CBSE Test Paper 02

Chapter 10 Vector Algebra

1. Find $|\vec{a}|$ and $|\vec{b}|$, if $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$ and $|\vec{a}|=8|\vec{b}|$.
a. $\frac{16 \sqrt{2}}{3 \sqrt{7}}, \frac{2 \sqrt{2}}{3 \sqrt{7}}$
b. $\frac{19 \sqrt{2}}{3 \sqrt{7}}, \frac{2 \sqrt{5}}{3 \sqrt{7}}$
c. $\frac{17 \sqrt{2}}{3 \sqrt{7}}, \frac{2 \sqrt{3}}{3 \sqrt{7}}$
d. $\frac{21 \sqrt{2}}{3 \sqrt{7}}, \frac{2 \sqrt{6}}{3 \sqrt{7}}$
2. A girl walks 4 km towards west, then she walks 3 km in a direction 30° east of north and stops. Determine the girl's displacement from her initial point of departure.
a. $\frac{5}{2} \hat{i}-\frac{3 \sqrt{3}}{2} \hat{j}$
b. $\frac{-5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
c. $\frac{-5}{2} \hat{i}-\frac{3 \sqrt{3}}{2} \hat{j}$
d. $\frac{5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
3. Direction angles are
a. The angles denoted by $\vec{a}, \vec{b}, \vec{c}$
b. The angles that show the tip of the vector
c. The angles α, β, γ made by the position vector \vec{r} with the positive directions of x , y and z-axes respectively
d. The angles α, β, γ made by the perpendicular to position vector \vec{r} with the negative directions of x, y and z-axes respectively
4. If a unit vector \vec{a} makes angles $\frac{\pi}{3}$ with $\hat{i}, \frac{\pi}{4}$ with \hat{j} and an acute angle θ with \hat{k}, then the components of \vec{a} are
a. $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{3}$
b. $\frac{1}{3}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
c. $\frac{1}{3}, \frac{1}{\sqrt{3}}, \frac{1}{2}$
d. $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$
5. Find $|\vec{x}|$, if for a unit vector $\widehat{a},(2 \vec{x}-3 \vec{a}) \cdot(2 \vec{x}+3 \vec{a})=91$.
a. 5
b. $\sqrt{17}$
c. $\sqrt{15}$
d. $\sqrt{19}$
6. The area of the parallelogram whose adjacent sides are $\hat{i}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$ is
\qquad .
7. The vector $\vec{a}+\vec{b}$ bisects the angle between the non-collinear vectors \vec{a} and \vec{b} if \bar{a} and \bar{b} are \qquad vectors.
8. The vectors $\vec{a}=3 \hat{i}-2 \hat{j}+2 \hat{k}$ and $\vec{b}=-\hat{i}-2 \hat{k}$ are the adhacent sides of a parallelogram. The acute angle between its diagonals is \qquad .
9. Find the direction ratios and the direction cosines of the vector $\vec{r}=\hat{i}+\hat{j}+\hat{k}$.
10. Is the measure of 10 Newton a scalar or vector ?
11. Find $|\vec{x}|$. if for a unit Vector $\hat{a}(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$.
12. Let \vec{a}, \vec{b} and \vec{c} be three vectors such that $|\vec{a}|=3,|\vec{b}|=4,|\vec{c}|=5$ and each one of them being \perp to the sum of the other two, find $|\vec{a}+\vec{b}+\vec{c}|$.
13. Find the angle between vectors \vec{a} and \vec{b} if $|\vec{a}|=\sqrt{3},|\vec{b}|=2 \cdot \vec{a} \cdot \vec{b}=\sqrt{6}$.
14. Find the sine of the angle between the vectors $\vec{a}=3 \hat{i}+\hat{j}+2 \hat{k}$ and $\vec{b}=2 \hat{i}-2 \hat{j}+4 \hat{k}$.
15. Show that $\vec{a}=\frac{1}{7}(2 \hat{i}+3 \hat{j}+6 \hat{k}), \vec{b}=\frac{1}{7}(6 \hat{i}+2 \hat{j}-3 \hat{k}), \vec{c}=\frac{1}{7}(3 \hat{i}-6 \hat{j}+2 \hat{k})$ are mutually \perp unit vectors.
16. If $\vec{a}=\hat{i}+2 \hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{j}$ and $\vec{c}=3 \hat{i}-4 \hat{j}-5 \hat{k}$, then find a unit vector perpendicular to both of the vectors $(\vec{a}-\vec{b})$ and $(\vec{c}-\vec{b})$.
17. If $\vec{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}$, then find the value of λ, so that $\vec{a}+\vec{b}$ and $\vec{a}-\vec{b}$ are perpendicular vectors.
18. The scalar product of the vector $\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of vectors $\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to one. Find the value of λ and hence, find the unit vector along $\vec{b}+\vec{c}$.

