CBSE Test Paper 02 CH-09 Sequences and Series

- 1. The product of first n odd terms of a G.P. whose middle term is m is
 - a. none of these
 - b. m^n
 - c. n^m
 - d. mn
- 2. Sum of an infinitely many terms of a G.P. is 3 times the sum of even terms. The common ratio of the G.P. is
 - a. 2
 - b. $\frac{3}{2}$
 - c. none of these
 - d. $\frac{1}{2}$
- 3. The sum of terms equidistant from the beginning and end in A.P. is equal to
 - a. last term
 - b. 0
 - c. first term
 - d. sum of the first and the last terms
- 4. If $a \in R$, then the roots of the equation tan x = a are in G.P for what values of a
 - a. $\frac{1}{\sqrt{3}}, 1, \sqrt{3}$
 - b. 1,0,-1
 - c. H.P.
 - d. none of these
- 5. If a, b, c are in A. P. as well as in G.P.; then

a.
$$a=b
eq c$$

- b. $a \neq b = c$
- c. a = b = c
- d. a
 eq b
 eq c
- 6. Fill in the blanks:

```
If \sum n = 210, then \sum n^2 = _____.
```

7. Fill in the blanks:

A.M between x - 3 and x + 5 is _____.

- 8. Find the three terms of an AP whose sum is 9 and common difference is 1.
- 9. Which term of the sequence $\sqrt{3}, 3, 3\sqrt{3}$, is 729?
- 10. Which term of the sequence $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}$,..... is $\frac{1}{19683}$?
- 11. Let the sequence a_n is defined as follows $a_1 = 2$, $a_n = a_{n-1} + 3$ for $n \ge 2$. Find the first five terms and write corresponding series.
- 12. For what values of x, the numbers $\frac{-2}{7}$, x, $\frac{-7}{2}$ are in G.P.?
- 13. If a, b, c are in A.P.; b, c, d are in G.P. and $\frac{1}{c}$, $\frac{1}{d}$, $\frac{1}{e}$ are in A.P., prove that a, c, e are in G.P.
- 14. In an A.P., if p^{th} term is $\frac{1}{q}$ and q^{th} term is $\frac{1}{p}$, prove that the sum of first pq terms is $\frac{1}{2}(pq+1)$, where $p \neq q$.
- 15. If in an A.P. the sum of m terms is equal to n and the sum of n terms is equal to m, then prove that the sum of(m + n) terms is (m + n). Also, find the sum of the first (m n) terms (m > n).

CBSE Test Paper 02 CH-09 Sequences and Series

Solution

1. (b) m^n

Explanation:

Let the terms in a GP be a, $ar, ar, ar^2, ar^3, \ldots$ Product of odd number of terms (let number of terms be 'n', n is odd) $= a \cdot ar \cdot ar^2 \cdot ar^3 \dots ar^{n-1}$ $=a^n\cdot \left(1\cdot r\cdot r^2\cdot r^3\ldots\ldots r^{n-1}
ight)$ $=a^n,r^{1+2+3+\ldots+n-1}$ $=a^n\cdot r^{rac{(n-1)n}{2}}$ [The sum of first n natural numbers = $rac{n(n+1)}{2}$] We have the middle term $=m=ar^{rac{(n-1)}{2}}$ (i) \therefore Product of odd number of terms = $a^n \cdot r^{\frac{n(n-1)}{2}} = \left(ar^{\frac{(n-1)}{2}}\right)^n$ = m^n [using (i)] 2. (d) $\frac{1}{2}$ **Explanation:** Consider the infinite G . P $a, ar, ar^2, ar^3, \ldots, \ldots, \ldots$ with first term a and common ratio r Then the even terms ar, ar^3, ar^5, \ldots is again an infinite G.P with first term ar and common ratio r^2 W e have $S_\infty = rac{a}{1-r}$ Given $S_\infty=3$. Sum of even terms $\Rightarrow a + ar + ar^2 + ar^3 + \dots = 3. [ar + ar^3 + ar^5 + \dots]$ $\Rightarrow rac{a}{1-r} = 3 \cdot rac{ar}{1-r^2}$ $\Rightarrow rac{1}{1-r} = 3 \cdot rac{r}{(1-r)(1+r)}$ $\Rightarrow 1(1+r) = 3.r$ $\Rightarrow 2r = 1 \Rightarrow r = \frac{1}{2}$

