CBSE Test Paper-02

Class - 12 Chemistry (Alcohols, Phenols and Ethers)

- 1. Which of the following reactions will not result in the formation of carbon-carbon bond?
 - 1. Friedel Crafts acylation
 - 2. Wurtz reaction
 - 3. Cannizzaro reaction
 - 4. Reimer-Tieman reaction
- 2. What will be the correct order of acidity of the following compounds?

- a. b>d>c>e>a
- b. b>d>c>a>e
- c. d>b>c>a>e
- d. b>d>a>c>e
- 3. An organic compound X is oxidised by using acidified $K_2Cr_2O_7$. The product obtained reacts with Phenyl hydrazine but does not answer silver mirror test. The possible structure of X is
 - a. $(CH_3)_2CHOH$
 - b. None
 - c. CH₃CHO
 - d. CH₃CH₂OH
- 4. 3-Pentanol is an example of
 - a. Primary alcohol

b. Secondary alcohol

- c. Tertiary alcohol
- d. Aromatic alcohol
- 5. IUPAC name of the following compound is $CH_3 CH OCH_3 \ | \ CH_3$

a. 2 - methoxy - 2 - methylethane

b. 2 – methoxypropane

c. isopropylmethyl ether

d. 1 – methoxy – 1 – methylethane

6. Write IUPAC names of the compounds.

7. Write IUPAC names of:-

$$Br - CH_2 - CH - CH - Br$$
 $OH CH_2Cl$

8. Write IUPAC names of the compounds.

- 9. How are the following conversions carried out? (Write reactions with conditions).
 - a. 1-propanol to l-chloro-2-propanol
 - b. phenol to salicylic acid.
- 10. Write structural formula and give IUPAC name:-Methylpropylether
- 11. Write structural formula and give IUPAC name:-Ethylphenylether

- 12. Explain why is ortho nitrophenol more acidic than ortho methoxyphenol?
- 13. The following is not an appropriate reaction for the preparation of tert-butylethyl ether.

$$C_2H_5-ONa+CH_3-igchimol{CH_3}{C\choose C}-Cl
ightarrow CH_3-igchimol{CC}{C\choose C}-OC_2H_5 \ CH_3$$

- i. What should be the major product of this reaction?
- ii. Write a suitable reaction for the preparation of terf-butylethyl ether.
- 14. How are the following conversions carried out:
 - i. 1-propanol to 1-chloro-2-propanol.
 - ii. Phenol to salicylic acid.
- 15. Write equations of the following reactions:
 - i. Friedel-Crafts reaction-alkylation of anisole.
 - ii. Nitration of anisole.
 - iii. Bromination of anisole in ethanoic acid medium.
 - iv. Friedel-Craft's acetylation of anisole.

CBSE Test Paper-02

Class - 12 Chemistry (Alcohols, Phenols and Ethers) Solutions

1. (c) Cannizzaro reaction

Explanation: The Cannizzaro reaction, named after its discoverer Stanislao Cannizzaro, is a chemical reaction that involves the base-induced disproportionation of an aldehyde lacking a hydrogen atom in the alpha position.

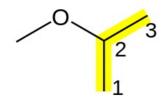
This redox disproportionation of non-enolizable aldehydes to carboxylic acids and alcohols is conducted in concentrated base.

2. (b) b>d>c>a>e

Explanation: The acidity of phenols depends on the group attached to the benzene ring. Groups showing electron withdrawing nature i.e. -I and -R effect will increase the acidity while group showing electron donating nature like +I and +R effect will decrease acidity. Resonance effect of group (-R or +R) attached to benzene system is operative only ortho and para position of the benzene system, while at meta position only inductive effect is operative.

Clearly, b will be most acidic because -NO $_2$ group attached will show strong -R effect. In d, -NO $_2$ is present at meta position where only -I is effective. -I effect of -NO $_2$ is more than -OCH $_3$ group so, d will be more acidic than c, e will be least acidic as -OCH $_3$ group is attached at para position and shows +R effect.

3. (a) $(CH_3)_2CHOH$


Explanation: Secondary alcohol on oxidation forms ketone which reacts with hydrazine bus doesnot gives silver mirror test.

4. (b) Secondary alcohol

Explanation: A secondary alcohol is a compound in which a hydroxy group, –OH, is attached to a saturated carbon atom which has two other carbon atoms attached to it.

5. (b) 2 – methoxypropane

Explanation:

2-methoxypropane (isopropyl methyl ether)

If the oxygen is not attached to the end of the main alkane chain, then the whole shorter alkyl-plus-ether group is treated as a side-chain and prefixed with its bonding position on the main chain. Thus CH₃OCH(CH₃)₂ is 2-methoxypropane.

- 6. 1-Methoxy 2-Methylpropane
- 7. 1,3 -- Dibromo 4 chloro 2 butanol
- 8. 2, 6-Dimethylphenol
- 9. a. 1-propanol to l-chloro-2-propanol:

$$\begin{array}{c} \text{CH}_3-\text{CH}_2-\text{CH}_2\text{OH} \xrightarrow{\text{Conc. H}_2\text{SO}_4} \text{CH}_3-\text{CH} = \text{CH}_2+\text{HOCl} \\ \text{1-Propanol} & \\ & \text{CH}_3-\text{CH}-\text{CH}_2\text{Cl} \\ \text{OH} & \\ & \text{1-chloro-2-propanol} \end{array}$$

b. Phenol to salicylic acid:

OH OH COOH
$$+ CCl_4 + 4KOH \xrightarrow{\text{Heat}} Salicylic} + 4KCl + 2H_2O$$
Salicylic acid

10. CH_3 - CH_2 - CH_2 - O - CH_3 Methoxypropane

- 12. The nitro-group is an electron-withdrawing group. The presence of this group in the ortho position decreases the electron density in the O-H bond. As a result, it is easier to lose a proton. Also, the o-nitrophenoxide ion formed after the loss of protons is stabilized by resonance. Hence, ortho nitrophenol is a stronger acid.

 On the other hand, methoxy group is an electron-releasing group. Thus, it increases the electron density in the O-H bond and hence, the proton cannot be given out easily. For this reason, ortho-nitrophenol is more acidic than ortho-methoxyphenol.
- 13. i. The major product of the given reaction is 2-methylprop-l-ene. It is because sodium ethoxide is a strong nucleophile as well as a strong base. Thus, elimination reaction predominates over substitution.

ii.
$$CH_3$$
 CH_3 CH_3 CH_3 iii. $CH_3 - \overset{\circ}{C} - \overset{\circ}{O}Na^+ + CH_3CH_2Cl \rightarrow CH_3 - \overset{\circ}{C} - OC_2H_5$ CH_3 CH_3

ii.
$$+ CCl_4 + 4 KOH$$
 heat $+ 4KCl + 2H_2O$

Salicylic acid $+ 4KCl + 2H_2O$

OCH₃

OCH₃

CH₃

CH₃

CH₃

CH₃

CH₃

CH₃
 $+ CH_3Cl$
 $+ CH_3Cl$