CBSE Test Paper 02

Chapter 13 Kinetic Theory

1. Calculate the change in internal energy of 3.00 mol of helium gas when its temperature is increased by 2.00 K .1
a. 85.0 J
b. 75.0 J
c. 65.0 J
d. 95.0 J
2. A spherical balloon with a volume of 4000 cm 3 contains helium at an (inside) pressure of $1.20 \times 10^{5} \mathrm{~Pa}$. How many moles of helium are in the balloon if each helium atom has an average kinetic energy of $3.60 \times 10^{-22} \mathrm{~J}$? 1
a. 3.82 mol
b. 3.12 mol
c. 3.32 mol
d. 3.42 mol
3. 1 mole of a monoatomic gas is mixed with 3 moles of a diatomic gas. What is the molecular specific heat of the mixture at constant volume? 1
a. $18.7 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
b. $15.2 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
c. $12.5 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
d. $22.6 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
4. Air at $20.0^{\circ} \mathrm{C}$ in the cylinder of a diesel engine is compressed from an initial pressure of 1.00 atm and volume of $800.0 \mathrm{~cm}^{3}$ to a volume of $60.0 \mathrm{~cm}^{3}$. Assume that air behaves as an ideal gas with $\gamma=1.4$ and that the compression is adiabatic. Find the final temperature of the air 1
a. 826 K
b. 679 K
c. 765 K
d. 898 K
5. The molar specific heat at constant volume, C_{v} for diatomic gases is $\mathbf{1}$
a. $\frac{7}{2} \mathrm{R}$
b. $\frac{5}{2} \mathrm{R}$
c. R
d. $\frac{3}{2} \mathrm{R}$
6. What is mean free path? $\mathbf{1}$
7. What is the minimum possible temperature on the basis of Charles' law? 1
8. Calculate the molecular kinetic energy of 1 g of helium (molecular weight 4) at $127^{\circ} \mathrm{C}$. (Given, $\mathrm{R}=8.31 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$) $\mathbf{1}$
9. What do you mean by degrees of freedom of a gas molecule? Write the number of degrees of freedom for a monatomic gas. 2
10. Find out the ratio between most probable velocity, average velocity and root mean square velocity of gas molecules? 2
11. Calculate the mean kinetic energy of one mole of hydrogen at 273 K . Take 8.3 J mol- 1 $\mathrm{K}^{-1} .2$
12. Establish the relation between $\gamma\left(=\frac{C_{P}}{C_{V}}\right)$ and degrees of freedom (n). 3
13. Two perfect gases at absolute temperatures T_{1} and T_{2} are mixed. There is no loss of energy. Find out the temperature of the mixture if the masses of molecules are m_{1} and m_{2} and number of molecules is n_{1} and n_{2} ? 3
14. An air bubble of volume $1.0 \mathrm{~cm}^{3}$ rises from the bottom of a lake 40 m deep at a temperature of $12^{\circ} \mathrm{C}$. To what volume does it grow when it reaches the surface, which is at a temperature of $35^{\circ} \mathrm{C}$? 3
15. Estimate the average thermal energy of a helium atom at $\mathbf{5}$
i. room temperature $\left(27^{\circ} \mathrm{C}\right)$,
ii. the temperature on the surface of the Sun (6000 K),
iii. the temperature of 10 million Kelvin (the typical core temperature in the case of a star).

CBSE Test Paper 02

Chapter 13 Kinetic Theory

Answer

1. b. 75.0 J

Explanation: Helium is a monoatomic gas. $\left(\mathrm{C}_{\mathrm{V}}=1.5 \mathrm{R}\right)$
change in internal energy
$\Delta U=n C_{V} \Delta T=3 \times 1.5 \times 8.31 \times 2=75 J$
2. c. 3.32 mol

Explanation: $P=\frac{2}{3} \frac{N}{V}(\bar{K})$
$N=\frac{3}{2} \frac{P V}{(\bar{K})}=\frac{3}{2} \times \frac{\left(1.20 \times 10^{5}\right)\left(4.00 \times 10^{-3}\right)}{3.60 \times 10^{-22}}=2 \times 10^{24}$
$n=\frac{N}{N_{A}}=\frac{2 \times 10^{24}}{6.023 \times 10^{23}}=3.32$ mole
3. a. $18.7 \mathrm{~J} / \mathrm{mol} \mathrm{K}$

