CBSE Test Paper 02
 CH-09 Sequences and Series

1. The product of first n odd terms of a G.P. whose middle term is m is
a. none of these
b. m^{n}
c. n^{m}
d. $m n$
2. Sum of an infinitely many terms of a G.P. is 3 times the sum of even terms. The common ratio of the G.P. is
a. 2
b. $\frac{3}{2}$
c. none of these
d. $\frac{1}{2}$
3. The sum of terms equidistant from the beginning and end in A.P. is equal to
a. last term
b. 0
c. first term
d. sum of the first and the last terms
4. If $a \in R$, then the roots of the equation $\tan \mathrm{x}=\mathrm{a}$ are in G.P for what values of a
a. $\frac{1}{\sqrt{3}}, 1, \sqrt{3}$
b. 1,0,-1
c. H.P.
d. none of these
5. If a, b, c are in A. P. as well as in G.P.; then
a. $a=b \neq c$
b. $a \neq b=c$
c. $\mathrm{a}=\mathrm{b}=\mathrm{c}$
d. $a \neq b \neq c$
6. Fill in the blanks:

If $\sum n=210$, then $\sum n^{2}=$ \qquad .
7. Fill in the blanks:
A. M between $x-3$ and $x+5$ is \qquad .
8. Find the three terms of an AP whose sum is 9 and common difference is 1 .
9. Which term of the sequence $\sqrt{3}, 3,3 \sqrt{3}$, \qquad is 729 ?
10. Which term of the sequence $\frac{1}{3}, \frac{1}{9}, \frac{1}{27}, \ldots \ldots$. is $\frac{1}{19683}$?
11. Let the sequence a_{n} is defined as follows $a_{1}=2, a_{n}=a_{n-1}+3$ for $n \geq 2$. Find the first five terms and write corresponding series.
12. For what values of x, the numbers $\frac{-2}{7}, x, \frac{-7}{2}$ are in G.P.?
13. If $\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in A.P.; $\mathrm{b}, \mathrm{c}, \mathrm{d}$ are in G.P. and $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P., prove that a, c, e are in G.P.
14. In an A.P., if $\mathrm{p}^{\text {th }}$ term is $\frac{1}{q}$ and $\mathrm{q}^{\text {th }}$ term is $\frac{1}{p}$, prove that the sum of first pq terms is $\frac{1}{2}(p q+1)$, where $p \neq q$.
15. If in an A.P. the sum of m terms is equal to n and the sum of n terms is equal to m, then prove that the sum of $(m+n)$ terms is $-(m+n)$. Also, find the sum of the first (m $\mathrm{n})$ terms $(\mathrm{m}>\mathrm{n})$.

CBSE Test Paper 02

CH-09 Sequences and Series

Solution

1. (b) m^{n}

Explanation:

Let the terms in a GP be a, ar, $a, a r, a r^{2}, a r^{3}, \ldots$
Product of odd number of terms (let number of terms be ' n ' , n is odd)
$=a \cdot a r \cdot a r^{2} \cdot a r^{3} \ldots \ldots \ldots \ldots a r^{n-1}$
$=a^{n} \cdot\left(1 \cdot r \cdot r^{2} \cdot r^{3} \ldots \ldots \ldots \ldots r^{n-1}\right)$
$=a^{n}, r^{1+2+3+\ldots \ldots \cdots \cdots+n-1}$
$=a^{n} \cdot r^{\frac{(n-1) n}{2}}$ [The sum of first n natural numbers $=\frac{n(n+1)}{2}$]
We have the middle term $=m=a r^{\frac{(n-1)}{2}}$
\therefore Product of odd number of terms $=a^{n} \cdot r^{\frac{n(n-1)}{2}}=\left(a r^{\frac{(n-1)}{2}}\right)^{n}=m^{n}$ [using (i)]
2. (d) $\frac{1}{2}$

Explanation:

