CBSE Test Paper 02

CH-08 Binomial Theorem

1. The greatest term in the expansion of $(3+2 x)^{9}$, when $\mathrm{x}=1$, is
a. $5^{\text {th }}$
b. $7^{\text {th }}$
c. $4^{\text {th }}$
d. $6^{\text {th }}$
2. The index of the power of x that occurs in the $7^{\text {th }}$ term from the end in the expansion of $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{9}$ is
a. -5
b. 3
c. -3
d. 5
3. $(\sqrt{3}+1)^{2 n}+(\sqrt{3}-1)^{2 n}$ is
a. negative real number
b. an even positive integer
c. an odd positive integer
d. irrational number
4. In the expansion of $(1+x)^{60}$, the sum of coefficients of odd powers of x is
a. 2^{58}
b. 2^{60}
c. 2^{61}
d. 2^{59}
5. The index of the power of x that occurs in the $6^{\text {th }}$ term in the expansion of $\left(\frac{4 x}{5}-\frac{8}{5 x}\right)^{9}$ is
a. 2
b. 1
c. 3
d. -1
6. Fill in the blanks:

The coefficients of 2nd, 3rd, and 4th terms in the binomial expansion of $(1+x)^{n}$ are ${ }^{n} C_{1},{ }^{n} C_{2}$ and ${ }^{n} C_{3}$, respectively.
7. Fill in the blanks:

The number of terms in the binomial expansion of $(1+\sqrt{5} x)^{7}+(1-\sqrt{5} x)^{7}$ is
\qquad .
8. Write the general term in the expansion of $\left(x^{2}-y\right)^{6}$
9. Using binomial theorem, write down the expansion: $\left(x-\frac{1}{x}\right)^{6}$
10. Write the general term in the expansion of $\left(x^{2}-y x\right)^{12}$
11. Find the number of terms in the expansion of $\left(1+2 x+x^{2}\right)^{14}$
12. Find the term independent of x in the expansion of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$
13. Find the $4^{\text {th }}$ term in the expansion of $(x-2 y)^{12}$.
14. Find the coefficients of : x^{5} in $(x+3)^{8}$
15. If O be the sum of odd terms and E that of even terms in the expansion of $(x+a)^{n}$, prove that:
i. $\mathrm{O}^{2}-\mathrm{E}^{2}=\left(\mathrm{x}^{2}-\mathrm{a}^{2}\right)^{\mathrm{n}}$
ii. $4 O E=(x+a)^{2 n}-(x-a)^{2 n}$
iii. $2\left(O^{2}+E^{2}\right)=(x+a)^{2 n}+(x-a)^{2 n}$

CBSE Test Paper 02

CH-08 Binomial Theorem

Solution

1. (a) $5^{\text {th }}$

Explanation:

We have the general term in the expansion of $(3+2 x)^{9}$ is given by
$T_{r+1}={ }^{9} C_{r} \quad(3)^{9-r}(2 x)^{r}$
Now $\frac{T_{r+1}}{T_{r}}=\frac{{ }^{9} C_{r} \quad(3)^{9-r}(2 x)^{r}}{{ }^{9} C_{r-1}}(3)^{10-r}(2 x)^{r-1}$
$=\frac{9!(3)^{9-r}(2 x)^{r}}{(9-r)!\cdot r!} \times \frac{(10-r)!(r-1)!}{9!(3)^{10-r}(2 x)^{r-1}}$
$=\frac{(10-r) \cdot 2 x}{3 r}$
$=\frac{2(10-r)}{3 r}$ since given $\mathrm{x}=1$
Now $\frac{\stackrel{3 r}{T_{r+1}}}{T_{r}} \geq 1$
$\Rightarrow \frac{(20-2 r)}{3 r} \geq 1$
$\Rightarrow 20-2 r \geq 3 r$
$\Rightarrow r \leq \frac{20}{5}$
$\Rightarrow r \leq 4$
Hence the maximum value of r is 4
Now $T_{5}=T_{4+1}={ }^{9} C_{4} \quad(3)^{9-4}(2 x)^{4}=126 \times 243 \times 16(x)^{4}=489888$
2. (c) -3

Explanation:

