CBSE Test Paper 01 Chapter 10 Vector Algebra

- 1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively, having \vec{a} . $\vec{b} = \sqrt{6}$.
 - a. $\frac{\pi}{5}$ b. $\frac{\pi}{3}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{4}$
- 2. Find the angle between two vectors $\hat{i}-2\hat{j}+3\hat{k}$ and $3\hat{i}-2\hat{j}+\hat{k}$.
 - a. $\cos^{-1}\left(\frac{4}{7}\right)$ b. $\cos^{-1}\left(\frac{6}{7}\right)$ c. $\cos^{-1}\left(\frac{5}{9}\right)$ d. $\cos^{-1}\left(\frac{5}{7}\right)$
- 3. Vector has
 - a. direction
 - b. None of these
 - c. magnitude
 - d. magnitude as well as direction
- 4. Find the sum of the vectors $ec{a}=\hat{i}-2\hat{j}+\hat{k},~ec{b}=-2\hat{i}+4\hat{j}+5\hat{k}~$ and $ec{c}=\hat{i}-6\hat{j}-7\hat{k}.$

a.
$$-\hat{i} + 4\hat{j} - \hat{k}$$

b. $-4\hat{j} - \hat{k}$
c. $-\hat{i} - 4\hat{j} - \hat{k}$
d. $\hat{i} - 4\hat{j} - \hat{k}$

5. Find the direction cosines of the vector $\hat{i} + 2\hat{j} + 3\hat{k}$.

- a. $\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$ b. $\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $-\frac{3}{\sqrt{14}}$ c. $\frac{1}{\sqrt{14}}$, $-\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$ d. $-\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$
- 6. The values of k which $|k\vec{a}| < |\vec{a}|$ and $k\vec{a} + \frac{1}{2}\vec{a}$ is parallel to \vec{a} holds true are _____.
- 7. If $\vec{r} \cdot \vec{a} = 0$, $\vec{r} \cdot \vec{b} = 0$, and $\vec{r} \cdot \vec{c} = 0$ for some non-zero vector \vec{r} , then the value of $\vec{a}(\vec{b} \times \vec{c})$ is _____.
- 8. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively, $\vec{a} \cdot \vec{b} = 2\sqrt{3}$ is _____.
- 9. Find $\vec{a} \times \vec{b}$ if $\vec{a} = 2\hat{i} + \hat{j} + 3\hat{k}, \vec{b} = 3\hat{i} + 5\hat{j} 2\hat{k}.$
- 10. Find the projection of \vec{a} on \vec{b} , if $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$.
- 11. $ec{a}$ Is unit vector and $(ec{x}-ec{a})\,(ec{x}+ec{a})=8$, Then find $|ec{x}|$.
- 12. Find the position vector of the mid-point of the vector joining the points P (2, 3, 4) and Q(4,1, 2)
- 13. Find sine of the angle between the vectors. $ec{a}=2\hat{i}-\hat{j}+3\hat{k}, ec{b}=\hat{i}+3\hat{j}+2\hat{k}$.
- 14. Find the projection of the vector $\hat{i}+3\hat{j}+7\hat{k}$ on the vector $7\hat{i}-\hat{j}+8\hat{k}$
- 15. Let $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 4\hat{i} 2\hat{j} + 3\hat{k}$ and $\vec{c} = \hat{i} 2\hat{j} + \hat{k}$. Find a vector of magnitude 6 units, which is parallel to the vector $2\vec{a} \vec{b} + 3\vec{c}$.
- 16. Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}$, $\vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 15$.
- 17. A girl walks 4 km towards west, then she walks 3 km in a direction 30^0 east of north and stops. Determine the girl's displacement from her initial point of departure.
- 18. Find a vector \vec{d} which is \perp to both \vec{a} and \vec{b} and \vec{c} . $\vec{d} = 15$ Let $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \vec{b} = 3\hat{i} 2\hat{j} + 7\hat{k}$ and $\vec{c} = 2\hat{i} \hat{j} + 4\hat{k}$.

