CBSE Test Paper 01
 CH-09 Sequences and Series

1. the ratio of first to the last of n A.m.'s between 5 and 35 is $1: 4$. The value of n is
a. 9
b. 11
c. 10
d. 19
2. All the terms in A.P., whose first term is a and common difference d are squared. A different series is thus formed. This series is a
a. H.P.
b. G.P.
c. A.P.
d. none of these
3. If A, G, H denote respectively the A.M., G.M. and H.M. between two unequal positive numbers, then
a. $\mathrm{A}=\mathrm{GH}$
b. $A^{2}=G H$
c. $A=G^{2} H$
d. $G^{2}=H A$
4. The next term of the sequence $1,1,2,4,7,13, \ldots$. Is
a. 21
b. 24
c. none of these
d. 19
5. The sum of all non-reducible fractions with the denominator 3 lying between the numbers 5 and 8 is
a. 31
b. 52
c. 41
d. 39
6. Fill in the blanks:

The general term or $n^{\text {th }}$ term of G.P. is given by $\mathrm{a}_{\mathrm{n}}=$ \qquad .
7. Fill in the blanks:

The third term of a G.P. is 4, the product of the first five terms is \qquad .
8. Find the sum of first n terms and the sum of first 5 terms of the geometric series $1+\frac{2}{3}+\frac{4}{9}+---$
9. Find the $12^{\text {th }}$ term of a G.P. whose $8^{\text {th }}$ term is 192 and the common ratio is 2 .
10. Find the sum of 20 terms of an AP, whose first term is 3 and last term is 57 .
11. Find the sum to n terms of the sequence: $\log a, \log a r, \log \mathrm{ar}^{2}, \ldots$
12. The $n^{\text {th }}$ term of an $A P$ is $4 n+1$. Write down the first four terms and the $18^{\text {th }}$ term of an AP.
13. Find the sum to n terms in each of the series $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots$
14. Find the sum to n terms in each of the series $5^{2}+6^{2}+7^{2}+\ldots . .+20^{2}$
15. If a and b are the roots $x^{2}-3 x+p=0$ and c, d are roots of $x^{2}-12 x+q=0$ where a, b, c, d form a G.P. Prove that $(q+p):(q-p)=17: 15$.

CBSE Test Paper 01

CH-09 Sequences and Series

Solution

1. (a) 9

Explanation:

the sequence is $5, A_{1}, A_{2}, \ldots A_{n}, 35$
here $a=5$ and $b=35$
we know that, $d=\frac{b-a}{n+1}=\frac{35-5}{n+1}=\frac{30}{n+1}$
According to question,
$\frac{A_{1}}{A_{n}}=\frac{1}{4}$
$\Rightarrow \frac{a+d}{a+n d}=\frac{1}{4}$
$\Rightarrow 4 a+4 d=a+n d$
$\Rightarrow 3 a=d(n-4)$
$\Rightarrow 3 \times 5=\left(\frac{30}{n+1}\right)(n-4)$
$\Rightarrow(n+1)=2(n-4)$
$\Rightarrow n+1=2 n-8$
$\Rightarrow n=9$
2. (d) none of these

Explanation: the series obtained will not follow rules of AP, GP and HP
3. (d) $G^{2}=H A$

Explanation:

Given the numbers are a and b , then we have
$A \cdot M=A=\frac{a+b}{2}, G \cdot M=G=\sqrt{a b}$ and $H \cdot M=H=\frac{2 a b}{a+b}$
Now $A H=\left(\frac{a+b}{2}\right)\left(\frac{2 a b}{a+b}\right)=a b=(\sqrt{a b})^{2}=G^{2}$
4. (b) 24

Explanation:

The given sequence can be expressed as $T_{1}=T_{2}=1$
$T_{n}=T_{n-1}+T_{n-2}+T_{n-3}, n \geq 3 \therefore \quad T_{7}=T_{6}+T_{5}+T_{4}=13+7+4=24$
5. (d) 39

Explanation:

We have $5=\frac{15}{3} \quad$ and $\quad 8=\frac{24}{3}$
Hence the fractions between 5 and 8 with 3 as denominator will be
$\frac{16}{3}, \frac{17}{3}, \frac{18}{3}, \frac{19}{3}, \frac{20}{3}, \frac{21}{3}, \frac{22}{3}$ and $\frac{23}{3}$ in this only $6=\frac{18}{3}$ and $7=\frac{21}{3}$ are reducible
Now $\frac{16}{3}, \frac{17}{3}, \frac{18}{3}, \frac{19}{3}, \frac{20}{3}, \frac{21}{3}, \frac{22}{3}$ and $\frac{23}{3}$ is an A.P with first term $\mathrm{a}=\frac{16}{3}$ and $d=\frac{1}{3}$
Hence Sum $=\frac{n}{2}(a+l)=\frac{8}{2}\left(\frac{16}{3}+\frac{23}{3}\right)=4(13)=52$
Hence the sum of non redubile fractions $=52-(6+7)=52-13=39$
6. $\operatorname{ar}^{\mathrm{n}-1}$
7. 4^{5}
8. $\mathrm{a}=1, \mathrm{r}=\frac{2}{3}$

$$
\begin{aligned}
& S_{n}=\frac{a\left(1-r^{n}\right)}{1-r} \\
& =\frac{1\left[1-\left(\frac{2}{3}\right)^{n}\right]}{1-\frac{2}{3}} \\
& =3\left[1-\left(\frac{2}{3}\right)^{n}\right] \\
& S_{5}=3\left[1-\left(\frac{2}{3}\right)^{5}\right]=\frac{211}{81}
\end{aligned}
$$

9. Let a be the first term of given G.P. Here $\mathrm{r}=2$ and $\mathrm{a}_{8}=192$
$\therefore \mathrm{a}_{\mathrm{n}}=\mathrm{ar}^{\mathrm{n}-1}$
$\Rightarrow a_{8}=a \times(2)^{8-1}=192$
$\Rightarrow a \times(2)^{7}=192$
$\Rightarrow a \times 128=192$
$\Rightarrow a=\frac{192}{128}=\frac{3}{2}$
$\therefore \mathrm{a}_{12}=\mathrm{ar}^{12-1}$
$\Rightarrow a_{12}=\frac{3}{2} \times 2^{11}=3 \times 2^{10}$
$=3 \times 1024=3072$
10. We have, $\mathrm{a}=3, \mathrm{l}=57$ and $\mathrm{n}=20$
$\because \mathrm{S}_{\mathrm{n}}=\frac{n}{2}[\mathrm{a}+\mathrm{l}]$
$\therefore \mathrm{S}_{20}=\frac{20}{2}[3+57]$
$=10 \times 60$
$=600$
11. We have sequence $\log a, \log \operatorname{ar}, \log \operatorname{ar}^{2}, \ldots$

Above sequence can be expressed as $\log a,(\log a+\log r),(\log a+2 \log r), \ldots$
$\left[\because \log m n=\log m+\log n\right.$ and $\left.\log n^{r}=r \log n\right]$
which is clearly an AP with, $a=\log a$ and $d=\log r$
We know that, sum of n terms,
$\mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \mathrm{a}+(\mathrm{n}-1) \mathrm{d}]$
$\therefore \mathrm{S}_{\mathrm{n}}=\frac{n}{2}[2 \log \mathrm{a}+(\mathrm{n}-1) \log \mathrm{r}]$
$=\frac{n}{2}\left[\log \mathrm{a}^{2}+\log \mathrm{r}^{\mathrm{n}-1}\right]\left[\because \mathrm{x} \log \mathrm{a}=\log \mathrm{a}^{\mathrm{x}}\right]$
$=\frac{n}{2}\left[\log \mathrm{a}^{2} \mathrm{r}^{\mathrm{n}-1}\right][\because \log \mathrm{a}+\log \mathrm{b}=\log \mathrm{ab}]$
12. Here, $\mathrm{T}_{\mathrm{n}}=4 \mathrm{n}+1$...(i)

On putting $\mathrm{n}=1,2,3,4$ in Eq. (i), we get
$\mathrm{T}_{1}=4(1)+1=4+1=5$
$\mathrm{T}_{2}=4(2)+1=8+1=9$
$\mathrm{T}_{3}=4(3)+1=12+1=13$
and $\mathrm{T}_{4}=4(4)+1=16+1=17$
On putting $n=18$ in Eq. (i), we get
$\mathrm{T}_{18}=4(18)+1=72+1=73$
Hence, the first four terms of an AP are 5, 9, 13, 17 and $18^{\text {th }}$ term is 73.
13. Given: $\frac{1}{1 \times 2}+\frac{1}{2 \times 3}+\frac{1}{3 \times 4}+\ldots \ldots \ldots$ to n terms
$\therefore a_{n}=\frac{1}{\left(n^{\text {th }} \text { term of } 1,2,3, \ldots \ldots .\right)\left(n^{\text {th }} \text { term of } 2,3,4, \ldots \ldots . .\right)}$
$=\frac{1}{[1+(n-1) \times 1][2+(n-1) \times 1]}$
Let $\frac{1}{n(n+1)}=\frac{A}{n}+\frac{B}{n+1}$ [By partial fraction]
Then $1=A(n+1)+B n$
Put $\mathrm{n}=0$ then $\mathrm{A}=1$

