CBSE Test Paper 01

Chapter 10 Vector Algebra

1. Find the angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 2, respectively, having $\vec{a} . \vec{b}=\sqrt{6}$.
a. $\frac{\pi}{5}$
b. $\frac{\pi}{3}$
c. $\frac{\pi}{2}$
d. $\frac{\pi}{4}$
2. Find the angle between two vectors $\hat{i}-2 \hat{j}+3 \hat{k}$ and $3 \hat{i}-2 \hat{j}+\hat{k}$.
a. $\cos ^{-1}\left(\frac{4}{7}\right)$
b. $\cos ^{-1}\left(\frac{6}{7}\right)$
c. $\cos ^{-1}\left(\frac{5}{9}\right)$
d. $\cos ^{-1}\left(\frac{5}{7}\right)$
3. Vector has
a. direction
b. None of these
c. magnitude
d. magnitude as well as direction
4. Find the sum of the vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}, \vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and $\vec{c}=\hat{i}-6 \hat{j}-7 \hat{k}$.
a. $-\hat{i}+4 \hat{j}-\hat{k}$
b. $-4 \hat{j}-\hat{k}$
c. $-\hat{i}-4 \hat{j}-\hat{k}$
d. $\hat{i}-4 \hat{j}-\hat{k}$
5. Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$.
a. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
b. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}},-\frac{3}{\sqrt{14}}$
c. $\frac{1}{\sqrt{14}},-\frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
d. $-\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$
6. The values of k which $|k \vec{a}|<|\vec{a}|$ and $k \vec{a}+\frac{1}{2} \vec{a}$ is parallel to \vec{a} holds true are \qquad .
7. If $\vec{r} \cdot \vec{a}=0, \vec{r} \cdot \vec{b}=0$, and $\vec{r} \cdot \vec{c}=0$ for some non-zero vector \vec{r}, then the value of $\vec{a}(\vec{b} \times \vec{c})$ is \qquad .
8. The angle between two vectors \vec{a} and \vec{b} with magnitudes $\sqrt{3}$ and 4, respectively, $\vec{a} \cdot \vec{b}=2 \sqrt{3}$ is \qquad .
9. Find $\vec{a} \times \vec{b}$ if $\vec{a}=2 \hat{i}+\hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}+5 \hat{j}-2 \hat{k}$.
10. Find the projection of \vec{a} on \vec{b}, if $\vec{a} \cdot \vec{b}=8$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$.
11. \vec{a} Is unit vector and $(\vec{x}-\vec{a})(\vec{x}+\vec{a})=8$, Then find $|\vec{x}|$.
12. Find the position vector of the mid-point of the vector joining the points $P(2,3,4)$ and Q $(4,1,-2)$
13. Find sine of the angle between the vectors. $\vec{a}=2 \hat{i}-\hat{j}+3 \hat{k}, \vec{b}=\hat{i}+3 \hat{j}+2 \hat{k}$.
14. Find the projection of the vector $\hat{i}+3 \hat{j}+7 \hat{k}$ on the vector $7 \hat{i}-\hat{j}+8 \hat{k}$
15. Let $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=4 \hat{i}-2 \hat{j}+3 \hat{k}$ and $\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$. Find a vector of magnitude 6 units, which is parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.
16. Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector \vec{d} which is perpendicular to both \vec{a} and \vec{b} and $\vec{c} . \vec{d}=15$.
17. A girl walks 4 km towards west, then she walks 3 km in a direction 30^{0} east of north and stops. Determine the girl's displacement from her initial point of departure.
18. Find a vector \vec{d} which is \perp to both \vec{a} and \vec{b} and $\vec{c} . \vec{d}=15$ Let $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$.