We have the general term of $(x+a)^{n} \quad$ is $\quad T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$
Now consider $\left(\frac{2 x}{3}-\frac{3}{2 x}\right)^{9}$
Here $T_{r+1}={ }^{9} C_{r} \quad\left(\frac{2 x}{3}\right)^{9-r}\left(-\frac{3}{2 x}\right)^{r}$
We have 7 th term from the end=(12-7+2) th term from the beginning Required term is $T_{7}=T_{6+1}={ }^{9} C_{6} \quad\left(\frac{2 x}{3}\right)^{9-6}\left(-\frac{3}{2 x}\right)^{6}={ }^{9} C_{6} \quad \times$
$(2 x)^{3-6} 3^{6-3}={ }^{9} C_{6} \quad\left(\frac{3}{2}\right)^{3} x^{-3}$
3. (b) an even positive integer

Explanation:

We have $(a+b)^{n}+(a-b)^{n}$
$=\left[{ }^{n} C_{0} a^{n}+{ }^{n} C_{1} \quad a^{n-1} b+{ }^{n} C_{2} \quad a^{n-2} b^{2}+{ }^{n} C_{3} \quad a^{n-3} b^{3}+\ldots \ldots \ldots+{ }^{n} C_{n}\right.$
$\left[{ }^{n} C_{0} \quad a^{n}-{ }^{n} C_{1} a^{n-1} b+{ }^{n} C_{2} \quad a^{n-2} b^{2}-{ }^{n} C_{3} \quad a^{n-3} b^{3}+\ldots \cdots+(-1)^{n} \cdot{ }^{n} C_{n}\right]^{n}$
$=2\left[{ }^{n} C_{0} \quad a^{n}+{ }^{n} C_{2} \quad a^{n-2} b^{2}+\ldots \ldots \ldots \ldots.\right]$
Let $a=\sqrt{3}$ and $\mathrm{b}=1$ and $\mathrm{n}=2 \mathrm{n}$
$(\sqrt{3}+1)^{2 n}+(\sqrt{3}-1)^{2 n}=2\left[{ }^{2 n} C_{0}(\sqrt{3})^{2 n}+{ }^{2 n} C_{2}(\sqrt{3})^{2 n-2} 1^{2}+{ }^{2 n} C_{4}(\sqrt{3})^{2 n-4} 1\right.$
$=2\left[{ }^{2 n} C_{0} \quad(3)^{n}+{ }^{2 n} C_{2} \quad(3)^{n-1}+{ }^{2 n} C_{4} \quad(3)^{n-2}+\ldots \ldots \ldots \ldots.\right]$
$=2(\mathrm{a}$ positive integer)
Hence we have $\left.(\sqrt{3}+1)^{2 n}+(\sqrt{3}-1)^{2 n}\right\}$ is always an even positive integer
4. (d) 2^{59}

Explanation:

We have

$$
\begin{equation*}
(1+x)^{n}={ }^{n} C_{0} \quad+{ }^{n} C_{1} \quad(x)+{ }^{n} C_{2} \quad(x)^{2}+\ldots \ldots \ldots \ldots+(x)^{n} \tag{i}
\end{equation*}
$$

Also

$$
\begin{equation*}
(1-x)^{n}={ }^{n} C_{0} \quad-{ }^{n} C_{1} \quad(x)+{ }^{n} C_{2} \quad(x)^{2}-\ldots \ldots \ldots \ldots+(-1)^{n}(x)^{n} \tag{ii}
\end{equation*}
$$

Now

$$
(1-x)^{n}=\left[{ }^{n} C_{0}+{ }^{n} C_{2}(x)^{2}+{ }^{n} C_{4}(x)^{4}+\ldots . .\right]-\left[{ }^{n} C_{1} \quad(x)+{ }^{n} C_{3}(x)^{3}+{ }^{n} C_{5}(x\right.
$$

Let $\mathrm{x}=1$ and $\mathrm{n}=60$
From equation (i), we get
$2^{60}={ }^{60} C_{0} \quad+{ }^{60} C_{1} \quad+{ }^{60} C_{2} \quad+\ldots \ldots \ldots+{ }^{60} C_{60}$
$\Rightarrow 2^{60}=($ sum of coefficients of even powers of $x)+($ sum of coefficients of odd powers of x) ..(iii)

