CBSE Test Paper 01
 CH-08 Binomial Theorem

1. Find the coefficient of $x^{6} y^{3}$ in the expansion of $(x+2 y)^{9}$
a. 1008
b. 336
c. 84
d. 672
2. The coefficients of x^{p} and $x^{q}(\mathrm{p}, \mathrm{q}$ are + ve integers) in the binomial expansion of $(1+x)^{p+q}$ are
a. reciprocal to each other
b. unequal
c. additive inverse of each other
d. equal
3. $(\sqrt{5}+1)^{2 n+1}-(\sqrt{5}-1)^{2 n+1}$ is
a. 0
b. an even positive integer
c. an odd positive integer
d. not an integer
4. The term independent of x in the expansion of $\left(x-\frac{3}{x^{2}}\right)^{18}$ is
a. 3^{6}
b. ${ }^{18} C_{6} 3^{6}$
c. ${ }^{18} C_{6}$
d. ${ }^{18} C_{12}$
5. The 1 st three terms in the expansion of $\left(2+\frac{x}{3}\right)^{4}$ are
a. $16+\frac{32 x}{3}+\frac{24 x^{2}}{9}$
b. $16+\frac{34 x}{3}+\frac{24 x^{2}}{9}$
c. $16+12 x+\frac{3}{16} x^{2}$
d. $16+3 x-\frac{3}{16} x^{2}$
6. Fill in the blanks:

The value of ${ }^{8} C_{5}$ is \qquad .
7. Fill in the blanks:

In the binomial expansion of $(a+b)^{9}$, the middle terms is \qquad term.
8. Find the value of ${ }^{8} \mathrm{C}_{5}$.
9. Find the number of terms in expansions of $(2 x-3 y)^{9}$.
10. Using binomial theorem, write down the expansion: $(2 x+3 y)^{5}$.
11. Prove that $\sum_{r=0}^{n} 3^{r n} C_{r}=4^{n}$
12. Find the coefficient of x in the expansion of $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$.
13. Expand the given expression $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$
14. If the third term in the expansion of $\left(\frac{1}{x}+x^{\log _{10} x}\right)^{5}$ is 1000 , then find x.
15. Find the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ and x^{-7} in $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ and find the relation between a and b so that these coefficients are equal.

CBSE Test Paper 01

CH-08 Binomial Theorem

Solution

1. (d) 672

Explanation:

We have the general term of $(x+a)^{n} \quad$ is $\quad T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$
Now consider $(x+2 y)^{9}$
Here $T_{r+1}={ }^{9} C_{r} \quad(x)^{9-r}(2 y)^{r}={ }^{9} C_{r} \quad(2)^{r}(x)^{9-r}(y)^{r}$
Comparing the indices of x as well as y in $x^{6} y^{3}$ and in T_{r+1}, we get
$(x)^{9-r}(y)^{r^{2}}=x^{6} y^{3}$
$\Rightarrow r=3$
$\therefore \quad T_{4}=T_{3+1}={ }^{9} C_{3} \quad(x)^{9-3}(2 y)^{3}$
Hence coefficient of $x^{6} y^{3}=8 .{ }^{9} C_{3}=672$
2. (d) equal

Explanation:

We have the general term of $(x+a)^{n} \quad$ is $\quad T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$
Now consider $(1+x)^{p+q}$
Here $T_{r+1}={ }^{p+q} C_{r} \quad(1)^{(p+q)-r}(x)^{r}$
Comparing the indices of x in x^{p} and in T_{r+1}, we get $\mathrm{p}=\mathrm{r}$
Therefore the coefficient of ${ }^{\mathrm{p}}$ is $T_{p+1}={ }^{p+q} C_{p}$
Now again comparing the indices of x in x^{q} and in T_{r+1}, we get $\mathrm{q}=\mathrm{r}$
Therefore the coefficient of x ${ }^{\mathrm{q}}$ is $T_{p+1}={ }^{p+q} C_{p}$
But we have ${ }^{p+q} C_{p}={ }^{p+q} C_{q}\left[\because{ }^{n} C_{r}={ }^{n} C_{n-r}\right]$
3. (b) an even positive integer