Consider the infinite G.P $a, a r, a r^{2}, a r^{3}, \ldots \ldots \ldots \ldots, \ldots$ with first term a and
common ratio r
Then the even terms $a r, a r^{3}, a r^{5}, \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. again an infinite G.P
with first term ar and common ratio r^{2}
W e have $S_{\infty}=\frac{a}{1-r}$
Given $S_{\infty}=3$. Sum of even terms
$\Rightarrow a+a r+a r^{2}+a r^{3}+\ldots \ldots \ldots .=3 .\left[a r+a r^{3}+a r^{5}+\ldots \ldots \ldots \ldots\right]$
$\Rightarrow \frac{a}{1-r}=3 \cdot \frac{a r}{1-r^{2}}$
$\Rightarrow \frac{1}{1-r}=3 \cdot \frac{r}{(1-r)(1+r)}$
$\Rightarrow 1(1+r)=3 . r$
$\Rightarrow 2 r=1 \Rightarrow r=\frac{1}{2}$
3. (d) sum of the first and the last terms

Explanation:

Let the first term of the A.P be a , last term be l and the common difference be d
Now the A.P will be of the form $a, a+d, a+2 d, \ldots \ldots \ldots, l-2 d, 1-\mathrm{d}, \mathrm{l}$
Sum of two term equidistant from the beggining and end (say r+1 t term) $=\mathrm{a}+\mathrm{r} \mathrm{d}+\mathrm{b}-\mathrm{r}$ $d=a+b=$ sum of the first term and last term
4. (a) $\frac{1}{\sqrt{3}}, 1, \sqrt{3}$

Explanation:

We have $\tan 30^{\circ}=\frac{1}{\sqrt{3}}, \tan 45^{\circ}=1$ and $\tan 60^{\circ}=\sqrt{3}$
Also we have $\frac{1}{\sqrt{3}}, 1, \sqrt{3}$ are in G.P
5. (c) $a=b=c$

Explanation:

a,b,c are in A.P, $2 b=a+c$.
$\mathrm{a}, \mathrm{b}, \mathrm{c}$ are in G.P, $b^{2}=a c$.
from (i) and (ii), we get
$\left(\frac{a+c}{2}\right)^{2}=a c$
$\Rightarrow(a+c)^{2}-4 a c=0$
$\Rightarrow(a-c)^{2}=0 \Rightarrow a=c$
using $\mathrm{a}=\mathrm{c}$ in (ii)
$2 b=c+c$
$\Rightarrow b=c$
so, $a=b=c$
6. 2870
7. $\mathrm{x}+1$
8. Let the three terms of AP are $a-d$, a and $a+d$.
$\therefore a-d+a+a+d=9$
$\Rightarrow 3 \mathrm{a}=9 \Rightarrow \mathrm{a}=3$
Also, d = 1 [given]
\therefore Required terms are $3-1,3,3+1$
i.e. 2, 3, 4
9. Here $\mathrm{a}=\sqrt{3}, \mathrm{r}=\frac{3}{\sqrt{3}}=\sqrt{3}$ and $\mathrm{a}_{\mathrm{n}}=729$
$\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\Rightarrow 729=\sqrt{3} \times(\sqrt{3})^{n-1}$
$\Rightarrow(\sqrt{3})^{12}=(\sqrt{3})^{n}$
$\Rightarrow \mathrm{n}=12$
Therefore, $12^{\text {th }}$ term of the given G.P. is 729 .
10. Here $\mathrm{a}=\frac{1}{3}, \mathrm{r}=\frac{1}{9} \div \frac{1}{3}=\frac{1}{3}$ and $\mathrm{a}_{\mathrm{n}}=\frac{1}{19683}$
$\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\Rightarrow \frac{1}{19683}=\frac{1}{3} \times\left(\frac{1}{3}\right)^{n-1}$
$\Rightarrow\left(\frac{1}{3}\right)^{9}=\left(\frac{1}{3}\right)^{n}$
$\Rightarrow \mathrm{n}=9$
Therefore, $9^{\text {th }}$ term of the given G.P. is $\frac{1}{19683}$
11. We have, $a_{1}=2$, and $a_{n}=a_{n-1}+3$

