CBSE Test Paper 01

Chapter 11 Three Dimensional Geometry

1. Write the vector equation of a line that passes through the given point whose position vector is \vec{a} and parallel to a given vector \vec{b}.
a. $\vec{r}=\vec{a}-\lambda \vec{b}, \lambda \in R$
b. $\vec{r}=\vec{a}+\lambda \vec{b}, \lambda \in R$
c. $\vec{r}=-\vec{a}+\lambda \vec{b}, \lambda \in R$
d. $\vec{r}=-\vec{a}-\lambda \vec{b}, \lambda \in R$
2. If a line has the direction ratios $-18,12,-4$, then what are its direction cosines ?
a. $\frac{9}{11}, \frac{6}{11}, \frac{-2}{11}$
b. $\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$
c. $\frac{-9}{11}, \frac{6}{11}, \frac{2}{11}$
d. $\frac{-7}{11}, \frac{6}{11}, \frac{-3}{11}$
3. In the Cartesian form two lines $\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$ and $\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$ are coplanar if

4. Express the Cartesian equation of a line that passes through two points $\left(x_{1}, y_{1}, z_{1}\right)$ and
$\left(x_{2}, y_{2}, z_{2}\right)$.
a. $\frac{x+x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}+y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
b. $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z+z_{1}}{z_{2}-z_{1}}$
c. $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}+y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
d. $\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
5. Two lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are coplanar if
a. $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(-\overrightarrow{b_{1}} \times \overrightarrow{-b_{2}}\right)=0$
b. $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0$
c. $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(-\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0$
d. $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times-\overrightarrow{b_{2}}\right)=0$
6. Direction ratios of two \qquad lines are proportional.
7. If $\mathrm{l}, \mathrm{m}, \mathrm{n}$ are the direction cosines of a line, then $\mathrm{l}^{2}+\mathrm{m}^{2}+\mathrm{n}^{2}=$
8. The distance of a point $\mathrm{P}(\mathrm{a}, \mathrm{b}, \mathrm{c})$ from x -axis is \qquad .
9. Find the vector equation for the line passing through the points $(-1,0,2)$ and $(3,4,6)$.
10. Write the vector equation of the plane passing through the point ($\mathrm{a}, \mathrm{b}, \mathrm{c}$) and parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$.
11. Write the equation of a plane which is at a distance of $5 \sqrt{3}$ units from origin and the normal to which is equally inclined to coordinate axes.
12. Find angle between lines $\frac{x}{2}=\frac{y}{2}=\frac{z}{1}, \frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$.
13. The x - coordinate of a point on the line joining the points $\mathrm{Q}(2,2,1)$ and $R(5,1,-2)$ is 4 . Find its z-coordinate.
14. Find the vector and Cartesian equation of the line through the point ($5,2,-4$) and which is parallel to the vector $3 \hat{i}+2 \hat{j}-8 \hat{k}$.
15. Write the vector equations of following lines and hence find the distance between them. $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}, \frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$
16. The points $\mathrm{A}(4,5,10), \mathrm{B}(2,3,4)$ and $\mathrm{C}(1,2,-1)$ are three vertices of parallelogram ABCD .

Find the vector equations of sides A and BC and also find coordinates of point D .
17. Find the shortest distance between the lines whose vector equations are
$\vec{r}=(1-t) \hat{i}+(t-2) \hat{j}+(3-2 t) \hat{k}$
$\vec{r}=(s+1) \hat{i}+(2 s-1) \hat{j}-(2 s+1) \hat{k}$
18. Find the distance of the point $(-1,-5,-10)$ from the point of intersection of the line $\vec{r}=(2 \hat{i}-\hat{j}+2 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$ and the plane $\vec{r} .(\hat{i}-\hat{j}+\hat{k})=5$.