CBSE Test Paper 02

Chapter 10 Vector Algebra

Solution

1. a. $\frac{16 \sqrt{2}}{3 \sqrt{7}}, \frac{2 \sqrt{2}}{3 \sqrt{7}}$

Explanation: $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=8$
$\Rightarrow|\vec{a}|^{2}-|\vec{b}|^{2}=8$
$\Rightarrow 64|\vec{b}|^{2}-|\vec{b}|^{2}=8 \Rightarrow 63|\vec{b}|^{2}=8 \Rightarrow|\vec{b}|=\sqrt{\frac{8}{63}}=\frac{2 \sqrt{2}}{3 \sqrt{7}}$
$\Rightarrow|\vec{a}|=8|\vec{b}| \Rightarrow|\vec{a}|=\frac{16 \sqrt{2}}{3 \sqrt{7}}$
2.
b. $\frac{-5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
\quad Explanation: Let $\vec{r}=-x \hat{i}+y \hat{j}, x=\frac{5}{2}, y=\frac{3 \sqrt{3}}{2} \therefore \vec{r}=\frac{-5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
3. c. The angles α, β, γ made by the position vector \vec{r} with the positive directions of x, y and z -axes respectively
Explanation: the angles α, β, γ are called direction angles, which the position vector \vec{r} makes with the positive x-axis,y-axis and z-axis respectively
4. d. $\frac{1}{2}, \frac{1}{\sqrt{2}}, \frac{1}{2}$

Explanation: Let, $\vec{a}=a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}$, then,
$\Rightarrow a_{1}^{2}+a_{2}^{2}+a_{3}^{2}=1$
$\therefore \vec{a} \cdot \hat{i}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \cdot \hat{i} \Rightarrow|\vec{a}||\hat{i}| \cos \frac{\pi}{3}=a_{1} \Rightarrow a_{1}=\frac{1}{2}$
$\therefore \vec{a} \cdot \hat{j}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \cdot \hat{j} \Rightarrow|\vec{a}||\hat{j}| \cos \frac{\pi}{4}=a_{2} \Rightarrow a_{2}=\frac{1}{\sqrt{2}}$
$\therefore \vec{a} \cdot \hat{k}=\left(a_{1} \hat{i}+a_{2} \hat{j}+a_{3} \hat{k}\right) \cdot \hat{k} \Rightarrow|\vec{a}||\hat{k}| \cos \frac{\pi}{4}=a_{3} \Rightarrow a_{3}=\cos \theta$
Putting these values in (1), we get :
$\frac{1}{4}+\frac{1}{2}+\cos ^{2} \theta=1$
$\Rightarrow \frac{3}{4}=1-\cos ^{2} \theta \Rightarrow \sin ^{2} \theta=\frac{3}{4} \Rightarrow \sin \theta=\frac{\sqrt{3}}{2} \Rightarrow \theta=60^{\circ}$
$\therefore a_{3}=\cos 60^{\circ}=\frac{1}{2}$
$\Rightarrow \vec{a}=\frac{1}{2} \hat{i}+\frac{1}{\sqrt{2}} \hat{j}+\frac{1}{2} \hat{k}$
5. a. 5