On putting $\mathrm{n}=2$, we get
$\mathrm{a}_{2}=\mathrm{a}_{1}+3=2+3=5$
On putting $n=3$, we get
$a_{3}=a_{2}+3=5+3=8$
On putting $\mathrm{n}=4$, we get
$\mathrm{a}_{4}=\mathrm{a}_{3}+3=8+3=11$
On putting $\mathrm{n}=5$, we get
$\mathrm{a}_{5}=\mathrm{a}_{4}+3=11+3=14$
Thus, first five terms of given sequence are $2,5,8,11$ and 14 .
Also, corresponding series is $2,5,8,11,14,17 \ldots . .$.
12. Given, $\frac{-2}{7}, x, \frac{-7}{2}$ are in G.P.
$\therefore \frac{x}{\frac{-2}{7}}=\frac{\frac{-7}{2}}{x}$
$\Rightarrow x^{2}=\frac{-2}{7} \times \frac{-7}{2}$
$\Rightarrow x^{2}=1$
$\Rightarrow x= \pm 1$
Therefore, for $\mathrm{x}= \pm 1$ th given numbers are in G.P.
13. Since, a, b, c are in A.P.
$\therefore \mathrm{b}-\mathrm{a}=\mathrm{c}-\mathrm{b}$
$\Rightarrow 2 \mathrm{~b}=\mathrm{a}+\mathrm{c}$
$\Rightarrow b=\frac{a+c}{2}$
Since, b, c, d are in G.P.
$\therefore \frac{c}{b}=\frac{d}{c}$
$\Rightarrow c^{2}=\mathrm{bd} . \ldots \ldots \ldots .$. (i)
Also $\frac{1}{c}, \frac{1}{d}, \frac{1}{e}$ are in A.P.
$\therefore \frac{1}{d}-\frac{1}{c}=\frac{1}{e}-\frac{1}{d}$
$\Rightarrow \frac{2}{d}=\frac{1}{c}+\frac{1}{e}$
$\Rightarrow \frac{2}{d}=\frac{c+e}{c e}$
$\Rightarrow d=\frac{2 c e}{c+e}$
Putting values of b and d in eq. (i), $c^{2}=\left(\frac{c+a}{2}\right)\left(\frac{2 c e}{c+e}\right)$
$\Rightarrow c^{2}=\frac{\mathrm{ce}(c+a)}{c+e}$
$\Rightarrow \mathrm{c}^{2}(\mathrm{c}+\mathrm{e})=\mathrm{ec}(\mathrm{c}+\mathrm{a})$
$\Rightarrow c^{2}+c e=c e+a e$
$\Rightarrow \mathrm{c}^{2}=\mathrm{ae}$ which shows that $\mathrm{a}, \mathrm{c}, \mathrm{e}$ are in G.P.
14. Let a be the first term and d be the common difference of given A.P.

And $a_{p}=\frac{1}{q}$ and $a_{q}=\frac{1}{p}$
$\therefore a+(p-1) d=\frac{1}{q}$ and $a+(q-1) d=\frac{1}{p}$
$\Rightarrow a+p d-d=\frac{1}{q} \ldots .$. (i) and $a+q d-d=\frac{1}{p}$
Subtracting eq. (ii) from eq. (i), we get

$$
\begin{aligned}
& \mathrm{a}+\mathrm{pd}-\mathrm{d}-(\mathrm{a}+\mathrm{qd}-\mathrm{d})=\frac{1}{q}-\frac{1}{p} \\
& \Rightarrow \mathrm{pd}-\mathrm{d}-\mathrm{a}-\mathrm{qd}+\mathrm{d}=\frac{p-q}{p q} \\
& \Rightarrow(p-q) d=\frac{p-q}{p q} \\
& \Rightarrow d=\frac{p-q}{p q} \times \frac{1}{p-q}=\frac{1}{p q}
\end{aligned}
$$