CBSE Test Paper 01

Chapter 11 Three Dimensional Geometry

Solution

1. b. $\vec{r}=\vec{a}+\lambda \vec{b}, \lambda \in R$

Explanation: The vector equation of a line that passes through the given point whose position vector is \vec{a} and parallel to a given vector \vec{b} is given by : $\vec{r}=\vec{a}+\lambda \vec{b}$
$\lambda \in R$
Where, $\vec{r}=x \hat{i}+y \hat{j}+z \hat{k}$
$\vec{a}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}$
$\vec{b}=a_{1} \hat{i}+b_{1} \hat{j}+c_{1} \hat{k}$
2. b. $\frac{-9}{11}, \frac{6}{11}, \frac{-2}{11}$

Explanation: If a line has the direction ratios $-18,12,-4$, then its direction cosines are given by:
$l=\frac{-18}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}$
$\frac{-18}{\sqrt{324+144+16}}=\frac{-18}{\sqrt{484}}$
$=\frac{-18}{22}=\frac{-9}{11}$
$m=\frac{12}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}$
$=\frac{12}{\sqrt{324+144+16}}=\frac{12}{\sqrt{484}}$
$=\frac{12}{22}=\frac{6}{11}$
$n=\frac{-4}{\sqrt{(-18)^{2}+(12)^{2}+(-4)^{2}}}$
$=\frac{-4}{\sqrt{324+144+16}}=\frac{-4}{\sqrt{484}}$
$=\frac{-4}{22}=\frac{-2}{11}$
3. c. $\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$.

Explanation: In the Cartesian form two lines
$\frac{x-x_{1}}{a_{1}}=\frac{y-y_{1}}{b_{1}}=\frac{z-z_{1}}{c_{1}}$
and
$\frac{x-x_{2}}{a_{2}}=\frac{y-y_{2}}{b_{2}}=\frac{z-z_{2}}{c_{2}}$
are coplanar if
$\left|\begin{array}{ccc}x_{2}-x_{1} & y_{2}-y_{1} & z_{2}-z_{1} \\ a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2}\end{array}\right|=0$
4. d.
$\frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
Explanation: The Cartesian equation of a line that passes through two points $\left(x_{1}, y_{1}, z_{1}\right)$ and $\left(x_{2}, y_{2}, z_{2}\right)$ is given by $: \frac{x-x_{1}}{x_{2}-x_{1}}=\frac{y-y_{1}}{y_{2}-y_{1}}=\frac{z-z_{1}}{z_{2}-z_{1}}$
5. b. $\left(\overrightarrow{a_{2}}-\overrightarrow{a_{1}}\right) \cdot\left(\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}\right)=0$