Explanation:

We have $(a+b)^{n}-(a-b)^{n}$
$=\left[\begin{array}{lllll}n C_{0} & a^{n}+{ }^{n} C_{1} & a^{n-1} b+{ }^{n} & C_{2} & a^{n-2} b^{2}+{ }^{n} C_{3}\end{array} a^{n-3} b^{3}+\ldots \ldots .+{ }^{n} C_{n}\right.$
$-\left[{ }^{n} C_{0} \quad a^{n}-{ }^{n} C_{1} \quad a^{n-1} b+{ }^{n} C_{2} \quad a^{n-2} b^{2}-{ }^{n} C_{3} \quad a^{n-3} b^{3}+\ldots \ldots \ldots \ldots \ldots \ldots .\right.$.
$=2\left[{ }^{n} C_{1} \quad a^{n-1} b+{ }^{n} C_{3} \quad a^{n-3} b^{3}+\ldots \ldots \ldots \ldots ..\right]$
Let $\quad a=\sqrt{5} \quad$ and $\quad b=1 \quad$ and $\quad n=2 n+1$
Now we get $(\sqrt{5}+1)^{2 n+1}-(\sqrt{5}-1)^{2 n+1}$
$=2\left[{ }^{2 n+1} C_{1}(\sqrt{3})^{2 n}+{ }^{2 n+1} C_{3}(\sqrt{3})^{2 n-2} 1^{3}+{ }^{2 n+1} C_{5}(\sqrt{3})^{2 n-4} 1^{5}+\ldots\right]$
$=2\left[{ }^{2 n+1} C_{1} \quad(3)^{n}+{ }^{2 n+1} C_{3}\right.$
$(3)^{n-1}+{ }^{2 n+1} C_{5}$
$\left.(3)^{n-2}+\ldots \ldots \ldots \ldots\right]$
$=2(\mathrm{a}$ positive integer)
Hence we have $(\sqrt{5}+1)^{2 n}-(\sqrt{5}-1)^{2 n+1}$ is an even positive integer
4. (b) ${ }^{18} C_{6} 3^{6}$

Explanation:

We have the general term of $(x+a)^{n} \quad$ is $\quad T_{r+1}={ }^{n} C_{r} \quad(x)^{n-r} a^{r}$
Now consider $\left(x-\frac{3}{x^{2}}\right)^{18}$
Here $T_{r+1}={ }^{18} C_{r} \quad(x)^{18-r}\left(-\frac{3}{x^{2}}\right)^{r}$
The term independent of x means index of x is 0 .
Comparing the indices of x in x^{0} and in T_{r+1}, we get
$18-r-2 r=0 \Rightarrow r=\frac{18}{3}=6$
Therefore the required term is $T_{6+1}={ }^{18} C_{6}$
$(x)^{18-6}\left(-\frac{3}{x^{2}}\right)^{6}={ }^{18} C_{6} .3^{6}$
5. (a) $16+\frac{32 x}{3}+\frac{24 x^{2}}{9}$

Explanation:

We have $(x+a)^{n}={ }^{n} C_{0} \quad x^{n}+{ }^{n} C_{1} \quad x^{n-1} a+{ }^{n} C_{2} \quad x^{n-2} a^{2}+{ }^{n} C_{3} \quad x^{n-3} a^{3}+$
$\ldots \ldots+C_{n} \quad a^{n}$
Now consider $\left(2+\frac{x}{3}\right)^{4}$
Here $x=2, a=\frac{x}{3}, n=4$
$\left(2+\frac{x}{3}\right)^{4}={ }^{4} C_{0}$
$(2)^{4}+{ }^{4} C_{1}$
$(2)^{3}\left(\frac{x}{3}\right)+{ }^{4} C_{2}$
$(2)^{2}\left(\frac{x}{3}\right)^{2}+{ }^{4} C_{3}$
$(2)^{1}\left(\frac{x}{3}\right)^{3}+$
$=16+\frac{32 x}{3}+\frac{24 x^{2}}{9}+\ldots \ldots .$.
6. 56
7. 5th and 6 th
8. ${ }^{8} \mathrm{C}_{5}=\frac{8!}{(8-5)!5!}\left[\because{ }^{\mathrm{n}} \mathrm{C}_{\mathrm{r}}=\frac{n!}{(n-r)!r!}\right]$

$$
=\frac{8!}{3!5!}=\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2 \times 1}{3 \times 2 \times 1 \times 5 \times 4 \times 3 \times 2 \times 1}=56
$$