3. (d) sum of the first and the last terms

Explanation:

Let the first term of the A.P be a , last term be l and the common difference be d Now the A.P will be of the form $a, a + d, a + 2d, \dots, l - 2d$,l-d,l Sum of two term equidistant from the beggining and end (say r+1 t term) = a+r d+b-r d=a+b = sum of the first term and last term

4. (a)
$$\frac{1}{\sqrt{3}}$$
, 1, $\sqrt{3}$

Explanation:

We have $\tan 30^\circ = rac{1}{\sqrt{3}}, \tan 45^\circ = 1$ and $\tan 60^\circ = \sqrt{3}$ Also we have $rac{1}{\sqrt{3}}, 1, \sqrt{3}$ are in G.P

5. (c) a = b = c

Explanation:

a,b,c are in A.P, 2b = a + c.....(i) a,b,c are in G.P, $b^2 = ac$(ii) from (i) and (ii), we get $\left(\frac{a+c}{2}\right)^2 = ac$ $\Rightarrow (a+c)^2 - 4ac = 0$ $\Rightarrow (a-c)^2 = 0 \Rightarrow a = c$ using a=c in (ii)

2b = c + c $\Rightarrow b = c$

so, a=b=c

- 6. 2870
- 7. x + 1
- 8. Let the three terms of AP are a d, a and a + d.

```
\therefore a - d + a + a + d = 9

\Rightarrow 3a = 9 \Rightarrow a = 3

Also, d = 1 [given]

\therefore Required terms are 3 - 1, 3, 3 + 1
```

i.e. 2, 3, 4

9. Here $a = \sqrt{3}$, $r = \frac{3}{\sqrt{3}} = \sqrt{3}$ and $a_n = 729$ $\therefore a_n = ar^{n-1}$ $\Rightarrow 729 = \sqrt{3} \times (\sqrt{3})^{n-1}$ $\Rightarrow (\sqrt{3})^{12} = (\sqrt{3})^n$ $\Rightarrow n = 12$

Therefore, 12th term of the given G.P. is 729.

10. Here $a = \frac{1}{3}$, $r = \frac{1}{9} \div \frac{1}{3} = \frac{1}{3}$ and $a_n = \frac{1}{19683}$ $\therefore a_n = ar^{n-1}$ $\Rightarrow \frac{1}{19683} = \frac{1}{3} \times \left(\frac{1}{3}\right)^{n-1}$ $\Rightarrow \left(\frac{1}{3}\right)^9 = \left(\frac{1}{3}\right)^n$ $\Rightarrow n = 9$ Therefore, 9th term of the given G.P. is $\frac{1}{19683}$

11. We have, $a_1 = 2$, and $a_n = a_{n-1} + 3$ On putting n = 2, we get $a_2 = a_1 + 3 = 2 + 3 = 5$ On putting n = 3, we get $a_3 = a_2 + 3 = 5 + 3 = 8$ On putting n = 4, we get $a_4 = a_3 + 3 = 8 + 3 = 11$ On putting n = 5, we get $a_5 = a_4 + 3 = 11 + 3 = 14$

> Thus, first five terms of given sequence are 2, 5, 8, 11 and 14. Also, corresponding series is 2, 5, 8, 11 , 14 , 17......

12. Given,
$$\frac{-2}{7}, x, \frac{-7}{2}$$
 are in G.P.
 $\therefore \frac{x}{\frac{-2}{7}} = \frac{\frac{-7}{2}}{x}$

 $\begin{array}{l} \Rightarrow x^2 = \frac{-2}{7} \times \frac{-7}{2} \\ \Rightarrow x^2 = 1 \\ \Rightarrow x = \pm 1 \end{array}$ Therefore, for x = ± 1 th given numbers are in G.P.

- 13. Since, a, b, c are in A.P.
 - $\therefore b a = c b$ $\Rightarrow 2b = a + c$ $\Rightarrow b = \frac{a+c}{2}$ Since, b, c, d are in G.P. $\therefore \frac{c}{b} = \frac{d}{c}$ $\Rightarrow c^{2} = bd.....(i)$ Also $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P. $\therefore \frac{1}{d} - \frac{1}{c} = \frac{1}{e} - \frac{1}{d}$ $\Rightarrow \frac{2}{d} = \frac{1}{c} + \frac{1}{e}$ $\Rightarrow \frac{2}{d} = \frac{c+e}{ce}$ $\Rightarrow d = \frac{2ce}{c+e}$

Putting values of b and d in eq. (i), $c^2 = \left(rac{c+a}{2}
ight) \left(rac{2ce}{c+e}
ight)$

$$\Rightarrow c^{2} = \frac{\operatorname{ce}(c+a)}{c+e}$$
$$\Rightarrow c^{2}(c+e) = \operatorname{ec}(c+a)$$
$$\Rightarrow c^{2} + ce = ce + ae$$

 \Rightarrow c² = ae which shows that a, c, e are in G.P.