Putting value of d in eq. (i), we get
$a+p \frac{1}{p q}-d=\frac{1}{q}$
$\Rightarrow a+\frac{1}{q}-d=\frac{1}{q}$
$\Rightarrow a=\frac{1}{q}+d-\frac{1}{q}=d=\frac{1}{p q}$
Now, $S_{n}=\frac{n}{2}[2 a+(n-1) d]$
$\Rightarrow S_{p q}=\frac{p q}{2}\left[2 \times \frac{1}{p q}+(p q-1) \times \frac{1}{p q}\right]$
$\Rightarrow S_{p q}=\frac{p q}{2}\left[\frac{2}{p q}+\frac{p q-1}{p q}\right]$
$\Rightarrow S_{p q}=\frac{p q}{2}\left[\frac{2+p q-1}{p q}\right]$
$\Rightarrow S_{p q}=\frac{p q}{2}\left[\frac{1+p q}{p q}\right]_{=} \frac{p q+1}{2}$
$\Rightarrow S_{p q}=\frac{1}{2}(p q+1)$
15. Let a be the first term and d be the common difference of the given A.P. Then,
$\mathrm{S}_{\mathrm{m}}=\mathrm{n} \Rightarrow \frac{m}{2}\{2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}\}=\mathrm{n} \Rightarrow 2 \mathrm{am}+\mathrm{m}(\mathrm{m}-1) \mathrm{d}=2 \mathrm{n}$ and $\Rightarrow \mathrm{S}_{\mathrm{n}}=\mathrm{m} \Rightarrow \frac{m}{2}\{2 \mathrm{a}+(\mathrm{m}-1) \mathrm{d}\}=\mathrm{m} \Rightarrow 2 \mathrm{an}+\mathrm{n}(\mathrm{n}-1) \mathrm{d}=2 \mathrm{~m}$

Subtracting (ii) from (i), we get
$2 \mathrm{a}(\mathrm{m}-\mathrm{n})+\{\mathrm{m}(\mathrm{m}-1)-\mathrm{n}(\mathrm{n}-1)\} \mathrm{d}=2 \mathrm{n}-2 \mathrm{~m}$
$\Rightarrow 2 \mathrm{a}(\mathrm{m}-\mathrm{n})+\left\{\left(\mathrm{m}^{2}-\mathrm{n}^{2}\right)-(\mathrm{m}-\mathrm{n})\right\} \mathrm{d}=-2(\mathrm{~m}-\mathrm{n})$
$\Rightarrow 2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}=-2$ [On dividing both sides by $(\mathrm{m}-\mathrm{n})$] ...(iii)
Now, $\mathrm{S}_{\mathrm{m}+\mathrm{n}}=\frac{m+n}{2}\{2 \mathrm{a}+(\mathrm{m}+\mathrm{n}-1) \mathrm{d}\}$
$\Rightarrow \mathrm{S}_{\mathrm{m}+\mathrm{n}}=\frac{(m+n)}{2}(-2)$ [Using (iii)]
$\therefore \mathrm{Sm}+\mathrm{n}=(\mathrm{m}+\mathrm{n})$
From (iii), we obtain
$2 \mathrm{a}=-2-(\mathrm{m}+\mathrm{n}-1) \mathrm{d}$
Substituting this value of 2 a in (i), we obtain
$-2 m-m(m+n-1) d+m(m-1) d=2 n$
$\Rightarrow \mathrm{d}=-2\left(\frac{m+n}{m n}\right) \ldots$. (v)
Putting $\mathrm{d}=-2\left(\frac{m+n}{m n}\right)$ in (iv), we obtain
$2 \mathrm{a}=-2+\frac{2}{m n}(\mathrm{~m}+\mathrm{n}-1)(\mathrm{m}+\mathrm{n}) \ldots$. (vi)
Now,
$\mathrm{S}_{\mathrm{m}-\mathrm{n}}=\frac{m-n}{2}\{2 \mathrm{a}+(\mathrm{m}-\mathrm{n}-1) \mathrm{d}\}$
$\Rightarrow \mathrm{S}_{\mathrm{m}-\mathrm{n}}=\frac{m-n}{2}\left\{-2+\frac{2}{m n}(\mathrm{~m}+\mathrm{n}-1)(\mathrm{m}+\mathrm{n})-\frac{2}{m n}(\mathrm{~m}-\mathrm{n}-1)(\mathrm{m}+\mathrm{n})\right\}$ [Using (v) and (vi)]
$\Rightarrow \mathrm{S}_{\mathrm{m}-\mathrm{n}}=\left\{-2+\frac{4 n}{m n}(\mathrm{~m}+\mathrm{n})\right\}=\frac{1}{m}(\mathrm{~m}-\mathrm{n})(\mathrm{m}+2 \mathrm{n})$