From equation (ii), we get
$0=\left[{ }^{60} C_{0}+{ }^{60} C_{2}+{ }^{60} C_{4}+\ldots \ldots.\right]-\left[{ }^{60} C_{1}+{ }^{60} C_{3}+{ }^{60} C_{5}+\ldots \ldots . ..\right]$
$\Rightarrow 0=($ sum\quad of coefficients of even powers of $x)+($ sum of coefficients of odd powers of x)(iii)

Now subtract equation (iv) from equation (iii), we get
$2^{60}-0=2$ (sum of coefficients of odd powers of x)
\Rightarrow (sum of coefficients of odd powers of x $x=2^{59}$)
5. (d) -1

Explanation:

We have the general term of
$(x+a)^{n} \quad$ is $\quad T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$
Now consider $\left(\frac{4 x}{5}-\frac{8}{5 x}\right)^{9}$
Here $T_{r+1}={ }^{9} C_{r} \quad\left(\frac{4 x}{5}\right)^{9-r}\left(-\frac{8}{5 x}\right)^{r}$
Required\quad term\quad is

$$
\begin{aligned}
& T_{6}= \\
& T_{5+1}={ }^{9} C_{5} \quad\left(\frac{4 x}{5}\right)^{9-5}\left(-\frac{8}{5 x}\right)^{5}=-{ }^{9} C_{5} \quad \times\left(\frac{4}{5}\right)^{4} \times\left(\frac{8}{5}\right)^{5} x^{4-5} \\
&=-{ }^{9} C_{5} \\
& \times\left(\frac{4}{5}\right)^{4} \times\left(\frac{8}{5}\right)^{5} \times x^{-1}
\end{aligned}
$$

Hence the power of $x=-1$
6. True
7. 4
8. Here general term in the expansion of $\left(\mathrm{x}^{2}-\mathrm{y}\right)^{6}$ is

$$
\begin{aligned}
& T_{r+1}={ }^{6} C_{r}\left(x^{2}\right)^{6-r}(-y)^{r} \\
& =(-1)^{r} C_{r} x^{12-2 r} y^{r}
\end{aligned}
$$

9. $\mathrm{x}^{6}-6 \mathrm{x}^{4}+15 \mathrm{x}^{2}-20+\frac{15}{x^{2}}-\frac{6}{x^{4}}+\frac{1}{x^{6}}$
10. Here general term in the expansion of $\left(\mathrm{x}^{2}-\mathrm{yx}\right)^{12}$ is

$$
\begin{aligned}
& T_{r+1}={ }^{12} C_{r}\left(x^{2}\right)^{12-r}(-y x)^{r} \\
& =(-1)^{r 12} C_{r} x^{24-2 r} \cdot y^{r} x^{r}=(-1)^{r 12} C_{r} x^{24-r} \cdot y^{r}
\end{aligned}
$$

11. Here $\left(1+2 x+x^{2}\right)^{14}=\left[(1+x)^{2}\right]^{14}=(1+x)^{28}$

The number of terms in the expansion of $\left(1+2 x+x^{2}\right)^{14}=28+1=29$
12. The general term of $\left(3 x-\frac{2}{x^{2}}\right)^{15}$ is
$\mathrm{T}_{\mathrm{r}+1}={ }^{15} \mathrm{C}_{\mathrm{r}}(3 \mathrm{x})^{15-\mathrm{r}}\left(\frac{-2}{x^{2}}\right)^{r}$
$={ }^{15} C_{r}(3)^{15-r}(-2){ }^{r} x^{15-3 r}$
For term independent term of x , put $15-3 \mathrm{r}=0 \Rightarrow \mathrm{r}=5$
\therefore The term independent of $x={ }^{15} C_{5}(3)^{15-5}(-2)^{5}=-3003\left(3^{10}\right)\left(2^{5}\right)$
13. Here general term in the expansion of $(x-2 y)^{12}$ is
$T_{r+1}={ }^{12} C_{r}(x)^{12-r} \cdot(-2 y)^{r}$
$=(-1)^{r 12} C_{r} 2^{r} \cdot x^{12-r} \cdot y^{r}$
Putting $\mathrm{r}=3$
$\therefore T_{3}=(-1)^{312} C_{3} 2^{3} x^{12-3} \cdot y^{3}=-{ }^{12} C_{3} \cdot 8 x^{9} y^{3}$
$=-220 \times 8 x^{9} y^{3}=-1760 x^{9} y^{3}$
14. Here general term of the expansion $(\mathrm{x}+3)^{8}$ is
$T_{r+1}={ }^{8} C_{r}(x)^{8-r}(3)^{r} \ldots$ (1)
Now $8-\mathrm{r}=5 \Rightarrow \mathrm{r}=8-5=3 \ldots$
\therefore Putting r $=3$ in (1)
$T_{4}={ }^{8} C_{3} x^{5}(3)^{3}$
Coefficient of x^{5} on the expansion $(x+3)^{8}={ }^{8} C_{3} \cdot(3)^{3}=1512$
15. We have,