Explanation: It is given that:

$$
\begin{aligned}
& (2 \vec{x}-3 \vec{a}) \cdot(2 \vec{x}+3 \vec{a})=91 \\
& \Rightarrow 4|\vec{x}|^{2}-9|\vec{a}|^{2} \\
& =91 \Rightarrow 4|\vec{x}|^{2}-9.1=91 \\
& \Rightarrow 4|\vec{x}|^{2}=100 \Rightarrow|\vec{x}|=5
\end{aligned}
$$

6. $\sqrt{3}$
7. equal
8. $\frac{\pi}{4}$
9. D.R of \vec{r} are $1,1,1$
$|\vec{r}|=\sqrt{1^{2}+1^{2}+1^{2}}=\sqrt{3}$
D.C of \vec{r} are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$
10. Vector because Newton is a unit of force and force has both magnitude and direction.
11. Here,we have to find $|\vec{x}|$. Given, \hat{a} is a unit vector. Then, $|\hat{a}|=1$.

Now, we are given that dot product is equal to $(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=15$
$\Rightarrow \quad \vec{x} \cdot \vec{x}-\vec{a} \cdot \vec{x}+\vec{x} \cdot \vec{a}-\vec{a} \cdot \vec{a}=15$
$\Rightarrow \quad \vec{x} \cdot \vec{x}-\vec{a} \cdot \vec{x}+\vec{a} \cdot \vec{x}-\vec{a} \cdot \vec{a}=15$
[\therefore scalar product is commutative, i.e. $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$]
$\Rightarrow \quad|\vec{x}|^{2}-|\vec{a}|^{2}=15 \quad\left[\because \vec{z} \cdot \vec{z}=|\vec{z}|^{2}\right]$
$\Rightarrow \quad|\vec{x}|^{2}-1=15 \quad$ [given, $\left.|\hat{a}|=1\right]$
$\Rightarrow \quad|\vec{x}|^{2}=16$
$\therefore \quad|\vec{x}|=4$
[\because length cannot be negative]
12. $\vec{a} \cdot(\vec{b}+\vec{c})=0, \vec{b} \cdot(\vec{c}+\vec{a})=0, \vec{c} \cdot(\vec{a}+\vec{b})=0$ (given)
$|\vec{a}+\vec{b}+\vec{c}|^{2}=(\vec{a}+\vec{b}+\vec{c}) \cdot(\vec{a}+\vec{b}+\vec{c})$
$=\vec{a} \cdot \vec{a}+\vec{a}(\vec{b}+\vec{c})+\vec{b} \cdot \vec{b}+\vec{b}(\vec{a}+\vec{c})+\vec{c} \cdot \vec{c}+(\vec{a}+\vec{b})$
$=|\vec{a}|^{2}+|\vec{b}|^{2}+|\vec{c}|^{2}$
$=9+16+25$
$=50$
$|\vec{a}+\vec{b}+\vec{c}|=\sqrt{50}$
$=5 \sqrt{2}$
13. $\cos \theta=\frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}$
$=\frac{\sqrt{6}}{(\sqrt{3}) \cdot(2)}=\frac{\sqrt{2} \times \sqrt{3}}{\sqrt{3} \cdot 2}=\frac{\sqrt{2}}{\sqrt{2} \cdot \sqrt{2}}$
$\Rightarrow \cos \theta=\frac{1}{\sqrt{2}}$
$\Rightarrow \theta=\frac{\pi}{4}$
14. Here, $a_{1}=3, a_{2}=1, a_{3}=2$ and $b_{1}=2, b_{2}=-2, b_{3}=4$

