CBSE Test Paper 01

Chapter 1 Relations and Functions

1. In Z, the set of integers, inverse of -7 , w.r.t. ${ }^{*}$ ‘ defined by $a * b=a+b+7$ for all $a, b \in Z$,is
a. -7
b. -14
c. 14
d. 7
2. If $A=\{1,2,3\}$, then the relation $R=\{(1,2),(2,3),(1,3)\}$ in A is \qquad .
a. transitive only
b. reflexive only
c. symmetric only
d. symmetric and transitive only
3. A relation R on a set A is called an empty relation if
a. no element of A is related to any element of A
b. every element of A is related to one element of A
c. one element of A is related to all the elements of A
d. every element of A is related to any element of A
4. Let f and g be two functions from R to R defined as $f(x)=\left\{\begin{array}{c}0, x \text { is rational } \\ 1, x \text { is irrational }\end{array}\right\}$, $g(x)=\left\{\begin{array}{l}-1, x \text { is rational } \\ 0, x \text { is irrational }\end{array}\right\}$ then, (gof)(e) $+(\mathrm{fog})(\pi)=$.
a. 1
b. 2
c. -1
d. 0
5. Let R be the relation on N defined as $x R y$ if $x+2 y=8$. The domain of R is
a. $\{2,4,6,8\}$
b. $\{2,4,8\}$
c. $\{1,2,3,4\}$
d. $\{2,4,6\}$
6. If $n(A)=p$ and $n(B)=q$, then the number of relations from set A to set $B=$ \qquad -.
7. A function is called an onto function, if its range is equal to \qquad .
8. A binary operation * on a set X is said to be \qquad , if $a^{*} b=b^{*} a$, where $a, b \in X$.
9. Find $\operatorname{gof} f(x)=|x|, g(x)=|5 x+1|$.
10. Show that function $f: N \rightarrow N$, given by $f(x)=2 x$, is one - one.
11. Let $S=\{1,2,3\}$ Determine whether the function $\mathrm{f}: \mathrm{S} \rightarrow \mathrm{S}$ defined as below have inverse.
$\mathrm{f}=\{(1,1),(2,2),(3,3)\}$
12. Let $\mathrm{f}:\{1,3,4\} \rightarrow\{1,2,5\}$ and $\mathrm{g}:\{1,2,5\} \rightarrow\{1,3\}$ be given by $\mathrm{f}=\{(1,2),(3,5),(4,1)\}$ and $g=\{(1,3),(2,3),(5,1)\}$. Write down gof.
13. Consider $f:\{1,2,3\} \rightarrow\{a, b, c\}$ given by $f(1)=a, f(2)=b$ and $f(3)=c$ find f^{-1} and show that $\left(\mathrm{f}^{-1}\right)^{-1}=\mathrm{f}$.
14. Is $g=\{(1,1),(2,3),(3,5),(4,7)\}$ a function? If g is described by $g(x)=a x+b$, then what value should be assigned to a and b .
15. Show that the relation R defined by $(a, b) R(c, d) \Rightarrow a+d=b+c$ on the set $N \times N$ is an equivalence relation.
16. Let the function $f: R \rightarrow R$ be defined by $f(x)=\cos x, \forall x \in R$. Show that f is neither oneone nor onto.
17. Let L be the set of all lines in plane and R be the relation in L define if $R=\left\{\left(l_{1}, L_{2}\right): L_{1}\right.$ is \perp to $\left.L_{2}\right\}$.Show that R is symmetric but neither reflexive nor transitive.
18. If the function $f: R \rightarrow R$ is given by $f(x)=x^{2}+2$ and $g: R \rightarrow R$ is given by $g(x)=\frac{x}{x-1} ; x \neq 1$ then find fog and gof and hence find fog(2) and gof(-3).

CBSE Test Paper 01

Chapter 1 Relations and Functions

Solution

1. a. -7

Explanation: If ' e ' is the identity , then $\mathrm{a}^{*} \mathrm{e}=\mathrm{a} \Rightarrow \mathrm{a}+\mathrm{e}+7=\mathrm{a} \Rightarrow \mathrm{e}=-7$.
Also,inverse of e is e itself. Hence, inverse of -7 is -7.
2. a. transitive only

Explanation: A relation R on a non-empty set A is said to be transitive if $x R y$ and $\mathrm{y} \mathrm{Rz} \Rightarrow \mathrm{xRz}$, for all $\mathrm{x} \in \mathrm{R}$. Here, $(1,2)$ and $(2,3)$ belongs to R implies that (1 , 3) belongs to R.
3. a. no element of A is related to any element of A