Explanation: In vector form: Two lines $\vec{r}=\overrightarrow{a_{1}}+\lambda \overrightarrow{b_{1}}$ and $\vec{r}=\overrightarrow{a_{2}}+\mu \overrightarrow{b_{2}}$ are coplanar if
6. Parallel
7. 1
8. $\sqrt{b^{2}+c^{2}}$
9. Let \vec{a} and \vec{b} be the p.v of the points $A(-1,0,2)$ and $B(3,4,6)$
$\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
$=(-\hat{i}+2 \hat{k})+\lambda(4 \hat{i}+4 \hat{j}+4 \hat{k})$
10. According to the question, The required plane is passing through the point (a, b, c) whose position vector is $\vec{p}=a \hat{i}+b \hat{j}+c \hat{k}$ and is parallel to the plane $\vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=2$
\therefore it is normal to the vector
$\vec{n}=\hat{i}+\hat{j}+\hat{k}$
Required equation of plane is
$(\vec{r}-\vec{p}) \cdot \vec{n}=0 \Rightarrow \vec{r} \cdot \vec{n}=\vec{p} \cdot \vec{n}$
$\Rightarrow \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=(a \hat{i}+\hat{b}+c \hat{k}) \cdot(\hat{i}+\hat{\jmath}+\hat{k})$
$\therefore \quad \vec{r} \cdot(\hat{i}+\hat{j}+\hat{k})=a+b+c$
11. According to the question, the normal to the plane is equally inclined with coordinates axes, and the distance of the plane from origin is $5 \sqrt{3}$ units
\therefore the direction cosines are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$ and $\frac{1}{\sqrt{3}}$
The required equation of plane is
$\frac{1}{\sqrt{3}} \cdot x+\frac{1}{\sqrt{3}} \cdot y+\frac{1}{\sqrt{3}} \cdot z=5 \sqrt{3}$
$\Rightarrow x+y+z=5 \times 3$
$\Rightarrow \quad x+y+z=15$
$[\because$ If l, m and n are direction cosines of normal to the plane and P is a distance of a plane from origin, then the equation of plane is given by $l x+m y+n z=p$]
12. $\frac{x-0}{2}=\frac{y-0}{2}=\frac{z-0}{1}$
$\frac{x-5}{4}=\frac{y-2}{1}=\frac{z-3}{8}$
$\mathrm{a}_{1}=2, \mathrm{~b}_{1}=2, \mathrm{c}_{1}=1$
$a_{2}=4, b_{2}=1, c_{2}=8$
$\cos \theta=\frac{\left|\vec{b}_{1} \cdot \vec{b}_{2}\right|}{\left|\vec{b}_{1}\right|\left|\vec{b}_{2}\right|}$
$=\left|\frac{2(4)+2(1)+1(8)}{\sqrt{2^{2}+2^{2}+1} \sqrt{4^{2}+1^{2}+8^{2}}}\right|$
$=\left|\frac{8+2+8}{\sqrt{9} \sqrt{81}}\right|$
$=\frac{18}{27}$
$=\frac{2}{3}$
$\theta=\cos ^{-1}\left(\frac{2}{3}\right)$
13. Let the point P divide QR in the ratio $\lambda: 1$, then the co-ordinate of P are
$\left(\frac{5 \lambda+2}{\lambda+1}, \frac{\lambda+2}{\lambda+1}, \frac{-2 \lambda+1}{\lambda+1}\right)$
But x - coordinate of P is 4 . Therefore,
$\frac{5 \lambda+2}{\lambda+1}=4 \Rightarrow \lambda=2$
Hence, the z - coordinate of P is $\frac{-2 \lambda+1}{\lambda+1}=-1$.
14. $\vec{a}=5 \hat{i}+2 \hat{j}-4 \hat{k}, \vec{b}=3 \hat{i}+2 \hat{j}-8 \hat{k}$

