$

$$
=\frac{(\sqrt{3}-1)^{2}+(\sqrt{3}+1)^{2}}{2}=\frac{8}{2}=4
$$

4. c. $\pm \frac{1}{\sqrt{2}}$, Explanation: $\tan ^{-1}\left(\frac{x-1}{x-2}\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\frac{\pi}{4}$
$\tan ^{-1}\left[\frac{\left(\frac{x-1}{x-2}\right)+\left(\frac{x+1}{x+2}\right)}{1-\left(\frac{x-1}{x-2}\right)\left(\frac{x+1}{x+2}\right)}\right]=\frac{\Pi}{4}$
$\tan ^{-1}\left[\frac{(x-1)(x+2)+(x+1)(x-2)}{(x-2)(x+2)-(x+1)(x-1)}\right]=\frac{\Pi}{4}$
$\left(\frac{x^{2}+x-2+x^{2}-x-2}{x^{2}-4-x^{2}+1}\right)=\tan ^{-1}\left(\frac{\Pi}{4}\right)$
$\left(\frac{2 x^{2}-4}{-3}\right)=1$
$\therefore 2 x^{2}-4=-3$
$\Rightarrow 2 x^{2}=1$
$x= \pm \frac{1}{\sqrt{2}}$
5. a. $-\sqrt{2}$, Explanation: Since, range of sine function and cosine function is $[-1,1]$.

But, sine is increasing function and cosine is decreasing function. Therefore, the lowest that both together can attain is -45^{0}.
$\left(-\frac{1}{\sqrt{2}}\right)+\left(-\frac{1}{\sqrt{2}}\right)=-\sqrt{2}$
6. $\frac{\pi}{3}$
7. $-2 \pi, 2 \pi$
8. 0
9. Let $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)=\theta$
$\Rightarrow \sin \theta=\frac{1}{\sqrt{2}}$
We know that $\theta \in\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$
$\Rightarrow \sin \theta=\sin \frac{\pi}{4} \Rightarrow \theta=\frac{\pi}{4}$
Therefore, principal value of $\sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)$ is $\frac{\pi}{4}$
10. We know that, principal value branch of $\cos ^{-1} \mathrm{x}$ is [$0,180^{\circ}$].

Since, $680^{\circ} \in\left[0,180^{\circ}\right]$, so write 680° as $2 \times 360^{\circ}-40^{\circ}$
Now, $\cos ^{-1}\left[\cos (680)^{\circ}\right]=\cos ^{-1}\left[\cos \left(2 ; \times 360^{\circ}-40^{\circ}\right)\right]$
$=\cos ^{-1}\left(\cos 40^{\circ}\right)[\because \cos (4 \pi-\theta)=\cos \theta]$
Since, $40^{\circ} \in\left[0,180^{\circ}\right]$
$\therefore \cos ^{-1}\left[\cos \left(680^{\circ}\right)\right]=40^{\circ}$
$\left[\because \cos ^{-1}(\cos \theta)=\theta ; \forall \theta \in\left[0,180^{\circ}\right]\right]$
which is the required principal value.
11. LHS $=\tan ^{-1} \sqrt{x}$

Let $\tan \theta=\sqrt{x}$
$\tan ^{2} \theta=x$
R.H.S. $=\frac{1}{2} \cos ^{-1}\left(\frac{1-\tan ^{2} \theta}{1+\tan ^{2} \theta}\right)$
$=\frac{1}{2} \cos ^{-1}(\cos 2 \theta)=\frac{1}{2} \times 2 \theta=\theta$
$=\tan ^{-1} \sqrt{x}$
12. $\tan ^{-1}\left(\tan \frac{3 \pi}{4}\right)$
$=\tan ^{-1}\left(\tan \frac{4 \pi-\pi}{4}\right)$
$=\tan ^{-1}\left[\tan \left(\pi-\frac{\pi}{4}\right)\right]$
$=\tan ^{-1}\left[-\tan \frac{\pi}{4}\right]$
$=\tan ^{-1} \tan \left(-\frac{\pi}{4}\right)=-\frac{\pi}{4}$
13. $2 \tan ^{-1}(\cos \mathrm{x})=\tan ^{-1}(2 \operatorname{cosec} \mathrm{x})$
$\Rightarrow \tan ^{-1}\left(\frac{2 \cos x}{1-\cos ^{2} x}\right)=\tan ^{-1}\left(\frac{2}{\sin x}\right)$
$\Rightarrow \frac{2 \cos x}{1-\cos ^{2} x}=\frac{2}{\sin x}$
$\Rightarrow \frac{\cos x}{\sin x}=1$
$\Rightarrow \cot \mathrm{x}=1 \Rightarrow x=\frac{\pi}{4}$
14. $\sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)$
$=\sin ^{-1}\left(\sin \frac{3 \pi-\pi}{3}\right)$
$=\sin ^{-1}\left[\sin \left(\pi-\frac{\pi}{3}\right)\right]$
$=\sin ^{-1} \sin \frac{\pi}{3}=\frac{\pi}{3}$
15. To prove, $\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)=\pi$