Explanation: For any set A an empty relation may be defined on A as: there is no element exists in the relation set which satisfies the relation for a given set A i.e.
let $A=\{1,2,3,4,5\}$ and $R=\{(a, b): a, b \in A$ and $a+b=10\}$,so we get $R=\{ \}$ which is an empty relation.
4. c. -1

Explanation: $(\mathrm{gof})(\mathrm{e})+(\mathrm{fog})(\pi)=\mathrm{g}(\mathrm{f}(\mathrm{e}))+\mathrm{f}(\mathrm{g}(\pi)=\mathrm{g}(1)+\mathrm{f}(0)=-1+0=-1$.
5. d. $\{2,4,6\}$

Explanation: As $x R y$ if $x+2 y=8$, therefore, domain of the relation R is given by $x=8-2 y \in N$. When $y=1, \Rightarrow x=6$, when $y=2, \Rightarrow x=4$, when $y=3, \Rightarrow x=2$. Therefore, domain is $\{2,4,6\}$.
6. $2^{p q}$
7. codomain
8. commutative
9. $\operatorname{gof}(x)=g[f(x)]$
$=g[|x|]$
$=|5| x|+1|$
10. For, $f\left(x_{1}\right)=f\left(x_{2}\right)$
$2 \mathrm{x}_{1}=2 \mathrm{x}_{2}$
$\mathrm{X}_{1}=\mathrm{X}_{2}$
So, The function f is one - one
11. Since different elements have different images. So, f is one - one. Also, every element of codomain has pre-image so, f is onto

Now f is one - one and onto, so that f is invertible with inverse $f^{-1}=\{(1,1)(2,2)(3,3)\}$
12. $\mathrm{f}=\{(1,2),(3,5),(4,1)\}$ and $\mathrm{g}=\{(1,3),(2,3),(5,1)\}$

Now, $f(1)=2, f(3)=5, f(4)=1$ and $g(1)=3, g(2)=3, g(5)=1$
$\operatorname{gof}(x)=g(f(x))$
$\operatorname{gof}(1)=g(f(1))=g(2)=3$
$g[f(3)]=g(5)=1$ and $g[f(4)]=g(1)=3$
Hence, gof $=\{(1,3),(3,1),(4,3)\}$
13. $f=\{(1, a)(2, b)(3, c)\}$
$\mathrm{f}^{-1}=\{(\mathrm{a}, 1)(\mathrm{b}, 2)(\mathrm{c}, 3)\}$
$\left(f^{-1}\right)^{-1}=\{(1, a)(2, b)(3, c)\}$
Hence $\left(\mathrm{f}^{-1}\right)^{-1}=\mathrm{f}$.
14. Yes, g is a function since every element in domain has a unique image in range.

Now, Let $\mathrm{g}(\mathrm{x})=\mathrm{ax}+\mathrm{b}$ Then Given,
$g(1)=a+b=1 \&$
$g(2)=2 a+b=3$
Subtracting $g(1)$ from $g(2)$ Gives
$(2 a+b)-(a+b)=a=2 \&$ Substituting It into $g(1)$
We have $b=-1$
15. we have, $\mathrm{a}+\mathrm{b}=\mathrm{b}+\mathrm{a}$ for all $(\mathrm{a}, \mathrm{b}) \in N \times N$, which implies (a, b) $\mathrm{R}(\mathrm{a}, \mathrm{b})$.Thus, R is reflexive.

Let (a,b),(c,d) $\in N \times N$ be such that
(a, b) R (c, d)
$\Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c}$
$\Rightarrow \mathrm{d}+\mathrm{a}=\mathrm{c}+\mathrm{b}$
$\Rightarrow \mathrm{c}+\mathrm{b}=\mathrm{d}+\mathrm{a}$
$\Rightarrow(\mathrm{c}, \mathrm{d}) \mathrm{R}(\mathrm{a}, \mathrm{b})$ for all (a, b), (c, d) $\in N \times N$
Hence R is symmetric.
Let (a,b),(c,d),(e,f) $\in N \times N$ such that (a,b) R (c,d) and (c,d) R (e,f).Then,
$(\mathrm{a}, \mathrm{b}) \mathrm{R}(\mathrm{c}, \mathrm{d}) \Rightarrow \mathrm{a}+\mathrm{d}=\mathrm{b}+\mathrm{c} . \ldots . .$.
$(c, d) R(e, f) \Rightarrow c+f=d+e$
Adding (1) and (2)
$(\mathrm{a}+\mathrm{d})+(\mathrm{c}+\mathrm{f})=(\mathrm{b}+\mathrm{c})+(\mathrm{d}+\mathrm{e})$
$a+f=b+e$
(a, b) R (e, f)
Hence, R is transitive
So, R is an equivalence relation.
16. Given function, $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}, \forall \mathrm{x} \in \mathrm{R}$