$$
\begin{align*}
& (x+a)^{n}=\left\{{ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots+{ }^{n} C_{n-1} x a^{n-1}+{ }^{n} C_{n} a^{n}\right. \\
& \Rightarrow(x+a)^{n}=\left\{{ }^{n} C_{0} x^{n} a^{0}+{ }^{n} C_{2} x^{n-2} a^{2}+\ldots\right\}+\left\{{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{3} x^{n-3} a^{3+}+. .\right\} \\
& \Rightarrow(x+a)^{n}=0+E \ldots \text { (a) } \tag{a}
\end{align*}
$$

and, $(x-a)^{n}={ }^{n} C_{0} x^{n}-{ }^{n} C_{1} x^{n-1} a^{1}+{ }^{n} C_{2} x^{n-2} a^{2}-{ }^{n} C_{3} x^{n-3} a^{3}+\ldots+{ }^{n} C_{n-1} x(-1)^{n-1} a^{n-}$ $1+{ }^{n} C_{n}(-1)^{n} a^{n}$
$\Rightarrow(\mathrm{x}-\mathrm{a})^{\mathrm{n}}=\left\{{ }^{\mathrm{n}} \mathrm{C}_{0} \mathrm{x}^{\mathrm{n}}+{ }^{\mathrm{n}} \mathrm{C}_{2} \mathrm{x}^{\mathrm{n}-2} \mathrm{a}^{2}+\ldots\right\}-\left\{{ }^{\mathrm{n}} \mathrm{C}_{1} \mathrm{x}^{\mathrm{n}-1} \mathrm{a}^{1}+{ }^{\mathrm{n}} \mathrm{C}_{3} \mathrm{x}^{\mathrm{n}-3} \mathrm{a}^{3+} \ldots\right\}$
$\Rightarrow(\mathrm{x}-\mathrm{a})^{\mathrm{n}}=\mathrm{O}-\mathrm{E} \ldots$ (b)
i. Multiplying (a) and (b), we get

$$
\begin{aligned}
& (x+a)^{n}(x-a)^{n}=(O+E)(O-E) \\
& \Rightarrow\left(x^{2}-a^{2}\right)^{n}=O^{2}-E^{2}
\end{aligned}
$$

ii. We have,

$$
\begin{aligned}
& 4 \mathrm{OE}=(\mathrm{O}+\mathrm{E})^{2}-(\mathrm{O}-\mathrm{E})^{2} \\
& \Rightarrow 4 \mathrm{OE}=\left\{\left((\mathrm{x}+\mathrm{a})^{\mathrm{n}}\right\}^{2}-\left\{(\mathrm{x}-\mathrm{a})^{\mathrm{n}}\right\}^{2}[\text { Using (a) and (b)] }\right. \\
& \Rightarrow 4 \mathrm{OE}=(\mathrm{x}+\mathrm{a})^{2 \mathrm{n}}-(\mathrm{x}-\mathrm{a})^{2 \mathrm{n}}
\end{aligned}
$$

iii. Squaring (a) and (b) and then adding, we get $(x+a)^{2 n}+(x-a)^{2 n}=(O+E)^{2}+(O-E)^{2}=2\left(O^{2}+E^{2}\right)$.