CBSE Test Paper 01

Chapter 10 Vector Algebra

Solution

1. d. $\frac{\pi}{4}$, Explanation: $|\vec{a}|=\sqrt{3},|\vec{b}|=2, \vec{a} \cdot \vec{b}=\sqrt{6}$

$$
\begin{aligned}
& \Rightarrow \vec{a} \cdot \vec{b}=|\vec{a}| \cdot|\vec{b}| \cos \theta \Rightarrow \sqrt{6} \\
& =2 \sqrt{3} \cos \theta \\
& \Rightarrow \cos \theta=\frac{1}{\sqrt{2}} \Rightarrow \theta=\frac{\pi}{4}
\end{aligned}
$$

2. d. $\cos ^{-1}\left(\frac{5}{7}\right)$, Explanation: $\vec{a}=\hat{i}-2 \hat{j}+3 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+\hat{k}$

$$
\begin{aligned}
& \Rightarrow|\vec{a}|=\sqrt{14},|\vec{b}|=\sqrt{14}, \vec{a} \cdot \vec{b}=10 \\
& \Rightarrow \frac{\vec{a} \cdot \vec{b}}{|\vec{a}||\vec{b}|}=\cos \theta \Rightarrow \frac{10}{14}=\cos \theta \\
& \Rightarrow \cos \theta=\frac{5}{7} \Rightarrow \theta=\cos ^{-1} \frac{5}{7}
\end{aligned}
$$

3. d. magnitude as well as direction, Explanation: A vector has both magnitude as well as direction.
4. b. $-4 \hat{j}-\hat{k}$, Explanation: We have: vectors $\vec{a}=\hat{i}-2 \hat{j}+\hat{k}$,
$\vec{b}=-2 \hat{i}+4 \hat{j}+5 \hat{k}$ and
5. a. $\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$, Explanation: Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$,

Then, $\widehat{a}=\frac{\vec{a}}{|\vec{a}|}=\frac{\hat{i}+2 \hat{j}+3 \hat{k}}{\sqrt{1^{2}+2^{2}+3^{2}}}=\frac{\hat{i}+2 \hat{j}+3 \hat{k}}{\sqrt{14}}$
Therefore , the D.C.'s of vector a are :
$\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}$.
6. $\mathrm{k} \in]-1,1\left[\mathrm{k} \neq-\frac{1}{2}\right.$
7. 0
8. $\frac{\pi}{3}$
9. $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & 1 & 3 \\ 3 & 5 & -2\end{array}\right|$
$=\hat{i}(-2-15)-\hat{j}(-4-9)+\hat{k}(10-3)$
$=-17 \hat{i}+13 \hat{j}+7 \hat{k}$
10. We are given that, $\vec{a} \cdot \vec{b}=8$ and $\vec{b}=2 \hat{i}+6 \hat{j}+3 \hat{k}$
\therefore The projection of \vec{a} on \vec{b} is given as $=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$=\frac{8}{\sqrt{2^{2}+6^{2}+3^{2}}}$
$=\frac{8}{\sqrt{4+36+9}}$
$=\frac{8}{\sqrt{49}}=\frac{8}{7}$
11. $|\vec{a}|=1$
$(\vec{x}-\vec{a}) \cdot(\vec{x}+\vec{a})=8$
$|\vec{x}|^{2}-|\vec{a}|^{2}=8$
$|\vec{x}|^{2}-1=8$
$|\vec{x}|^{2}=9$
$|\vec{x}|=3$
12. Given: Point $P(2,3,4)$ and $Q(4,1,-2)$
\therefore Position vector of point P is $\vec{a}=2 \hat{i}+3 \hat{j}+4 \hat{k}$
And Position vector of point Q is $\vec{b}=4 \hat{i}+\hat{j}-2 \hat{k}$
And Position vector of mid-point R of PQ is $\frac{\vec{a}+\vec{b}}{2}=\frac{2 \hat{i}+3 \hat{j}+4 \hat{k}+4 \hat{i}+\hat{j}-2 \hat{k}}{2}$
$=\frac{6 \hat{i}+4 \hat{j}+2 \hat{k}}{2}=3 \hat{i}+2 \hat{j}+\hat{k}$
13. $\vec{a} \times \vec{b}=\left|\begin{array}{ccc}\hat{i} & \hat{j} & \hat{k} \\ 2 & -1 & 3 \\ 1 & 3 & 2\end{array}\right|$
$=-11 \hat{i}-\hat{j}+7 \hat{k}$
$|\vec{a} \times \vec{b}|=\sqrt{(-11)^{2}+(-1)^{2}+(7)^{2}}$
$=\sqrt{171}=3 \sqrt{19}$
$\sin \theta=\frac{|\vec{a} \times \vec{b}|}{|\vec{a}| \vec{b} \mid}=\frac{3 \sqrt{19}}{\sqrt{14} \sqrt{14}}=\frac{3}{14} \sqrt{19}$
14. Let $\vec{a}=\hat{i}+3 \hat{j}+7 \hat{k}$ and $\vec{b}=7 \hat{i}-\hat{j}+8 \hat{k}$