Vector equation of line is
$\vec{r}=\vec{a}+\lambda \vec{b}$
$=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})$
Cartesian equation is
$x \hat{i}+y \hat{j}+z \hat{k}=5 \hat{i}+2 \hat{j}-4 \hat{k}+\lambda(3 \hat{i}+2 \hat{j}-8 \hat{k})$
$\Rightarrow x \hat{i}+y \hat{j}+z \hat{k}=(5+3 \lambda) \hat{i}+(2+2 \lambda) \hat{j}+(-4-8 \lambda) \hat{k}$
$\Rightarrow x=5+3 \lambda, y=2+2 \lambda, z=-4-8 \lambda$
$\Rightarrow \frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}=\lambda$
Therefore, required equation is,
$\frac{x-5}{3}=\frac{y-2}{2}=\frac{z+4}{-8}$
15. The given equations of lines are
$\frac{x-1}{2}=\frac{y-2}{3}=\frac{z+4}{6}$
and $\frac{x-3}{4}=\frac{y-3}{6}=\frac{z+5}{12}$
Now, the vector equation of given lines are
$\vec{r}=(\hat{i}+2 \hat{j}-4 \hat{k})+\lambda(2 \hat{i}+3 \hat{j}+6 \hat{k})$
$[\because$ vector form of equation of line is $\vec{r}=\vec{a}+\lambda \vec{b}]$
and $\vec{r}=(3 i+3 \hat{j}-5 \hat{k})+\mu(4 \hat{i}+6 \hat{j}+12 \hat{k})$
Here, $\overrightarrow{a_{1}}=\hat{i}+2 \hat{j}-4 \hat{k}, \overrightarrow{b_{1}}=2 \hat{i}+3 \hat{j}+6 \hat{k}$
and $\overrightarrow{a_{2}}=3 \hat{i}+3 \hat{j}-5 \hat{k}, \overrightarrow{b_{2}}=4 \hat{i}+6 \hat{j}+12 \hat{k}$
Now, $\overrightarrow{a_{2}}-\overrightarrow{a_{1}}=(3 \hat{i}+3 \hat{j}-5 \hat{k})-(\hat{i}+2 \hat{j}-4 \hat{k})$
$=2 \hat{i}+\hat{j}-\hat{k}$.
and $\overrightarrow{b_{1}} \times \overrightarrow{b_{2}}=\left|\begin{array}{lll}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 4 & 6 & 12\end{array}\right|$
$=\hat{i}(36-36)-\hat{j}(24-24)+\hat{k}(12-12)$
$=0 \hat{i}-\hat{0} \hat{j}+0 \hat{k}=\overrightarrow{0}$
$\Rightarrow \quad \vec{b}_{1} \times \vec{b}_{2}=\overrightarrow{0}$,
i.e. Vector b_{1} is parallel to \vec{b}_{2}
$[\because$ if $\vec{a} \times \vec{b}=\overrightarrow{0}$, then $\vec{a} \| \vec{b}]$
Thus, two lines are parallel.
$\therefore \quad \vec{b}=(2 \hat{i}+3 \hat{j}+6 \hat{k})$
[since, DR's of given lines are proportional]
Since, the two lines are parallel, we use the formula for shortest distance between two parallel lines
$d=\left|\frac{\vec{b} \times\left(\vec{a}_{2}-\overrightarrow{a_{1}}\right)}{|\vec{b}|}\right|$
$\Rightarrow \quad d=\left|\frac{(2 \hat{i}+3 \hat{j}+6 \hat{k}) \times(2 \hat{i}+\hat{j}-\hat{k})}{\sqrt{(2)^{2}+(3)^{2}+(6)^{2}}}\right|$.
[from Eqs. (iii) and (iv)]
Now, $(\hat{2} i+3 \hat{j}+6 \hat{k}) \times(2 \hat{i}+\hat{j}-\hat{k})$
$=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 6 \\ 2 & 1 & -1\end{array}\right|$
$=\hat{i}(-3-6)-\hat{j}(-2-12)+\hat{k}(2-6)$
$=-9 \hat{i}+14 \hat{j}-4 \hat{k}$
From Eq, (v), we get
$d=\left|\frac{-9 \hat{i}+14 \hat{j}-4 \hat{k}}{\sqrt{49}}\right|=\frac{\sqrt{(-9)^{2}+(14)^{2}+(-4)^{2}}}{7}$
$\therefore d=\frac{\sqrt{81+196+16}}{7}=\frac{\sqrt{293}}{7}$ units
16. The vector equation of a side of a parallelogram, when two points are given, is $\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$. Also, the diagonals of a parallelogram intersect each other at midpoint.
Given points are $A(4,5,10)$, $B(2,3,4)$ and $C(1,2,-1)$.
$A(4,5,10)$

We know that, two point vector form of line is
given by
$\vec{r}=\vec{a}+\lambda(\vec{b}-\vec{a})$
where, \vec{a} and \vec{b} are the position vector of points through which the line is passing through. Here, for line $A B$, position vectors are
$\vec{a}=\overrightarrow{O A}=4 \hat{i}+5 \hat{j}+10 \hat{k}$
and $\vec{b}=\overrightarrow{O B}=2 \hat{i}+3 \hat{j}+4 \hat{k}$
Using Equation. (i), the required equation of line $A B$ is
$\vec{r}=(4 \hat{i}+5 \hat{j}+10 \hat{k})+\lambda[(2 \hat{i}+3 \hat{j}+4 \hat{k})-(4 \hat{i}+5 \hat{j}+10 \hat{k})]$
$\Rightarrow \quad \vec{r}=(4 \hat{i}+5 \hat{j}+10 \hat{k})+\lambda(-2 \hat{i}-2 \hat{j}-6 \hat{k})$

