CBSE Test Paper 01

Chapter 1 Relations and Functions

- 1. In Z, the set of integers, inverse of -7, w.r.t. '* 'defined by a * b = a + b + 7 for all
 - $a,b\in Z$,is
 - a. -7
 - b. -14
 - c. 14
 - d. 7
- 2. If $A = \{1, 2, 3\}$, then the relation $R = \{(1, 2), (2, 3), (1, 3)\}$ in A is ____.
 - a. transitive only
 - b. reflexive only
 - c. symmetric only
 - d. symmetric and transitive only
- 3. A relation R on a set A is called an empty relation if
 - a. no element of A is related to any element of A
 - b. every element of A is related to one element of A
 - c. one element of A is related to all the elements of A
 - d. every element of A is related to any element of A
- 4. Let f and g be two functions from R to R defined as $f(x) = \left\{ egin{align*} 0, x \ is \ rational \ 1, x \ is \ irrational \ \end{array}
 ight\},$

$$g(x) = \left\{ egin{aligned} -1, x \ is \ rational \ 0, x \ is \ irrational \end{aligned}
ight\}$$
 then, (gof)(e) + (fog) $\left(\pi
ight)$ =.

- a. 1
- b. 2
- c. -1
- d. 0
- 5. Let R be the relation on N defined as xRy if x + 2 y = 8. The domain of R is
 - a. {2, 4, 6, 8}
 - b. {2, 4, 8}
 - c. {1, 2, 3, 4}
 - d. {2, 4, 6}
- 6. If n(A) = p and n(B) = q, then the number of relations from set A to set $B = \underline{\hspace{1cm}}$.

- 7. A function is called an onto function, if its range is equal to _____.
- 8. A binary operation * on a set X is said to be _____, if a * b = b * a, where a, b \in X.
- 9. Find gof f(x) = |x|, g(x) = |5x + 1|.
- 10. Show that function f: $N \rightarrow N$, given by f(x) = 2x, is one one.
- 11. Let S = {1, 2, 3} Determine whether the function f: S \rightarrow S defined as below have inverse.

$$f = \{(1, 1), (2, 2), (3, 3)\}$$

- 12. Let $f: \{1, 3, 4\} \rightarrow \{1, 2, 5\}$ and $g: \{1, 2, 5\} \rightarrow \{1, 3\}$ be given by $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$. Write down gof.
- 13. Consider f: $\{1, 2, 3\} \rightarrow \{a, b, c\}$ given by f(1) = a, f(2) = b and f(3) = c find f^{-1} and show that $(f^{-1})^{-1} = f$.
- 14. Is $g = \{(1, 1), (2, 3), (3, 5), (4, 7)\}$ a function? If g is described by g(x) = ax + b, then what value should be assigned to a and b.
- 15. Show that the relation R defined by (a, b) R (c, d) \Rightarrow a + d = b + c on the set N×N is an equivalence relation.
- 16. Let the function $f: R \to R$ be defined by $f(x) = \cos x$, $\forall x \in R$. Show that f is neither one-one nor onto.
- 17. Let L be the set of all lines in plane and R be the relation in L define if $R = \{(l_1, L_2): L_1 \text{ is} \bot \text{ to } L_2\}$. Show that R is symmetric but neither reflexive nor transitive.
- 18. If the function $f: R \to R$ is given by $f(x) = x^2 + 2$ and $g: R \to R$ is given by $g(x) = \frac{x}{x-1}; x \neq 1$ then find fog and gof and hence find fog(2) and gof(-3).

CBSE Test Paper 01

Chapter 1 Relations and Functions

Solution

1. a. -7

Explanation: If 'e 'is the identity ,then $a*e = a \Rightarrow a + e + 7 = a \Rightarrow e = -7$. Also, inverse of e is e itself. Hence, inverse of -7 is -7.

2. a. transitive only

Explanation: A relation R on a non-empty set A is said to be transitive if xRy and y Rz \Rightarrow xRz, for all x \in R. Here, (1, 2) and (2, 3) belongs to R implies that (1, 3) belongs to R.

3. a. no element of A is related to any element of A

Explanation: For any set A ,an empty relation may be defined on A as: there is no element exists in the relation set which satisfies the relation for a given set A i.e.

let A={1,2,3,4,5} and R={(a,b): a,b \in A and a+b= 10},so we get R={ } which is an empty relation.

4. c. -1

Explanation: $(gof)(e) + (fog)(\pi) = g(f(e)) + f(g(\pi) = g(1) + f(0) = -1 + 0 = -1.$

5. d. {2, 4, 6}

Explanation: As xRy if x + 2 y = 8, therefore, domain of the relation R is given by $x = 8 - 2y \in N$. When y = 1, $\Rightarrow x = 6$, when y = 2, $\Rightarrow x = 4$, when y = 3, $\Rightarrow x = 2$. Therefore, domain is $\{2, 4, 6\}$.