14. Let a be the first term and d be the common difference of given A.P.

And $a_p = \frac{1}{q}$ and $a_q = \frac{1}{p}$ $\therefore a + (p-1)d = rac{1}{a}$ and $a + (q-1)d = rac{1}{n}$ $a \Rightarrow a + pd - d = rac{1}{a}$ (i) and $a + qd - d = rac{1}{n}$ (ii) Subtracting eq. (ii) from eq. (i), we get a + pd - d - (a + qd - d) = $\frac{1}{q} - \frac{1}{p}$ \Rightarrow pd - d - a - qd + d = $\frac{p-q}{pq}$ $r \Rightarrow (p-q)d = rac{p-q}{pq}$ $\Rightarrow d = \frac{p-q}{pq} \times \frac{1}{p-q} = \frac{1}{pq}$ Putting value of d in eq. (i), we get $a+p\frac{1}{na}-d=\frac{1}{a}$ $\Rightarrow a + \frac{1}{a} - d = \frac{1}{a}$ $\Rightarrow a = rac{1}{q} + d - rac{1}{q} = d = rac{1}{pq}$ Now, $S_n = \frac{n}{2} [2a + (n-1)d]$ $r \Rightarrow S_{pq} = rac{pq}{2} \Big[2 imes rac{1}{pq} + (pq-1) imes rac{1}{pq} \Big]$ $A \Rightarrow S_{pq} = rac{pq}{2} \Big[rac{2}{pq} + rac{pq-1}{pq} \Big]$ $r \Rightarrow S_{pq} = rac{pq}{2} \left[rac{2+pq-1}{pq}
ight]$ $\Rightarrow S_{pq} = rac{pq}{2} \left[rac{1+pq}{pq}
ight] \ rac{pq+1}{2}$ $\Rightarrow S_{pq} = \frac{1}{2}(pq+1)$

15. Let a be the first term and d be the common difference of the given A.P. Then, $S_m = n \Rightarrow \frac{m}{2} \{2a + (m - 1)d\} = n \Rightarrow 2am + m (m - 1) d = 2n(i)$ and $\Rightarrow S_n = m \Rightarrow \frac{m}{2} \{2a + (m - 1) d\} = m \Rightarrow 2an + n (n - 1) d = 2m(ii)$

Subtracting (ii) from (i), we get $2a (m - n) + {m(m - 1) - n(n - 1)} d = 2n - 2m$ \Rightarrow 2a (m - n) + {(m² - n²) - (m - n)} d = - 2 (m - n) \Rightarrow 2a + (m + n -1) d = - 2 [On dividing both sides by (m - n)] ...(iii) Now, $S_{m+n} = \frac{m+n}{2} \{2a + (m+n-1)d\}$ \Rightarrow S_{m + n} = $\frac{(m+n)}{2}$ (- 2) [Using (iii)] :: Sm + n = (m + n)From (iii), we obtain $2a = -2 - (m + n - 1) d \dots (iv)$ Substituting this value of 2a in (i), we obtain - 2m - m (m + n - 1) d + m (m - 1) d = 2n \Rightarrow d = -2 $\left(\frac{m+n}{mn}\right)$ (v) Putting d = -2 $\left(\frac{m+n}{mn}\right)$ in (iv), we obtain $2a = -2 + \frac{2}{mn}$ (m + n - 1) (m + n)(vi) Now, $S_{m-n} = \frac{m-n}{2} \{2a + (m - n - 1)d\}$ $\Rightarrow S_{m-n} = \frac{m-n}{2} \{-2 + \frac{2}{mn} (m+n-1) (m+n) - \frac{2}{mn} (m-n-1) (m+n)\} [Using (v) and (vi)]$ \Rightarrow S_{m-n} = {-2 + $\frac{4n}{mn}$ (m + n)} = $\frac{1}{m}$ (m - n) (m + 2n)