CBSE Test Paper 01 Chapter 10 Vector Algebra

Solution

1. d.
$$\frac{\pi}{4}$$
, Explanation: $|\vec{a}| = \sqrt{3}$, $|\vec{b}| = 2$, $\vec{a} \cdot \vec{b} = \sqrt{6}$
 $\Rightarrow \vec{a} \cdot \vec{b} = |\vec{a}|$, $|\vec{b}| \cos \theta \Rightarrow \sqrt{6}$
 $= 2\sqrt{3} \cos \theta$
 $\Rightarrow \cos \theta = \frac{1}{\sqrt{2}} \Rightarrow \theta = \frac{\pi}{4}$
2. d. $\cos^{-1}\left(\frac{5}{7}\right)$, Explanation: $\vec{a} = \hat{i} - 2\hat{j} + 3\hat{k}$, $\vec{b} = 3\hat{i} - 2\hat{j} + \hat{k}$
 $\Rightarrow |\vec{a}| = \sqrt{14}$, $|\vec{b}| = \sqrt{14}$, $\vec{a} \cdot \vec{b} = 10$
 $\Rightarrow \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|} = \cos \theta \Rightarrow \frac{10}{14} = \cos \theta$
 $\Rightarrow \cos \theta = \frac{5}{7} \Rightarrow \theta = \cos^{-1}\frac{5}{7}$
3. d. magnitude as well as direction, Explanation: A vector has both magnitude as well as direction.
4. b. $-4\hat{j} - \hat{k}$, Explanation: We have: vectors $\vec{a} = \hat{i} - 2\hat{j} + \hat{k}$,
 $\vec{b} = -2\hat{i} + 4\hat{j} + 5\hat{k}$ and
5. a. $\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$, Explanation: Let $\vec{a} = \hat{i} + 2\hat{j} + 3\hat{k}$,
Then, $\hat{a} = \frac{\vec{a}}{|\vec{a}|} = \frac{\hat{i} + 2\hat{j} + 3\hat{k}}{\sqrt{14} + \frac{1}{\sqrt{14}}}$
Therefore, the D.C.'s of vector a are :
 $\frac{1}{\sqrt{14}}$, $\frac{2}{\sqrt{14}}$, $\frac{3}{\sqrt{14}}$.
6. $k \in]-1, 1 \ |k \neq -\frac{1}{2}$
7. 0
8. $\frac{\pi}{3}$

9.
$$\vec{a} \times \vec{b} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2 \end{vmatrix}$$

 $= \hat{i}(-2 - 15) - \hat{j}(-4 - 9) + \hat{k}(10 - 3)$
 $= -17\hat{i} + 13\hat{j} + 7\hat{k}$
10. We are given that, $\vec{a} \cdot \vec{b} = 8$ and $\vec{b} = 2\hat{i} + 6\hat{j} + 3\hat{k}$
 \therefore The projection of \vec{a} on \vec{b} is given as $= \frac{\hat{a} \cdot \hat{b}}{|\vec{b}|}$
 $= \frac{8}{\sqrt{2^2 + 6^2 - 3^2}}$
 $= \frac{8}{\sqrt{4 + 6^2 + 3^2}}$
 $= 3\hat{i} + 2\hat{j} + \hat{k}$
And Position vector of point P is $\vec{a} = 2\hat{i} + 3\hat{j} + 4\hat{k}$
And Position vector of mid-point R of PQ is $\frac{\hat{a} \cdot \hat{b}}{2} = \frac{2\hat{i} + 3\hat{j} + 4\hat{k} + 4\hat{i} + \hat{j} - 2\hat{k}}$
And Position vector of mid-point R of PQ is $\frac{\hat{a} \cdot \hat{b}}{2} = \frac{2\hat{i} + 3\hat{j} + 4\hat{k} + 4\hat{i} + \hat{j} - 2\hat{k}}$
And Position vector of mid-point R of PQ is $\frac{\hat{a} \cdot \hat{b}}{2} = \frac{2\hat{i} + 3\hat{j} + 4\hat{k} + 4\hat{i} + \hat{j} - 2\hat{k}}$
 $= \frac{6\hat{i} + 4\hat{j} - 2\hat{k}}{2}$
 $= -11\hat{i} - \hat{j} + 7\hat{k}$
 $|\hat{a} \times \vec{b}| = \sqrt{(-11)^2 + (-1)^2 + (7)^2}$
 $= \sqrt{171} = 3\sqrt{19}$
 $\sin \theta = \frac{|\hat{a} \times \hat{b}|}{|\hat{a}|\hat{b}|} = \frac{3\sqrt{79}}{\sqrt{14}\sqrt{14}} = \frac{3}{14}\sqrt{19}$
14. Let $\vec{a} = \hat{i} + 3\hat{j} + 7\hat{k}$ and $\vec{b} = 7\hat{i} - \hat{j} + 8\hat{k}$