- 6. 2^{pq}
- 7. codomain
- 8. commutative
- 9. gof (x) = g [f(x)] = g [|x|] = | 5 |x| + 1 |

10. For,
$$f(x_1) = f(x_2)$$

$$2x_1 = 2x_2$$

$$x_1 = x_2$$

So, The function f is one – one

11. Since different elements have different images. So, f is one - one. Also, every element of codomain has pre-image so, f is onto

Now f is one – one and onto, so that f is invertible with inverse $f^{-1} = \{(1, 1), (2, 2), (3, 3)\}$

12. $f = \{(1, 2), (3, 5), (4, 1)\}$ and $g = \{(1, 3), (2, 3), (5, 1)\}$

Now,
$$f(1) = 2$$
, $f(3) = 5$, $f(4) = 1$ and $g(1) = 3$, $g(2) = 3$, $g(5) = 1$

$$gof(x)=g(f(x))$$

$$gof(1)=g(f(1))=g(2)=3$$

$$g[f(3)] = g(5) = 1$$
 and $g[f(4)] = g(1) = 3$

Hence, gof =
$$\{(1, 3), (3, 1), (4, 3)\}$$

13. $f = \{(1, a) (2, b) (3, c)\}$

$$f^{-1} = \{ (a, 1) (b, 2) (c, 3) \}$$

$$(f^{-1})^{-1} = \{(1, a) (2, b) (3, c)\}$$

Hence
$$(f^{-1})^{-1} = f$$
.

14. Yes, g is a function since every element in domain has a unique image in range.

Now, Let g(x) = ax + b Then Given,

$$g(1) = a + b = 1 &$$

$$g(2) = 2a + b = 3$$

Subtracting g(1) from g(2) Gives

$$(2a + b) - (a + b) = a = 2 \& Substituting It into g(1)$$

We have
$$b = -1$$

15. we have,a + b = b + a for all (a, b) $\in N \times N$, which implies (a,b) R (a,b). Thus, R is reflexive.

Let (a,b),(c,d) $\in N \times N$ be such that

$$\Rightarrow$$
 a + d= b + c

$$\Rightarrow$$
 d + a = c + b

$$\Rightarrow$$
 c + b = d + a

$$\Rightarrow$$
 (c, d) R (a, b) for all (a, b), (c, d) $\in N \times N$

Hence R is symmetric.

Let (a,b),(c,d),(e,f) $\in N \times N$ such that (a,b) R (c,d) and

(c,d) R (e,f). Then,

(a, b) R (c, d)
$$\Rightarrow$$
 a + d = b + c..... (1)

(c, d) R (e, f)
$$\Rightarrow$$
 c + f = d + e(2)

Adding (1) and (2)

$$(a + d) + (c+f) = (b + c) + (d + e)$$

$$a + f = b + e$$

Hence, R is transitive

So, R is an equivalence relation.

16. Given function, $f(x) = \cos x$, $\forall x \in R$

Now,
$$f\left(\frac{\pi}{2}\right) = \cos\frac{\pi}{2} = 0$$

$$\Rightarrow f\left(rac{-\pi}{2}
ight) = \cosrac{\pi}{2} = 0$$

$$\Rightarrow f\left(rac{\pi}{2}
ight) = f\left(rac{-\pi}{2}
ight)$$

But
$$\frac{\pi}{2} \neq \frac{-\pi}{2} = 0$$

So, f (x) is not one-one

Now, $f(x) = \cos x$, $\forall x \in R$ is not onto as there is no pre-image for any real number.

Which does not belong to the intervals [-1, 1], the range of $\cos x$.

17. R is not reflexive, as a line L_1 cannot be \perp to itself i.e (L_1, L_1) $\notin R$

Now (L_1, L_2) $\in R$

$$\Rightarrow$$
L₁ \perp L₂

$$\Rightarrow$$
L₂ \perp L₁

$$\Rightarrow$$
(L₂, L₁) \in R

R is symmetric

Now (L₁, L₂) and (L₂, L₃) \in R

i.e $L_1 \perp L_2$ and $L_2 \perp L_3$

Then L_1 can never be \perp to L_3 in fact $L_1 \mid \mid L_3$

i.e $(L_1, L_2) \in R$, $(L_2, L_3) \in R$.

But $(L_1, L_3) \notin R$

R is not transitive.

18. We are given that, f: R \rightarrow R and g: R \rightarrow R defined as f(x) = x^2 + 2 and g(x) = $\frac{x}{x-1}$; $x \neq 1$.

First we see whether fog and gof exist for the given functions.

Since, range $f\subseteq domain \ g$ and range $g\subseteq domain \ f$

Hence, fog and gof exist for the given functions.

Now, for any $x \in R$ - {1}, we have (fog)(x) = f[g(x)]

$$egin{aligned} &= f\left[rac{x}{x-1}
ight] = \left(rac{x}{x-1}
ight)^2 + 2 \ &= rac{x^2 + 2(x-1)^2}{\left(x-1
ight)^2} = rac{x^2 + 2\left(x^2 + 1 - 2x
ight)}{\left(x-1
ight)^2} \ &= rac{3x^2 + 2 - 4x}{\left(x-1
ight)^2} \end{aligned}$$

 \therefore fog: $R \rightarrow R$ is defined by

(fog)(x)=
$$\frac{3x^2-4x+2}{(x-1)^2}$$
, $x \neq 1$ (i)

For any $x \in R$ we have

gof(x) = g[f(x)]

=
$$g(x^2 + 2)$$
 = $\frac{x^2+2}{(x^2+2)-1}$ = $\frac{x^2+2}{x^2+1}$

 \therefore gof: $R \to R$ is defined by

(gof)(x) =
$$\frac{x^2+2}{x^2+1}$$
(ii)

On putting x = 2 in Eq. (i), we get

fog(2) =
$$\frac{3 \times (2)^2 - 4(2) + 2}{(2-1)^2} = \frac{3 \times 4 - 8 + 2}{(1)^2}$$

$$= 12 - 8 + 2 = 6$$

On putting x = -3 in Eq. (ii), we get

$$gof(-3) = \frac{(-3)^2 + 2}{(-3)^2 + 1} = \frac{9+2}{9+1} = \frac{11}{10}$$