Explanation: for monoatomic gas
$C_{V}=\frac{3}{2} R, C_{P}=\frac{5}{2} R$
from conservation of energy
$C_{V}=\frac{n_{1} C_{V_{1}}+n_{2} C_{V_{2}}}{n_{1}+n_{2}}=\frac{(1 \times 1.5 R)+(3 \times 2.5 R)}{1+3}=\frac{9}{4} R$
$C_{V}=\frac{9}{4} \times 8.31=18.7 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
4. a. 826 K

$$
\text { Explanation: } T_{1} V_{1}^{\gamma-1}=T_{2} V_{2}^{\gamma-1} T_{2}=T_{1}\left(\frac{V_{1}}{V_{2}}\right)^{\gamma-1}=1 \times\left(\frac{800}{60}\right)^{1.4-1}=826 \mathrm{~K}
$$

5.

b. $\frac{5}{2} \mathrm{R}$

Explanation: $C_{V}=\frac{1}{2} R f$
for diatomic gases $\mathrm{f}=5$
$C_{V}=\frac{5}{2} R$
6. Mean free path is defined as the average distance a molecule travels between collisions. It is represented by λ (lambda). Its Units is meters (m).
7. The minimum possible temperature on the basis of Charles' law is $-273.15^{\circ} \mathrm{C}$ at which all the gases become zero in volume.
8. Given, temperature(T) $=273+127=400 \mathrm{~K}$

Helium is a mono-atomic gas.
Average kinetic energy per mole of helium gas $=\frac{3}{2}$ RT
Average kinetic energy of 1 g of helium $=\frac{3 \times 8.31 \times 400}{2 \times 4}=1246.5 \mathrm{~J}$ (since 1 gm of Helium contains $1 / 4$ mole)
9. Degrees of freedom of a gas molecule is the minimum number of coordinates (number of independent variables) required to completely specify the position (state of motion or energy) of it. For a monatomic gas e.g., He, Ne, etc., a molecule can have translational motion in any direction in the container and hence its speed v can be supposed to be consisting of three components $\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}$, and v_{z} along three principal axes and, thus, have three degrees of translational motion. A monatomic gas molecule does not possess rotational or vibrational motion. So, a total number of degrees of freedom per molecule of a monatomic gas is three only.
10. Since,

Most Probable velocity, $V_{m p}=\sqrt{\frac{2 K T}{m}}$
Average velocity, $\bar{V}=\sqrt{\frac{8 K T}{\pi m}}$
Root Mean Square velocity: $\mathrm{V}_{\text {r.m.s. }}=\sqrt{\frac{3 K T}{m}}$
So, $\mathrm{V}_{\mathrm{mp}}: \overline{\mathrm{V}} \mathrm{Vrm} . \mathrm{s}=\sqrt{\frac{2 \mathrm{KT}}{\mathrm{m}}}: \sqrt{\frac{3 \mathrm{KT}}{\pi \mathrm{m}}}: \sqrt{\frac{3 \mathrm{KT}}{\mathrm{m}}}$
$=\sqrt{2}: \sqrt{\frac{8}{\pi}}: \sqrt{3}$
$\mathrm{V}_{m p}: \overline{\mathrm{V}} \mathrm{V}_{\text {r.m.s. }}=1: 1.3: 1.23$
11. Standard temperature $\mathrm{T}=273 \mathrm{~K}$.
\therefore Mean kinetic energy of one mole of hydrogen at STP
$\bar{E}=\frac{3}{2} R T$
$=\frac{3}{2} \times 8.3 \times 273$
$=3403 \mathrm{~J}$
$=3.4 \times 10^{3} \mathrm{~J}$
12. Now $\gamma=\frac{C_{P}}{C_{V}}$