Projection of vector \vec{a} on $\vec{b} = rac{ec{a}.b}{ec{b}ec{ec{b}}}$ $=\frac{(1)(7)+(3)(-1)+7(8)}{\sqrt{(7)^2+(-1)^2+(8)^2}}\\=\frac{7-3+56}{\sqrt{49+61+64}}=\frac{60}{\sqrt{114}}$ 15. According to the question, $ec{a} = \hat{i} + \hat{j} + \hat{k},$ $ec{b}=4\hat{i}-2\hat{j}+3\hat{k}$ and $ec{c} = \hat{i} - 2\hat{j} + \hat{k}$ Now , $2\vec{a}-\vec{b}+\vec{3}\vec{c}$ $\hat{k} = 2(\hat{i}+\hat{j}+\hat{k}) - (4\hat{i}-2\hat{j}+3\hat{k}) + 3(\hat{i}-2\hat{j}+\hat{k})$ $\hat{k} = 2\hat{i} + 2\hat{j} + 2\hat{k} - 4\hat{i} + 2\hat{j} - 3\hat{k} + 3\hat{i} - 6\hat{j} + 3\hat{k}$ $\hat{i}=\hat{i}-2\hat{j}+2\hat{k}$ $\Rightarrow 2ec{a}-ec{b}+3ec{c}=\hat{i}-2\hat{j}+2\hat{k}$ Now, a unit vector in the direction of vector is $2\vec{a} - \vec{b} + 3\vec{c} = rac{2\vec{a} - b + 3\vec{c}}{|2\vec{a} - \vec{b} + 3\vec{c}|}$ $= \frac{\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{(1)^2+(-2)^2+(2)^2}} \\ = \frac{\hat{i}-2\hat{j}+2\hat{k}}{\sqrt{9}} \\ = \frac{\hat{i}-2\hat{j}+2\hat{k}}{3} \\ + \hat{1}$ $=rac{1}{3}\hat{i}-rac{2}{3}\hat{j}+rac{2}{3}\hat{k}$ Vector of magnitude 6 units parallel to the vector is,

$$egin{aligned} &=6\left(rac{1}{3}\hat{i}-rac{2}{3}\hat{j}+rac{2}{3}\hat{k}
ight)\ &=2\hat{i}-4\hat{j}+4\hat{k} \end{aligned}$$

16. Given: Vectors $ec{a}=\hat{i}+4\hat{j}+2\hat{k}$ and $ec{b}=3\hat{i}-2\hat{j}+7\hat{k}$

We know that the cross-product of two vectors, $\vec{a} \times \vec{b}$ is a vector perpendicular to both \vec{a} and \vec{b}

Hence, vector \vec{d} which is also perpendicular to both \vec{a} and \vec{b} is $\vec{d} = \lambda \left(\vec{a} \times \vec{b} \right)$ where $\lambda = 1$ or some other scalar.