We know that,
$\cos \theta=\frac{a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}}{\sqrt{a_{1}^{2}+a_{2}^{2}+a_{3}^{2}} \sqrt{b_{1}^{2}+b_{2}^{2}+b_{3}^{2}}}$
$=\frac{3 \times 2+1 \times(-2)+2 \times 4}{\sqrt{3^{2}+1^{2}+2^{2} \sqrt{2^{2}+(-2)^{2}+4^{2}}}}$
$=\frac{6-2+8}{\sqrt{14} \sqrt{24}}=\frac{12}{2 \sqrt{14} \sqrt{6}}=\frac{6}{\sqrt{84}}=\frac{6}{2 \sqrt{21}}=\frac{3}{\sqrt{21}}$
$\therefore \sin \theta=\sqrt{1-\cos ^{2} \theta}$
$=\sqrt{1-\frac{9}{21}}=\sqrt{\frac{12}{21}}=\frac{2 \sqrt{3}}{\sqrt{3} \sqrt{7}}=\frac{2}{\sqrt{7}}$
15. $|\vec{a}|=\frac{1}{7} \sqrt{36+4+9}=\frac{1}{7} \sqrt{49}=1$
$|\vec{b}|=\frac{1}{7} \sqrt{36+4+9}=\frac{1}{7} \sqrt{49}=1$
$|\vec{c}|=\frac{1}{7} \sqrt{9+36+4}=\frac{1}{7} \sqrt{49}=1$
Hence they are unit vectors
$\vec{a} \cdot \vec{b}=\frac{1}{49}(2 \hat{i}+3 \hat{j}+6 \hat{k})(6 \hat{i}+2 \hat{j}-3 \hat{k})$
$=\frac{1}{49}(12+6-18)=0$
$\vec{b} \cdot \vec{c}=\frac{1}{49}(6 \hat{i}+2 \hat{j}-3 \hat{k})(3 \hat{i}-6 \hat{j}+2 \hat{k})$
$=\frac{1}{49}(18-12-6)=0$
$\vec{c} . \vec{a}=\frac{1}{49}(3 \vec{i}-6 \vec{j}+2 \vec{k})(2 \vec{i}+3 \vec{j}+6 \vec{k})$
$=\frac{1}{\overrightarrow{49}}(6-18+12)=0$
$\vec{a} \perp \vec{b}, \vec{b} \perp \vec{c}$ and $\vec{c} \perp \vec{a}$
So they are \perp to each other.
16. According to the question,
$\vec{a}=\hat{i}+2 \hat{j}+\hat{k}$,
$\vec{b}=2 \hat{i}+\hat{j}$ and
$\vec{c}=3 \hat{i}-4 \hat{j}-5 \hat{k}$
Now, $\vec{a}-\vec{b}=(i+2 \hat{j}+\hat{k})-(2 \hat{i}+\hat{j})=-\hat{i}+\hat{j}+\hat{k}$
Now, $\vec{c}-\vec{b}=(3 \hat{i}-4 \hat{j}-5 \hat{k})-(2 \hat{i}+\hat{j})=\hat{i}-5 \hat{j}-5 \hat{k}$
Now, a vector perpendicular to $(\vec{a}-\vec{b})$ and $(\vec{c}-\vec{b})$ is given by

$$
\begin{aligned}
& \overrightarrow{(a-\vec{b})} \times(\vec{c}-\vec{b})=\left|\begin{array}{ccc}
\hat{i} & \hat{j} & \hat{k} \\
-1 & 1 & 1 \\
1 & -5 & -5
\end{array}\right| \\
& =\hat{i}(-5+5)-\hat{j}(5-1)+\hat{k}(5-1) \\
& =\hat{i}(0)-\hat{j}(4)+\hat{k}(4) \\
& =-4 \hat{j}+4 \hat{k}
\end{aligned}
$$

Unit vector along $(\vec{a}-\vec{b}) \times(\vec{c}-\vec{b})$ is given by
$\frac{-4 \hat{j}+4 \hat{k}}{|-4 \hat{j}+4 \hat{k}|}$
$=\frac{-4 \hat{j}+4 \hat{k}}{\sqrt{(-4)^{2}+4^{2}}}$
$=\frac{-4 \hat{j}+4 \hat{k}}{\sqrt{32}}$
$=\frac{-4 \hat{j}+4 \hat{k}}{4 \sqrt{2}}$
$=-\frac{j}{\sqrt{2}}+\frac{\hat{k}}{\sqrt{2}}$
17. According to the question,