> LHS $=\tan ^{-1}(1)+\tan ^{-1}(2)+\tan ^{-1}(3)$
> $=\tan ^{-1}\left(\tan \frac{\pi}{4}\right)+\frac{\pi}{2}-\cot ^{-1}(2)+\frac{\pi}{2}-\cot ^{-1}(3)\left[\because \tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2}\right]$
> $=\frac{\pi}{4}+\pi-\left[\cot ^{-1}(2)+\cot ^{-1}(3)\right]\left[\because \tan ^{-1}(\tan \theta)=\theta ; \forall \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)\right]$
> $=\frac{5 \pi}{4}-\left[\tan ^{-1}\left(\frac{1}{2}\right)+\tan ^{-1}\left(\frac{1}{3}\right)\right]\left[\because \cot ^{-1} x=\tan ^{-1} \frac{1}{x}, x>0\right]$
> $=\frac{5 \pi}{4}-\left[\tan ^{-1}\left(\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2} \cdot \frac{1}{3}}\right)\right]\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right)\right.$, if $\left.x y<1\right]$
> $=\frac{5 \pi}{4}-\tan ^{-1}\left(\frac{5 / 6}{5 / 6}\right)$
> $=\frac{5 \pi}{4}-\tan ^{-1}(1)=\frac{5 \pi}{4}-\frac{\pi}{4}=\frac{4 \pi}{4}=\pi=$ RHS (Hence Proved)
16. Here, we have to find the value of x .Now, we are given that
$\tan ^{-1} \frac{x}{2}+\tan ^{-1} \frac{x}{3}=\frac{\pi}{4}, \sqrt{6}>x>0$
$\Rightarrow \tan ^{-1}\left(\frac{\frac{x}{2}+\frac{x}{3}}{1-\frac{x^{2}}{6}}\right)=\frac{\pi}{4}\left[\because \tan ^{-1} x+\tan ^{-1} y=\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; x y<1\right]$
$\Rightarrow \quad \frac{\frac{3 x+2 x}{6}}{\frac{6-x^{2}}{6}}=\tan \frac{\pi}{4}\{$ taking tan on both sides $\}$
$\Rightarrow \frac{5 x}{6-x^{2}}=1\left[\because \tan \frac{\pi}{4}=1\right]$
$\Rightarrow 5 \mathrm{x}=6-\mathrm{x}^{2}$
$\Rightarrow \mathrm{x}^{2}+5 \mathrm{x}-6=0$
$\Rightarrow \mathrm{x}^{2}+6 \mathrm{x}-\mathrm{x}-6=0$
$\Rightarrow \mathrm{x}(\mathrm{x}+6)-1(\mathrm{x}+6)=0$
$\Rightarrow(\mathrm{x}-1)(\mathrm{x}+6)=0$
$\therefore \mathrm{x}=1$ or -6
But it is given that, $\sqrt{6}>\mathrm{x}>0 \Rightarrow \mathrm{x}>0$
$\therefore \mathrm{x}=-6$ is rejected.
Hence, $\mathrm{x}=1$ is the only solution of the given equation.
17. $\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \frac{1}{2}\right)\right]$
$=\tan ^{-1}\left[2 \cos \left(2 \sin ^{-1} \sin \frac{\pi}{6}\right)\right]$
$=\tan ^{-1}\left[2 \cos \left(2 \times \frac{\pi}{6}\right)\right]$
$=\tan ^{-1}\left[2 \cos \frac{\pi}{3}\right]$
$=\tan ^{-1}\left[2 \times \frac{1}{2}\right]=\tan ^{-1} 1$
$=\tan ^{-1} \tan \frac{\pi}{4}=\frac{\pi}{4}$
18. Let $\theta=\sin ^{-1}\left(\frac{12}{13}\right)$
$\Rightarrow \sin \theta=\frac{12}{13}$
$\Rightarrow \sqrt{1-\cos ^{2} \theta}=\frac{12}{13}$
$\Rightarrow 1-\cos ^{2} \theta=\frac{(12)^{2}}{(13)^{2}}$
$\Rightarrow \cos ^{2} \theta=\frac{(5)^{2}}{(13)^{2}}$
$\Rightarrow \cos \theta=\frac{5}{13}$
Since, $\tan \theta=\frac{\sin \theta}{\cos \theta}=\frac{\frac{12}{13}}{\frac{5}{13}}=\frac{12}{5}$
$\Rightarrow \theta=\tan ^{-1}\left(\frac{12}{5}\right)$
Thus, $\theta=\sin ^{-1}\left(\frac{12}{13}\right)=\tan ^{-1}\left(\frac{12}{5}\right)$
Similarly, $\cos ^{-1}\left(\frac{5}{13}\right)=\tan ^{-1}\left(\frac{12}{5}\right)$
We have, LHS $=\sin ^{-1}\left(\frac{12}{13}\right)+\cos ^{-1}\left(\frac{4}{5}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=\tan ^{-1}\left(\frac{12}{5}\right)+\tan ^{-1}\left(\frac{3}{4}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=\left[\tan ^{-1}\left(\frac{12}{5}\right)+\tan ^{-1}\left(\frac{3}{4}\right)\right]+\tan ^{-1}\left(\frac{63}{16}\right)$
\{since $\frac{12}{5} \times \frac{3}{4}=\frac{9}{5}>1$, therefore , $\tan ^{-1} \mathrm{~A}+\tan ^{-1} \mathrm{~B}=\pi+\tan ^{-1} \frac{A+_B}{1-A B}$)
$=\pi+\tan ^{-1}\left(\frac{\frac{12}{5}+\frac{3}{4}}{1-\left(\frac{12}{5}\right)\left(\frac{3}{4}\right)}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=\pi+\tan ^{-1}\left(-\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)$
$=\pi-\tan ^{-1}\left(\frac{63}{16}\right)+\tan ^{-1}\left(\frac{63}{16}\right)=\pi$ Hence Proved.