Similarly, vector equation of line $B C$, where $B(2,3,4)$ and $C(1,2,-1)$ is
$\vec{r}=(2 \hat{i}+3 \hat{j}+4 \hat{k})+\mu(\hat{i}+2 \hat{j}-\hat{k})-(2 \hat{i}+3 \hat{j}+4 \hat{k})]$
$\Rightarrow \quad \vec{r}=(2 \hat{i}+3 \hat{j}+4 \hat{k})+\mu(-\hat{i}-\hat{j}-5 \hat{k})$
We know that, mid-point of diagonal BD
= Mid-point of diagonal AC
[\therefore diagonal of a parallelogram bisect each other]
$\therefore\left(\frac{x+2}{2}, \frac{y+3}{2}, \frac{z+4}{2}\right)=\left(\frac{4+1}{2}, \frac{5+2}{2}, \frac{10-1}{2}\right)$
Therefore, on comparing corresponding coordinates, we get
$\frac{x+2}{2}=\frac{5}{2}, \frac{y+3}{2}=\frac{7}{2}$ and $\frac{z+4}{2}=\frac{9}{2}$
$\Rightarrow \quad x=3, y=4$ and $z=5$
Therefore, coordinates of point $D(x, y, z)$ is $(3,4,5)$ and vector equations of sides $A B$ and BC are
$\vec{r}=(4 \hat{i}+5 \hat{j}+10 \hat{k})-\lambda(2 \hat{i}+2 \hat{j}+6 \hat{k})$ and
$\vec{r}=(2 \hat{i}+3 \hat{j}+4 \hat{k})-\mu \hat{(i}+\hat{j}+5 \hat{k})$, respectively.
$\vec{r}=\hat{i}-2 \hat{j}+3 \hat{k}+t(-\hat{i}+\hat{j}-2 \hat{k})$
$\vec{r}=\hat{i}-\hat{j}-\hat{k}+s(\hat{i}+2 \hat{j}-2 \hat{k})$
$\overrightarrow{a_{1}}=\hat{i}-2 \hat{j}+3 \hat{k}$
$\overrightarrow{b_{1}}=-\hat{i}+\hat{j}-2 \hat{k}$
$\vec{a}_{2}=\hat{i}-\hat{j}-\hat{k}$
$\vec{b}_{2}=\hat{i}+2 \hat{j}-2 \hat{k}$
$\vec{a}_{2}-\overrightarrow{a_{1}}=\hat{j}-4 \hat{k}$
$\overrightarrow{b_{1}} \times \hat{b}_{2}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ -1 & 1 & -2 \\ 1 & 2 & -2\end{array}\right|$
17. $2 \hat{i}-4 \hat{j}-3 \hat{k}$
$\left(\vec{a}_{2}-\vec{a}_{1}\right) \cdot\left(\vec{b}_{1} \times \vec{b}_{2}\right)=(0 \vec{i}+\vec{j}-4 \vec{k}) \cdot(2 \vec{i}-4 \vec{j}-3 \vec{k})=0-4+12=8$
$\left|\vec{b}_{1} \times \vec{b}_{2}\right|=\sqrt{(2)^{2}+(-4)^{2}+(-3)^{2}}$
$=\sqrt{29}$
$d=\left|\frac{\left(\vec{a}_{2}-\vec{a}_{1}\right)\left(\vec{b}_{1} \times \vec{b}_{2}\right)}{\left|\vec{b}_{1} \times \vec{b}_{2}\right|}\right|=\frac{8}{\sqrt{29}}$
18. $\vec{r}=(2 \hat{i}-\hat{j}+3 \hat{k})+\lambda(3 \hat{i}+4 \hat{j}+2 \hat{k})$
$\Rightarrow \frac{x-2}{3}=\frac{y+1}{4}=\frac{z-2}{2}=\lambda$.
Any point on line (1) is,
$P(3 \lambda+2,4 \lambda-1,2 \lambda+2)$
Now, $\vec{r} \cdot(\hat{i}-\hat{j}+\hat{k})=5$
$(x \hat{i}+y \hat{j}+z \hat{k}) \cdot(\hat{i}-\hat{j}+\hat{k})=5$
$x-y+z=5$
Since point P lies on (2), therefore, from (2), we have,
$(3 \lambda+2)-(4 \lambda-1)+(2 \lambda+2)=5$
$\Rightarrow \lambda+5=5$
$\Rightarrow \lambda=0$
We get ($2,-1,2$)
as the coordinate of the point of intersection of the given line and the plane Now distance between the points $(-1,-5,-10)$ and $(2,-1,2)$
req. distance $=\sqrt{(2+1)^{2}+(-1+5)^{2}+(2+10)^{2}}$
$=\sqrt{9+16+144}=13$