Projection of vector \vec{a} on $\vec{b}=\frac{\vec{a} \cdot \vec{b}}{|\vec{b}|}$
$=\frac{(1)(7)+(3)(-1)+7(8)}{\sqrt{(7)^{2}+(-1)^{2}+(8)^{2}}}$
$=\frac{7-3+56}{\sqrt{49+61+64}}=\frac{60}{\sqrt{114}}$
15. According to the question ,

$$
\begin{aligned}
\vec{a} & =\hat{i}+\hat{j}+\hat{k} \\
\vec{b} & =4 \hat{i}-2 \hat{j}+3 \hat{k} \text { and } \\
\vec{c} & =\hat{i}-2 \hat{j}+\hat{k}
\end{aligned}
$$

Now, $2 \vec{a}-\vec{b}+\overrightarrow{3} \vec{c}$
$=2(\hat{i}+\hat{j}+\hat{k})-(4 \hat{i}-2 \hat{j}+3 \hat{k})+3(\hat{i}-2 \hat{j}+\hat{k})$
$=2 \hat{i}+2 \hat{j}+2 \hat{k}-4 \hat{i}+2 \hat{j}-3 \hat{k}+3 \hat{i}-6 \hat{j}+3 \hat{k}$
$=\hat{i}-2 \hat{j}+2 \hat{k}$
$\Rightarrow \quad 2 \vec{a}-\vec{b}+3 \vec{c}=\hat{i}-2 \hat{j}+2 \hat{k}$
Now, a unit vector in the direction of vector is $2 \vec{a}-\vec{b}+3 \vec{c}=\frac{2 \vec{a}-\vec{b}+3 \vec{c}}{|2 \vec{a}-\vec{b}+3 \vec{c}|}$
$=\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{\sqrt{(1)^{2}+(-2)^{2}+(2)^{2}}}$
$=\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{\sqrt{9}}$
$=\frac{\hat{i}-2 \hat{j}+2 \hat{k}}{3}$
$=\frac{1}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}$
Vector of magnitude 6 units parallel to the vector is,
$=6\left(\frac{1}{3} \hat{i}-\frac{2}{3} \hat{j}+\frac{2}{3} \hat{k}\right)$
$=2 \hat{i}-4 \hat{j}+4 \hat{k}$
16. Given: Vectors $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}$ and $\vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$

We know that the cross-product of two vectors, $\vec{a} \times \vec{b}$ is a vector perpendicular to both \vec{a} and \vec{b}
Hence, vector \vec{d} which is also perpendicular to both \vec{a} and \vec{b} is $\vec{d}=\lambda(\vec{a} \times \vec{b})$ where $\lambda=1$ or some other scalar.
Therefore, $\vec{d}=\lambda\left|\begin{array}{ccc}\vec{i} & \vec{j} & \vec{k} \\ 1 & 4 & 2 \\ 3 & -2 & 7\end{array}\right|$
$=\lambda[\hat{i}(28+4)-\hat{j}(7-6)+\hat{k}(-2-12)]$
$\Rightarrow \vec{d}=32 \lambda \hat{i}-\lambda \hat{j}-14 \lambda \hat{k} \ldots$..(i)
Now given $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$ and $\vec{c} \cdot \vec{d}=15$
$\vec{c} . \vec{d}=15$
$=2(32 \lambda)+(-1)(-\lambda)+4(-14 \lambda)=15$
$\Rightarrow 64 \lambda+\lambda-56 \lambda=15$
$\Rightarrow 9 \lambda=15$
$\Rightarrow \lambda=\frac{15}{9}$
$\Rightarrow \lambda=\frac{5}{3}$
Putting $\lambda=\frac{5}{3}$ in eq. (i), we get
$\vec{d}=\frac{5}{3}[32 \hat{i}-\hat{j}-14 \hat{k}]$
$\Rightarrow \vec{d}=\frac{1}{3}[160 \hat{i}-5 \hat{j}-70 \hat{k}]$
17. Let the initial point of departure is origin $(0,0)$ and the girl walks a distance $\mathrm{OA}=4 \mathrm{~km}$ towards west.
Through the point A, draw a line AQ parallel to a line OP, which is 30° East of North, i.e., in East-North quadrant making an angle of 30° with North.