Therefore,
$$ec{d}=\lambdaegin{bmatrix}ec{i}&ec{j}&ec{k}\ 1&4&2\ 3&-2&7\ \end{bmatrix}$$

$$= \lambda \left[\hat{i} (28+4) - \hat{j} (7-6) + \hat{k} (-2-12) \right]$$

$$\Rightarrow \vec{d} = 32\lambda\hat{i} - \lambda\hat{j} - 14\lambda\hat{k}...(i)$$

Now given $\vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$ and $\vec{c}.\vec{d} = 15$
 $\vec{c}.\vec{d} = 15$

$$= 2 (32\lambda) + (-1) (-\lambda) + 4 (-14\lambda) = 15$$

$$\Rightarrow 64\lambda + \lambda - 56\lambda = 15$$

$$\Rightarrow 9\lambda = 15$$

$$\Rightarrow \lambda = \frac{15}{9}$$

$$\Rightarrow \lambda = \frac{5}{3}$$

Putting $\lambda = \frac{5}{3}$ in eq. (i), we get
 $\vec{d} = \frac{5}{3} \left[32\hat{i} - \hat{j} - 14\hat{k} \right]$

$$\Rightarrow \vec{d} = \frac{1}{3} \left[160\hat{i} - 5\hat{j} - 70\hat{k} \right]$$

17. Let the initial point of departure is origin (0, 0) and the girl walks a distance OA = 4 km towards west.

Through the point A, draw a line AQ parallel to a line OP, which is 30^0 East of North, i.e., in East-North quadrant making an angle of 30^0 with North.

Again, let the girl walks a distance AB = 3 km along this direction
$$\overrightarrow{OQ}$$

 $\overrightarrow{OA} = 4(-\overrightarrow{i}) = -4\overrightarrow{i}$...(i) ['.' Vector \overrightarrow{OA} is along OX']

Now, draw BM perpendicular to x - axis. In ΔAMB by Triangle Law of Addition of vectors, $\overrightarrow{AB} = \overrightarrow{AM} + \overrightarrow{MB} = (AM) \hat{i} + (MB) \hat{i}$ Dividing and multiplying by AB in R.H.S.,

$$\overrightarrow{AB} = AB\frac{AM}{AB}\hat{i} + AB\frac{MB}{AB}\hat{j} = 3\cos 60^{\circ}\hat{i} + 3\sin 60^{\circ}\hat{j}$$

$$\Rightarrow AB = 3\frac{1}{2}\hat{i} + 3\frac{\sqrt{3}}{2}\hat{i} = \frac{3}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j} ...(ii)$$
.:. Girl's displacement from her initial point 0 of departure to final point B,

$$\overrightarrow{OB} = \overrightarrow{OA} + \overrightarrow{AB} = -4\hat{i} + \left(\frac{3}{2}\hat{i} + \frac{3\sqrt{2}}{2}\hat{j}\right) = \left(-4 + \frac{3}{2}\right)\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$

$$\Rightarrow \overrightarrow{OB} = \frac{-5}{2}\hat{i} + \frac{3\sqrt{3}}{2}\hat{j}$$
18. $\vec{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \vec{b} = 3\hat{i} - 2\hat{j} + 7\hat{k} \text{ and } \vec{c} = 2\hat{i} - \hat{j} + 4\hat{k}$
Let $\vec{d} = x\hat{i} + y\hat{j} + z\hat{k}$
ATQ, $\vec{d} \cdot \vec{a} = 0, \vec{d} \cdot \vec{b} = 0$ and $\vec{c} \cdot \vec{d} = 15$, then,
 $x + 4y + 2z = 0 ...(1)$
3x - 2y + 7z = 0 ...(2)
2x - y + 4z = 15 ...(3)
On solving equation (1) and (2)
 $\frac{x}{4} + \frac{2}{6-7} = \frac{-2}{-2-12} = k$
 $x = 32k, y = k, z = -14k$
Put x, y, z in equation (3)
2(32k) - (-k) + 4(-14k) = 15
 $64k + k - 56k = 15$
 $9k = 15$
 $k = \frac{15}{9}$
 $k = \frac{8}{3}$
 $x = 32 \times \frac{5}{3} = \frac{160}{3}$
 $y = -\frac{5}{3}$
 $z = -14 \times \frac{5}{3} = -\frac{70}{3}$
 $\vec{d} = \frac{100}{3}\hat{i} - \frac{5}{3}\hat{j} - \frac{70}{3}\hat{k}$