CBSE Test Paper 01 CH-08 Binomial Theorem

- 1. Find the coefficient of $\,{
 m x}^6{
 m y}^3$ in the expansion of $(x+2y)^9$
 - a. 1008
 - b. 336
 - c. 84
 - d. 672
- 2. The coefficients of x^p and x^q (p, q are + ve integers) in the binomial expansion of $(1+x)^{p\,+\,q}$ are
 - a. reciprocal to each other
 - b. unequal
 - c. additive inverse of each other
 - d. equal
- 3. $(\sqrt{5}+1)^{2n+1} (\sqrt{5}-1)^{2n+1}$ is
 - a. 0
 - b. an even positive integer
 - c. an odd positive integer
 - d. not an integer
- 4. The term independent of x in the expansion of $\left(x-rac{3}{x^2}
 ight)^{18}$ is
 - a. 3⁶
 - b. ${}^{18}C_6 \; 3^6$

- c. ${}^{18}C_6$
- d. ${}^{18}C_{12}$
- 5. The 1st three terms in the expansion of $(2+rac{x}{3})^4$ are
 - a. $16 + \frac{32x}{3} + \frac{24x^2}{9}$ b. $16 + \frac{34x}{3} + \frac{24x^2}{9}$ c. $16 + 12x + \frac{3}{16}x^2$ d. $16 + 3x - \frac{3}{16}x^2$
- 6. Fill in the blanks:

The value of 8C_5 is _____.

7. Fill in the blanks:

In the binomial expansion of (a + b)⁹, the middle terms is ______ term.

- 8. Find the value of ${}^{8}C_{5}$.
- 9. Find the number of terms in expansions of $(2x 3y)^9$.
- 10. Using binomial theorem, write down the expansion: $(2x + 3y)^5$.
- 11. Prove that $\sum_{r=0}^n 3^{rn} C_r = 4^n$
- 12. Find the coefficient of x in the expansion of $(1 3x + 7x^2) (1 x)^{16}$.
- 13. Expand the given expression $\left(\frac{2}{x} \frac{x}{2}\right)^5$
- 14. If the third term in the expansion of $\left(rac{1}{x}+x^{\log_{10}x}
 ight)^5$ is 1000, then find x.
- 15. Find the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ and x^{-7} in $\left(ax \frac{1}{bx^2}\right)^{11}$ and find the relation between a and b so that these coefficients are equal.

CBSE Test Paper 01 CH-08 Binomial Theorem

Solution

1. (d) 672

Explanation:

We have the general term of $(x+a)^n$ is $T_{r+1} = {}^n C_r$ $(x)^{n-r}a^r$ Now consider $(x+2y)^9$ Here $T_{r+1} = {}^9 C_r \quad (x)^{9-r} (2y)^r = {}^9 C_r \quad (2)^r (x)^{9-r} (y)^r$ Comparing the indices of x as well as y in x^6y^3 and in T_{r+1} , we get $(x)^{9-r}(y)^{r^2} = x^6 y^3$ $\Rightarrow r = 3$ \therefore $T_4 = T_{3+1} = {}^9C_3 \quad (x)^{9-3}(2y)^3$ Hence coefficient of $x^6y^3 = 8.^9\,C_3 = 672$ 2. (d) equal **Explanation:** We have the general term of $(x+a)^n$ is $T_{r+1} = {}^n C_r$ $(x)^{n-r}a^r$ Now consider $(1+x)^{p+q}$ Here $T_{r+1} = {}^{p+q} C_r$ $(1)^{(p+q)-r}(x)^r$ Comparing the indices of x in x^p and in T_{r+1} , we get p=r Therefore the coefficient of x^p is $T_{p+1} = {}^{p+q} C_p$ Now again comparing the indices of x in x^q and in T_{r+1} , we get q=r Therefore the coefficient of x^q is $T_{p+1} = {}^{p+q} C_p$ But we have ${}^{p+q}C_p = {}^{p+q}C_q [:: {}^n C_r = {}^n C_{n-r}]$ 3. (b) an even positive integer **Explanation:** We have $(a+b)^n - (a-b)^n$ $= \begin{bmatrix} nC_0 & a^n + {}^nC_1 & a^{n-1}b + {}^n & C_2 & a^{n-2}b^2 + {}^nC_3 & a^{n-3}b^3 + \dots + {}^nC_n \end{bmatrix}$ $=2\begin{bmatrix} {}^nC_1 & a^{n-1}b+{}^nC_3 & a^{n-3}b^3+\dots \end{bmatrix}$