Put $\mathrm{n}=-1$ then $\mathrm{B}=-1$
$\therefore \frac{1}{n(n+1)}=\frac{1}{n}+\frac{-1}{n+1}$
$\therefore a_{1}=\frac{1}{1}-\frac{1}{2} a_{2}=\frac{1}{2}-\frac{1}{3} a_{3}=\frac{1}{3}-\frac{1}{4} \ldots \ldots \ldots$
And $\mathrm{S}_{\mathrm{n}}=\mathrm{a}_{1}+\mathrm{a}_{2}+\mathrm{a}_{3}+$ \qquad $+a_{n}$
$=\frac{1}{1}-\frac{1}{n+1}=\frac{n}{n+1}$
14. Given: $5^{2}+6^{2}+7^{2}+$ \qquad $+20^{2}$
$=\left(1^{2}+2^{2}+3^{2}+\ldots \ldots+20^{2}\right)-\left(1^{2}+2^{2}+3^{2}+4^{2}\right)$
$\sum_{n=1}^{20} n^{2}-\sum_{n=1}^{4} n^{2}$
$=\frac{20(20+1)(40+1)}{6}-\frac{4(4+1)(8+1)}{6}$
$=\frac{20 \times 21 \times 41}{6}-\frac{20 \times 9}{6}$
$=\frac{20}{6}(861-9)=2840$
15. Let $\frac{b}{a}=\frac{c}{b}=\frac{d}{c}=k$
$\therefore \frac{b}{a}=k$
$\Rightarrow \mathrm{b}=\mathrm{ak}$ And $\frac{c}{b}=k$
$\Rightarrow \mathrm{c}=\mathrm{bk}=(\mathrm{ak}) \mathrm{k}=\mathrm{ak}^{2}$
Also $\frac{d}{c}=k$
$\Rightarrow \mathrm{d}=\mathrm{ck}=\left(\mathrm{ak}^{2}\right) \mathrm{k}=\mathrm{ak}^{3}$
$\because \mathrm{a} a$ and $\mathrm{b} b$ are the roots $\mathrm{x}^{2}-3 \mathrm{x}+\mathrm{p}=0$
$\therefore a+b=\frac{-(-3)}{1}=3$
$\Rightarrow \mathrm{a}+\mathrm{ak}=3$
$\Rightarrow \mathrm{a}(1+\mathrm{k})=3$ \qquad
And $a b=\frac{p}{1}$
$\Rightarrow \mathrm{a}(\mathrm{ak})=\mathrm{p}$
$\Rightarrow \mathrm{a}^{2} \mathrm{k}=\mathrm{p}$

Also c, d are roots of $x^{2}-12 x+q=0$
$\therefore \quad c+d=\frac{-(-12)}{1}=12$
$\Rightarrow \mathrm{ak}^{2}+\mathrm{ak}^{3}=12$
$\Rightarrow \mathrm{ak}^{2}(1+\mathrm{k})=12$
And $c d=\frac{q}{1}$
$\Rightarrow \mathrm{ak}^{2}\left(\mathrm{ak}^{3}\right)=\mathrm{q}$
$\Rightarrow \mathrm{a}^{2} \mathrm{k}^{5}=\mathrm{q}$
Dividing eq. (iii) by eq. (i), $\frac{a k^{2}(1+k)}{a(1+k)}=\frac{12}{3}$
$\Rightarrow \mathrm{k}^{2}=4$
$\Rightarrow k= \pm 2$
Now $\frac{q+p}{q-p}=\frac{a^{2} k^{5}+a^{2} k}{a^{2} k^{5}-a^{2} k}=\frac{a^{2} k\left(k^{4}+1\right)}{a^{2} k\left(k^{4}-1\right)}$
$=\frac{(\pm 2)^{4}+1}{(\pm 2)^{4}-1}=\frac{16+1}{16-1}=\frac{17}{15}$
Therefore, $(q+p):(q-p)=17: 15$