Where $C_{P}=$ specific heat at constant pressure
and $C_{V}=$ Specific heat at constant volume.
and $n=$ Degrees of freedom \rightarrow which is the total number of co-ordinates or independent quantities required to describe completely the position and configuration of the system.
Suppose, a polyatomic gas molecule has ' n ' degrees of freedom.
\therefore Total energy associated with one mole molecule of the gas with
$\mathrm{N}_{\mathrm{A}}=$ Total number of molecules (Avogadro's number)
$\mathrm{R}=$ Universal Gas Constant
$\mathrm{R}=\mathrm{N}_{\mathrm{A}} \mathrm{K}_{\mathrm{B}}$
$\mathrm{K}_{\mathrm{B}}=$ Boltzmann Constant
$E=n \times \frac{1}{2} \mathrm{~K}_{\mathrm{B}} \mathrm{T} \times \mathrm{N}_{\mathrm{A}}=\frac{n}{2} R T \ldots$...(i) (from law of equipartition of energy, we know that for each degree of freedom of a gas molecule, energy $=\frac{1}{2} K_{B} T$)
As,
Specific heat at constant volume,
$C_{V}=\frac{d E}{d T}$
$\Rightarrow C_{V}=\frac{d}{d T}\left(\frac{n}{2} R T\right)$ [putting the value of energy E from equation (i)]
$\therefore C_{V}=\frac{n}{2} R$
Now Specific heat at constant Pressure, $\mathrm{C}_{\mathbf{P}}=\mathrm{C}_{\mathrm{V}}+\mathrm{R}$ (using known equation $\mathrm{C}_{\mathrm{P}}-\mathrm{C}_{\mathrm{V}}=\mathrm{R}$)
$\therefore C_{P}=\frac{n}{2} R+R$
$\Rightarrow C_{P}=\left(\frac{n}{2}+1\right) R$
As, $\gamma=\frac{C_{P}}{C_{V}}$
$\therefore \gamma=\frac{\left(\frac{n}{2}+1\right) R}{\frac{n}{2} R}$
$\Rightarrow \gamma=\left(\frac{n}{2}+1\right) \times \frac{2}{n}$
$\Rightarrow \gamma=\frac{2}{n} \times\left(\frac{n}{2}+1\right)$
$\Rightarrow \gamma=\left(1+\frac{2}{n}\right)$, This is the required relation γ and degrees of freedom, n.
13. In a perfect gas, there is no mutual interaction between the molecules.

Now, kinetic energy of gas $=\frac{1}{2} m v^{2}$
From the law of equi-partition of energy, kinetic energy of a single molecule with 3 degrees of freedom:
$\frac{1}{2} m v^{2}=\frac{3}{2} K T$

Kinetic energy of n_{1} molecules of one gas at temperature $\mathrm{T}_{1}=n_{1} \times\left(\frac{3}{2} K T_{1}\right) \rightarrow(1)$
Kinetic energy of n_{2} molecules of other gas at temperature T_{2}
$=n_{2} \times\left(\frac{3}{2} K T_{2}\right) \rightarrow(2)$
$\mathrm{n}_{1}, \mathrm{n}_{2}=$ Number of molecules in the two gases
K = Boltzmann's Constant
$\mathrm{T}_{1}, \mathrm{~T}_{2} \rightarrow$ Temperatures of the two gases
Total K.E. $=\frac{3}{2} K\left(n_{1} T_{1}+n_{2} T_{2}\right) \ldots$...(3) (adding equation (1) \& (2))
Let T be the absolute temperature of the mixture of gases
Then,
Total Kinetic energy of the mixture $=n_{1} \times\left(\frac{3}{2} K T\right)+n_{2} \times\left(\frac{3}{2} K T\right)$
Total Kinetic energy $=\frac{3}{2} K T\left(n_{1}+n_{2}\right) \rightarrow 4$)
Since there is no loss of energy, hence on comparing equations (3) \& (4) for total kinetic energy: \rightarrow
$\frac{3}{2} K T\left(n_{1}+n_{2}\right)=\frac{3}{2} K\left(n_{1} T_{1}+n_{2} T_{2}\right)$
$\Rightarrow \mathrm{T}\left(\mathrm{n}_{1}+\mathrm{n}_{2}\right)=\left(\mathrm{n}_{1} \mathrm{~T}_{1}+\mathrm{n}_{2} \mathrm{~T}_{2}\right)$
$\Rightarrow T=\frac{n_{1} T_{1}+n_{2} T_{2}}{n_{1}+n_{2}}$ This is required temperature of the mixture.
14. When the air bubble is at 40 m depth, then
$\mathrm{V}_{1}=1.0 \mathrm{~cm}^{3}$
$=1.0 \times 10^{-6} \mathrm{~m}^{3}$
$\mathrm{T}_{1}=12^{\circ} \mathrm{C}$
$=12+273=285 \mathrm{~K}$
$\mathrm{P}_{1}=1 \mathrm{~atm}+\mathrm{hpg}$
$=1.01 \times 10^{5}+40 \times 10^{3} \times 9.8$
$=4,93,000 \mathrm{~Pa}$
When the air bubble reaches at the surface of lake, then
$\mathrm{V}_{2}=$?
$\mathrm{T}_{2}=35^{\circ} \mathrm{C}=35+273 \mathrm{~K}$
$=308 \mathrm{~K}$