9. The expansion of $(x+a)^{n}$ has $(n+1)$ terms. So, the expansion of $(2 x-3 y)^{9}$ has $(9+1)=$ 10 terms.
10. Using formula, $(a+b)^{n}=\sum_{k=0}^{n}{ }^{n} C_{k}\left(a^{n-k} b^{k}\right)$
$(2 x+3 y)^{5}=32 x^{5}+240 x^{4} y+720 x^{3} y^{2}+1080 x^{2} y^{3}+810 x y^{4}+243 y^{5}$
11. $\sum_{r=0}^{n} \cdot C_{r} a^{n-r} b^{r}=(a+b)^{n} \ldots \ldots$ (1)

Now, $\sum_{r=0}^{n} 3^{r n} C_{r}=\sum_{r=0}^{n} n C_{r}(1)^{n-r} .3^{r}=(1+3)^{n}=(1+3)^{n}$ (by (1)
$=4$
12. We have, $\left(1-3 x+7 x^{2}\right)(1-x)^{16}$

$$
=\left(1-3 x+7 x^{2}\right)\left({ }^{16} C_{0}-{ }^{16} C_{1} x+{ }^{16} C_{2} x^{2}+\ldots\right)
$$

$$
=\left({ }^{16} C_{0}-{ }^{16} C_{1} x+{ }^{16} C_{2} x^{2-\ldots}\right)-3 x\left(16 C_{0}-{ }^{16} C_{1} x+\ldots\right)+7 x^{2}\left({ }^{16} C_{0}-{ }^{16} C_{1} x+\ldots\right)
$$

Here, the term containing x is $-{ }^{16} C_{1} x-3{ }^{16} C_{0} x=-16 x-3 x$
\therefore Coefficient of $\mathrm{x}=-16-3=-19$
13. Using binomial theorem for the expansion of $\left(\frac{2}{x}-\frac{x}{2}\right)^{5}$ we have
$\left(\frac{2}{x}-\frac{x}{2}\right)^{5}={ }^{5} C_{0}\left(\frac{2}{x}\right)^{5}+{ }^{5} C_{1}\left(\frac{2}{x}\right)^{4}\left(\frac{-x}{2}\right)+{ }^{5} C_{2}\left(\frac{2}{x}\right)^{3}\left(\frac{-x}{2}\right)^{2}+{ }^{5} C_{3}\left(\frac{2}{x}\right)^{2}\left(\frac{-x}{2}\right)^{3}$
$+{ }^{5} C_{4}\left(\frac{2}{x}\right)\left(\frac{-x}{2}\right)^{4}+{ }^{5} C_{5}\left(\frac{-x}{2}\right)^{5}$
$=\frac{32}{x^{5}}+5 \cdot \frac{16}{x^{4}} \cdot \frac{-x}{2}+10 \cdot \frac{8}{x^{3}} \cdot \frac{x^{2}}{4}+10 \cdot \frac{4}{x^{2}} \cdot \frac{-x^{3}}{8}+5 \cdot \frac{2}{x} \cdot \frac{x^{4}}{16}+\frac{-x^{5}}{32}$
$=\frac{32}{x^{5}}-\frac{40}{x^{3}}+\frac{20}{x}-5 x+\frac{5}{8} x^{3}-\frac{x^{5}}{32}$
14. We have,
$\mathrm{T}_{3}=1000$
$\Rightarrow \mathrm{T}_{2+1}=1000$
$\Rightarrow{ }^{5} \mathrm{C}_{2}\left(\frac{1}{x}\right)^{5-2}\left(x^{\log _{10} x}\right)^{2}=1000$
$\Rightarrow 10\left(x^{\log _{10} x}\right)^{2} \times x^{-3}=1000$
$\Rightarrow x^{2 \log _{10} x} \times x^{-3}=100$
$\Rightarrow x^{2 \log _{10} x-3}=10^{2}$
$\Rightarrow 2 \log _{10} x-3=\log _{x} 10^{2}$ [taking $\log _{\mathrm{x}}$ both sides]
$\Rightarrow 2 \log _{10} x-3=2 \log _{x} 10$
$\Rightarrow 2 \log _{10} x-3=\frac{2}{\log _{10} x}$ [using $\log _{\mathrm{a}} \mathrm{b}=\frac{1}{\log _{b} a}$]
$\Rightarrow 2 y-3=\frac{2}{y}$, where $\mathrm{y}=\log _{10} \mathrm{x}$
$\Rightarrow 2 \mathrm{y}^{2}-3 \mathrm{y}-2=0$
$\Rightarrow(2 y+1)(y-2)=0$
$\Rightarrow \mathrm{y}=2$ or $\mathrm{y}=-\frac{1}{2}$
$\Rightarrow \log _{10} \mathrm{x}=2$ or $\log _{10} \mathrm{x}=-\frac{1}{2} \Rightarrow \mathrm{x}=10^{2}=100$ or $\mathrm{x}=10^{-\frac{1}{2}}$
15. Suppose x^{7} occurs in $(\mathrm{r}+1)^{\text {th }}$ term of the expansion of $\left(a x^{2}+\frac{1}{b x}\right)^{11}$