Let $a=\sqrt{5}$ and b=1 and n=2n+1Now we get $(\sqrt{5}+1)^{2n+1}-(\sqrt{5}-1)^{2n+1}$

$$= 2 \begin{bmatrix} 2^{n+1}C_1(\sqrt{3})^{2n} + 2^{n+1}C_3(\sqrt{3})^{2n-2}1^3 + 2^{n+1}C_5(\sqrt{3})^{2n-4}1^5 + \dots \end{bmatrix}$$

= 2 $\begin{bmatrix} 2^{n+1}C_1 & (3)^n + 2^{n+1}C_3 & (3)^{n-1} + 2^{n+1}C_5 & (3)^{n-2} + \dots \end{bmatrix}$
= 2(a positive integer)
Hence we have $(\sqrt{5} + 1)^{2n} - (\sqrt{5} - 1)^{2n+1}$ is an even positive integer

4. (b) ${}^{18}C_6$ 3^6

Explanation:

We have the general term of $(x + a)^n$ is $T_{r+1} = {}^n C_r$ $(x)^{n-r}a^r$ Now consider $\left(x - \frac{3}{x^2}\right)^{18}$ Here $T_{r+1} = {}^{18} C_r$ $(x)^{18-r} \left(-\frac{3}{x^2}\right)^r$ The term independent of x means index of x is 0. Comparing the indices of x in x^0 and in T_{r+1} , we get $18 - r - 2r = 0 \Rightarrow r = \frac{18}{3} = 6$ Therefore the required term is $T_{6+1} = {}^{18} C_6$ $(x)^{18-6} \left(-\frac{3}{x^2}\right)^6 = {}^{18} C_6.3^6$

5. (a) $16 + \frac{32x}{3} + \frac{24x^2}{9}$

Explanation:

We have $(x + a)^n = {}^n C_0 \quad x^n + {}^n C_1 \quad x^{n-1}a + {}^n C_2 \quad x^{n-2}a^2 + {}^n C_3 \quad x^{n-3}a^3 + \dots + C_n - a^n$ Now consider $\left(2 + \frac{x}{3}\right)^4$ Here $x = 2, a = \frac{x}{3}, n = 4$ $\left(2 + \frac{x}{3}\right)^4 = {}^4 C_0 \quad (2)^4 + {}^4 C_1 \quad (2)^3 \left(\frac{x}{3}\right) + {}^4 C_2 \quad (2)^2 \left(\frac{x}{3}\right)^2 + {}^4 C_3 \quad (2)^1 \left(\frac{x}{3}\right)^3 + 1 = 16 + \frac{32x}{3} + \frac{24x^2}{9} + \dots$

- 6. 56
- 7. 5th and 6th

8.
$${}^{8}C_{5} = \frac{8!}{(8-5)!5!} [:: {}^{n}C_{r} = \frac{n!}{(n-r)!r!}]$$

= $\frac{8!}{3!5!} = \frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1} = 56$

9. The expansion of $(x + a)^n$ has (n + 1) terms. So, the expansion of $(2x - 3y)^9$ has (9 + 1) = 10 terms.

10. Using formula,
$$(a + b)^n = \sum_{k=0}^n {}^n C_k(a^{n-k}b^k)$$

 $(2x + 3y)^5 = 32 x^5 + 240 x^4y + 720 x^3y^2 + 1080 x^2y^3 + 810 xy^4 + 243 y^5$

- 11. $\sum_{r=0}^{n} \cdot C_r a^{n-r} b^r = (a+b)^n \dots \dots (1)$ Now, $\sum_{r=0}^{n} 3^{rn} C_r = \sum_{r=0}^{n} n C_r (1)^{n-r} \cdot 3^r = (1+3)^n = (1+3)^n \text{ (by (1))}$ =4
- 12. We have, $(1 3x + 7x^2) (1 x)^{16}$ = $(1 - 3x + 7x^2) ({}^{16}C_0 - {}^{16}C_1x + {}^{16}C_2x^2 + ...)$ = $({}^{16}C_0 - {}^{16}C_1x + {}^{16}C_2x^2 - ...) - 3x ({}^{16}C_0 - {}^{16}C_1x + ...) + 7x^2 ({}^{16}C_0 - {}^{16}C_1x + ...)$ Here, the term containing x is ${}^{-16}C_1x - 3 {}^{16}C_0x = -16x - 3x$ ∴ Coefficient of x = -16 - 3 = -19
- 13. Using binomial theorem for the expansion of $\left(\frac{2}{x} \frac{x}{2}\right)^5$ we have $\left(\frac{2}{x} - \frac{x}{2}\right)^5 = {}^5C_0\left(\frac{2}{x}\right)^5 + {}^5C_1\left(\frac{2}{x}\right)^4 \left(\frac{-x}{2}\right) + {}^5C_2\left(\frac{2}{x}\right)^3 \left(\frac{-x}{2}\right)^2 + {}^5C_3\left(\frac{2}{x}\right)^2 \left(\frac{-x}{2}\right)^3$ $+ {}^5C_4\left(\frac{2}{x}\right) \left(\frac{-x}{2}\right)^4 + {}^5C_5\left(\frac{-x}{2}\right)^5$ $= \frac{32}{x^5} + 5 \cdot \frac{16}{x^4} \cdot \frac{-x}{2} + 10 \cdot \frac{8}{x^3} \cdot \frac{x^2}{4} + 10 \cdot \frac{4}{x^2} \cdot \frac{-x^3}{8} + 5 \cdot \frac{2}{x} \cdot \frac{x^4}{16} + \frac{-x^5}{32}$ $= \frac{32}{x^5} - \frac{40}{x^3} + \frac{20}{x} - 5x + \frac{5}{8}x^3 - \frac{x^5}{32}$
- 14. We have,