Now, $f\left(\frac{\pi}{2}\right)=\cos \frac{\pi}{2}=0$
$\Rightarrow f\left(\frac{-\pi}{2}\right)=\cos \frac{\pi}{2}=0$
$\Rightarrow f\left(\frac{\pi}{2}\right)=f\left(\frac{-\pi}{2}\right)$
But $\frac{\pi}{2} \neq \frac{-\pi}{2}=0$
So, $f(x)$ is not one-one
Now, $\mathrm{f}(\mathrm{x})=\cos \mathrm{x}, \forall \mathrm{x} \in \mathrm{R}$ is not onto as there is no pre-image for any real number. Which does not belong to the intervals $[-1,1]$, the range of $\cos x$.
17. R is not reflexive, as a line L_{1} cannot be \perp to itself i.e ($\left.L_{1}, L_{1}\right) \notin R$

Now $\left(L_{1}, L_{2}\right) \in R$
$\Rightarrow \mathrm{L}_{1} \perp \mathrm{~L}_{2}$
$\Rightarrow \mathrm{L}_{2} \perp \mathrm{~L}_{1}$
$\Rightarrow\left(\mathrm{L}_{2}, \mathrm{~L}_{1}\right) \in \mathrm{R}$
R is symmetric
Now $\left(L_{1}, L_{2}\right)$ and $\left(L_{2}, L_{3}\right) \in R$
i.e $\mathrm{L}_{1} \perp \mathrm{~L}_{2}$ and $\mathrm{L}_{2} \perp \mathrm{~L}_{3}$

Then L_{1} can never be \perp to L_{3} in fact $L_{1}| | L_{3}$
i.e $\left(\mathrm{L}_{1}, \mathrm{~L}_{2}\right) \in \mathrm{R},\left(\mathrm{L}_{2}, \mathrm{~L}_{3}\right) \in \mathrm{R}$.

But $\left(\mathrm{L}_{1}, \mathrm{~L}_{3}\right) \notin \mathrm{R}$
R is not transitive.
18. We are given that, $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{R} \rightarrow \mathrm{R}$ defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+2$ and $\mathrm{g}(\mathrm{x})=$ $\frac{x}{x-1} ; x \neq 1$.
First we see whether fog and gof exist for the given functions.
Since, range $\mathrm{f} \subseteq$ domain g and range $g \subseteq$ domain f
Hence,fog and gof exist for the given functions.
Now, for any $x \in R-\{1\}$, we have $(f o g)(x)=f[g(x)]$
$=f\left[\frac{x}{x-1}\right]=\left(\frac{x}{x-1}\right)^{2}+2$
$=\frac{x^{2}+2(x-1)^{2}}{(x-1)^{2}}=\frac{x^{2}+2\left(x^{2}+1-2 x\right)}{(x-1)^{2}}$
$=\frac{3 x^{2}+2-4 x}{(x-1)^{2}}$
\therefore fog: $\mathrm{R} \rightarrow \mathrm{R}$ is defined by
$(\mathrm{fog})(\mathrm{x})=\frac{3 x^{2}-4 x+2}{(x-1)^{2}}, x \neq 1 \ldots \ldots$ (i)
For any $x \in R$ we have
$\operatorname{gof}(\mathrm{x})=\mathrm{g}[\mathrm{f}(\mathrm{x})]$
$=\mathrm{g}\left(\mathrm{x}^{2}+2\right)=\frac{x^{2}+2}{\left(x^{2}+2\right)-1}=\frac{x^{2}+2}{x^{2}+1}$
\therefore gof: $\mathrm{R} \rightarrow \mathrm{R}$ is defined by
$($ gof $)(\mathrm{x})=\frac{x^{2}+2}{x^{2}+1}$
On putting $x=2$ in Eq. (i), we get
$\operatorname{fog}(2)=\frac{3 \times(2)^{2}-4(2)+2}{(2-1)^{2}}=\frac{3 \times 4-8+2}{(1)^{2}}$
$=12-8+2=6$
On putting $x=-3$ in Eq. (ii), we get
$\operatorname{gof}(-3)=\frac{(-3)^{2}+2}{(-3)^{2}+1}=\frac{9+2}{9+1}=\frac{11}{10}$