Now,
$\mathrm{T}_{\mathrm{r}+1}={ }^{11} \mathrm{C}_{\mathrm{r}}\left(\mathrm{ax}^{2}\right)^{11-\mathrm{r}}\left(\frac{1}{b x}\right)^{r}={ }^{11} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{11-\mathrm{r}} \mathrm{b}^{-\mathrm{r}} \mathrm{x}^{22-3 \mathrm{r}}$
This will contain x^{7}, if
$22-3 r=7 \Rightarrow 3 r=15 \Rightarrow r=5$.
Putting $r=5$ in (i), we obtain that
Coefficient of x^{7} in the expansion of $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is ${ }^{11} \mathrm{C}_{5} \mathrm{a}^{6} b^{-5}$
Suppose x^{-7} occurs in $(\mathrm{r}+1)^{\text {th }}$ term of the expansion of $\left(a x-\frac{1}{b x^{2}}\right)^{11}$
Now,
$\mathrm{T}_{\mathrm{r}+1}={ }^{11} \mathrm{C}_{\mathrm{r}}(\mathrm{ax})^{11-\mathrm{r}}\left(-\frac{1}{b x^{2}}\right)^{r}={ }^{11} \mathrm{C}_{\mathrm{r}} \mathrm{a}^{11-\mathrm{r}}(-1)^{\mathrm{r}} \mathrm{b}^{-\mathrm{r}} \mathrm{x}^{11-3 \mathrm{r}}$
This will contain x^{-7}, if
$11-3 \mathrm{r}=-7 \Rightarrow 3 \mathrm{r}=18 \Rightarrow \mathrm{r}=6$
Putting $r=6$ in (ii), we obtain that
Coefficient of x^{-7} in the expansion of $\left(a x-\frac{1}{b x^{2}}\right)^{11}$ is ${ }^{11} \mathrm{C}_{6} \mathrm{a}^{5} \mathrm{~b}^{-6}(-1)^{6}$
If the coefficient of x^{7} in $\left(a x^{2}+\frac{1}{b x}\right)^{11}$ is equal to the coefficient of x^{-7} in
$\left(a x-\frac{1}{b x^{2}}\right)^{11}$, then
${ }^{11} \mathrm{C}_{5} \mathrm{a}^{6} \mathrm{~b}^{-5}={ }^{11} \mathrm{C}_{6} \mathrm{a}^{5} \mathrm{~b}^{-6}(-1)^{6} \Rightarrow{ }^{11} \mathrm{C}_{5} \mathrm{ab}={ }^{11} \mathrm{C}_{6} \Rightarrow \mathrm{ab}=1\left[\because \cdot{ }^{11} \mathrm{C}_{5}={ }^{11} \mathrm{C}_{6}\right]$