$$T_{3} = 1000$$

$$\Rightarrow T_{2+1} = 1000$$

$$\Rightarrow {}^{5}C_{2} \left(\frac{1}{x}\right)^{5-2} \left(x^{\log_{10} x}\right)^{2} = 1000$$

$$\Rightarrow 10 \left(x^{\log_{10} x}\right)^{2} \times x^{-3} = 1000$$

$$\Rightarrow x^{2\log_{10} x} \times x^{-3} = 100$$

$$\Rightarrow x^{2\log_{10} x-3} = 10^{2}$$

$$\Rightarrow 2\log_{10} x - 3 = \log_{x} 10^{2} \text{ [taking log_{x} both sides]}$$

$$\Rightarrow 2\log_{10} x - 3 = 2\log_{x} 10$$

$$\Rightarrow 2\log_{10} x - 3 = \frac{2}{\log_{10} x} \text{ [using log_{a}b]} = \frac{1}{\log_{b} a} \text{]}$$

$$\Rightarrow 2y - 3 = \frac{2}{y}, \text{ where } y = \log_{10} x$$

$$\Rightarrow 2y^2 - 3y - 2 = 0$$

$$\Rightarrow (2y + 1) (y - 2) = 0$$

$$\Rightarrow y = 2 \text{ or } y = -\frac{1}{2}$$

$$\Rightarrow \log_{10} x = 2 \text{ or } \log_{10} x = -\frac{1}{2} \Rightarrow x = 10^2 = 100 \text{ or } x = 10^{-\frac{1}{2}}$$
15. Suppose x^7 occurs in $(r + 1)^{1h}$ term of the expansion of $\left(ax^2 + \frac{1}{bx}\right)^{11}$
Now,
$$T_{r+1} = {}^{11}C_r (ax^2)^{11}r \left(\frac{1}{bx}\right)^r = {}^{11}C_r a^{11}r b^r x^{22} \cdot 3r \dots (i)$$
This will contain x^7 , if
$$22 - 3r = 7 \Rightarrow 3r = 15 \Rightarrow r = 5.$$
Putting $r = 5$ in (i), we obtain that
$$Coefficient of x^7 \text{ in the expansion of } \left(ax^2 + \frac{1}{bx}\right)^{11} \text{ is } {}^{11}C_5 a^6 b^{-5}$$
Suppose x^{-7} occurs in $(r + 1)^{th}$ term of the expansion of $\left(ax - \frac{1}{bx^2}\right)^{11}$
Now,
$$T_{r+1} = {}^{11}C_r (ax)^{11}r \left(-\frac{1}{bx^2}\right)^r = {}^{11}C_r a^{11}r (-1)^r b^{-r} x^{11-3r} \dots (ii)$$
This will contain x^7 , if
$$11 - 3r = -7 \Rightarrow 3r = 18 \Rightarrow r = 6$$
Putting $r = 6$ in (ii), we obtain that
$$Coefficient of x^7 \text{ in the expansion of } \left(ax - \frac{1}{bx^2}\right)^{11} \text{ is } {}^{11}C_6 a^5 b^{-6} (-1)^6$$
If the coefficient of x^7 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is equal to the coefficient of x^7 in
$$\left(ax - \frac{1}{bx^2}\right)^{11}$$
, then

$${}^{11}C_5 a^6 b^{-5} = {}^{11}C_6 a^5 b^{-6} (-1)^6 \Rightarrow {}^{11}C_5 ab = {}^{11}C_6 \Rightarrow ab = 1 [:: {}^{11}C_5 = {}^{11}C_6]$$