$$
P_{2}=1 \mathrm{~atm}=1.01 \times 10^{5} \mathrm{~Pa}
$$

Now $\frac{P_{1} V_{1}}{T_{1}}=\frac{P_{2} V_{2}}{T_{2}}$
or $\mathrm{V}_{2}=\frac{\mathrm{P}_{1} \mathrm{~V}_{1} \mathrm{~T}_{2}}{\mathrm{~T}_{1} \mathrm{P}_{2}}$
$\mathrm{V}_{2}=\frac{493000 \times 1.01 \times 10^{-6} \times 308}{285 \times 1.01 \times 10^{5}}$
$=5.328 \times 10^{-6} \mathrm{~m}^{3}$.
15. i. According to law of equipartition of energy we know that the energy of a gas molecule per degree of freedom $=\frac{1}{2} k T$. For helium atom in the given question, there are 3 degrees of freedom with total thermal energy $=3 \times \frac{1}{2} k T=\frac{3}{2} k T$. Now at room temperature, $\mathrm{T}=27^{\circ} \mathrm{C}=(273+27) \mathrm{K}=300 \mathrm{~K}$
We know that, the average thermal energy per molecule $=\frac{3}{2} k T$
Where k is the Boltzmann constant $=1.38 \times 10^{-23} \mathrm{~m}^{2} \mathrm{~kg} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$\therefore \frac{3}{2} k T=\frac{3}{2} \times 1.38 \times 10^{-23} \times 300\left(\mathrm{k}=1.38 \times 10^{-23} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}, \mathrm{~T}=300 \mathrm{~K}\right)$
$=6.21 \times 10^{-21} \mathrm{~J}$
Hence, the average thermal energy of a helium atom at room temperature $\left(27^{\circ} \mathrm{C}\right)$ is $6.21 \times 10^{-21} J$.
ii. On the surface of the sun, $\mathrm{T}=6000 \mathrm{~K}$

Average thermal energy $=\frac{3}{2} k T$ with $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$=\frac{3}{2} \times 1.38 \times 10^{-23} \times 6000$
$=1.241 \times 10^{-19} \mathrm{~J}$
Hence, the average thermal energy of a helium atom on the surface of the sun having temperature 6000 K is $1.241 \times 10^{-19} \mathrm{~J}$.
iii. At temperature, $\mathrm{T}=10$ million $\mathrm{K}=100$ lakhs $\mathrm{K}=10^{5} \times 10^{2} \mathrm{~K}=10^{7} \mathrm{~K}$

Average thermal energy $=\frac{3}{2} k T$ with $\mathrm{k}=1.38 \times 10^{-23} \mathrm{~kg} \mathrm{~m}^{2} \mathrm{~s}^{-2} \mathrm{~K}^{-1}$
$=\frac{3}{2} \times 1.38 \times 10^{-23} \times 10^{7}$
$=2.07 \times 10^{-16} \mathrm{~J}$
Hence, the average thermal energy of a helium atom at the core of a star is $2.07 \times 10^{-16} J$.