Given vectors are, $\vec{a}=\hat{i}-\hat{j}+7 \hat{k}$ and $\vec{b}=5 \hat{i}-\hat{j}+\lambda \hat{k}$
Now, $\vec{a}+\vec{b}=(\hat{i}-\hat{j}+7 \hat{k})+(5 \hat{i}-\hat{j}+\lambda \hat{k})=6 \hat{i}-2 \hat{j}+(7+\lambda) \hat{k}$
Now, $\vec{a}-\vec{b}=(\hat{i}-\hat{j}+7 \hat{k})-(5 \hat{i}-\hat{j}+\lambda \hat{k})=-4 \hat{i}+(7-\lambda) \hat{k}$
Since, $(\vec{a}+\vec{b})$ and $(\vec{a}-\vec{b})$ are perpendicular vectors, then dot product of these vectors will be zero, i.e. $(\vec{a}+\vec{b}) \cdot(\vec{a}-\vec{b})=0$
$\Rightarrow[6 \hat{i}-2 \hat{j}+(7+\lambda) \hat{k}] \cdot[-4 \hat{i}+(7-\lambda) \hat{k}]=0$
$\Rightarrow \quad-24+(7+\lambda)(7-\lambda)=0$
$\Rightarrow \quad 49-\lambda^{2}=24$
$\Rightarrow \quad \lambda^{2}=25$
$\Rightarrow \quad \lambda= \pm 5$
$\therefore \quad \lambda= \pm 5$
18. According to the question, $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$.
Now, $\vec{b}+\vec{c}=2 \hat{i}+4 \hat{j}-5 \hat{k}+\lambda \hat{i}+2 \hat{j}+3 \hat{k}=(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}$
$\therefore|\vec{b}+\vec{c}|=\sqrt{(2+\lambda)^{2}+(6)^{2}+(-2)^{2}}$
$=\sqrt{4+\lambda^{2}+4 \lambda+36+4}$
$=\sqrt{\lambda^{2}+4 \lambda+44}$
The unit vector along $\vec{b}+\vec{c}$
$=\frac{\vec{b}+\vec{c}}{|\vec{b}+\vec{c}|}=\frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\lambda^{2}+4 \lambda+44}}$
According to the question, the scalar product of $(\hat{i}+\hat{j}+\hat{k})$ with unit vector $\vec{b}+\vec{c}$ is
1.
$\therefore \quad(\hat{i}+\hat{j}+\hat{k}) \cdot \frac{\vec{b}+\vec{c}}{|\vec{b}+\vec{c}|}=1$
$\Rightarrow \quad(\hat{i}+\hat{j}+\hat{k}) \cdot \frac{(2+\lambda) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{\lambda^{2}+4 \lambda+44}}=1$
$\Rightarrow \quad \frac{1(2+\lambda)+1(6)+1(-2)}{\sqrt{\lambda^{2}+4 \lambda+44}}=1$
$\Rightarrow \frac{(2+\lambda)+6-2}{\sqrt{\lambda^{2}+4 \lambda+44}}=1$
$\Rightarrow \quad \lambda+6=\sqrt{\lambda^{2}+4 \lambda+44}$
$\Rightarrow \quad(\lambda+6)^{2}=\lambda^{2}+4 \lambda+44$ [squaring both sides]
$\Rightarrow \quad \lambda^{2}+36+12 \lambda=\lambda^{2}+4 \lambda+44$
$\Rightarrow \quad 8 \lambda=8$
$\Rightarrow \lambda=1$
The value of λ is 1 .
Substituting the value of λ in Eq. (i), we get unit vector along $\vec{b}+\vec{c}$
$=\frac{(2+1) \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{(1)^{2}+4(1)+44}}=\frac{3 \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{1+4+44}}$
$=\frac{3 \hat{i}+6 \hat{j}-2 \hat{k}}{\sqrt{49}}=\frac{3}{7} \hat{i}+\frac{6}{7} \hat{j}-\frac{2}{7} \hat{k}$