Again, let the girl walks a distance $A B=3 \mathrm{~km}$ along this direction $\overrightarrow{O Q}$
$\therefore \overrightarrow{O A}=4(-\vec{i})=-4 \hat{i} \ldots$ (i) $[\because$ Vector $\overrightarrow{O A}$ is along OX' $]$

Now, draw BM perpendicular to x - axis.
In $\triangle A M B$ by Triangle Law of Addition of vectors,
$\overrightarrow{A B}=\overrightarrow{A M}+\overrightarrow{M B}=(A M) \hat{i}+(M B) \hat{i}$
Dividing and multiplying by AB in R.H.S.,
$\overrightarrow{A B}=A B \frac{A M}{A B} \hat{i}+A B \frac{M B}{A B} \hat{j}=3 \cos 60^{\circ} \hat{i}+3 \sin 60^{\circ} \hat{j}$
$\Rightarrow A B=3 \frac{1}{2} \hat{i}+3 \frac{\sqrt{3}}{2} \hat{i}=\frac{3}{2} \hat{i}+\frac{3 \sqrt{3}}{2} j$
\therefore Girl's displacement from her initial point O of departure to final point B ,
$\overrightarrow{O B}=\overrightarrow{O A}+\overrightarrow{A B}=-4 \hat{i}+\left(\frac{3}{2} \hat{i}+\frac{3 \sqrt{2}}{2} \hat{j}\right)=\left(-4+\frac{3}{2}\right) \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
$\Rightarrow \overrightarrow{O B}=\frac{-5}{2} \hat{i}+\frac{3 \sqrt{3}}{2} \hat{j}$
18. $\vec{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \vec{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}$ and $\vec{c}=2 \hat{i}-\hat{j}+4 \hat{k}$

Let $\vec{d}=x \hat{i}+y \hat{j}+z \hat{k}$
ATQ, $\vec{d} \cdot \vec{a}=0, \vec{d} \cdot \vec{b}=0$ and $\vec{c} \cdot \vec{d}=15$, then,
$x+4 y+2 z=0 \ldots$... 1)
$3 x-2 y+7 z=0$...(2)
$2 x-y+4 z=15$...(3)
On solving equation (1) and (2)
$\frac{\mathrm{x}}{4}=\frac{\mathrm{y}}{2}=\frac{z}{1}=\mathrm{K}$
$\frac{x}{28+4}=\frac{y}{6-7}=\frac{z}{-2-12}=k$
$\mathrm{x}=32 \mathrm{k}, \mathrm{y}=-\mathrm{k}, \mathrm{z}=-14 \mathrm{k}$

Put x, y, z in equation (3)
$2(32 k)-(-k)+4(-14 k)=15$
$64 \mathrm{k}+\mathrm{k}-56 \mathrm{k}=15$
$9 \mathrm{k}=15$
$k=\frac{15}{9}$
$k=\frac{5}{3}$
$x=\stackrel{3}{32} \times \frac{5}{3}=\frac{160}{3}$
$y=-\frac{5}{3}$
$z=-14 \times \frac{5}{3}=-\frac{70}{3}$
$\vec{d}=\frac{160}{3} \hat{i}-\frac{5}{3} \hat{j}-\frac{70}{3} \hat{k}$

