CBSE Test Paper 02

CH-05 Complex \& Quadratic

Section A

1. The inequality $|\mathrm{z}-6|<|\mathrm{z}-2|$ represents the region given by
a. $\operatorname{Re}(\mathrm{z})>4$
b. $\operatorname{Re}(\mathrm{z})<2$
c. none of these
d. $\operatorname{Re}(z)>2$
2. Find Argument of the complex number ($0+0 \mathrm{i}$)
a. $-\pi$
b. π
c. none of these
d. 0
3. The least value of n for which $\left(\frac{1+i}{1-i}\right)^{n}$ is a positive integer is
a. 8
b. 1
c. 2
d. 4
4. If z is any complex number, then $\frac{z-\bar{z}}{2 i}$ is
a. either 0 or purely imaginary
b. purely imaginary
c. purely real
d. none of these
5. The points $\mathrm{z}=\mathrm{x}+$ iy which satisfy the equation $|\mathrm{z}|=1$ lie on
a. the line $x=1$
b. the line $y=1$
c. the line $x+y=1$
d. the circle whose centre is origin and radius = 1
6. Fill in the blanks:

The roots of the equation $x^{2}+4=0$ are \qquad _.
7. Fill in the blanks:
$5\left(\cos 270^{\circ}+i \sin 270^{\circ}\right)$ is written in cartesian form as \qquad .
8. Evaluate $\frac{1}{i^{7}}$.
9. Express $(5+4 i)+(5-4 i)$ in the form of $a+i b$.
10. Solve the inequalities: $2 \leqslant 3 x-4 \leqslant 5$
11. If $\mathrm{z}_{1}, \mathrm{z}_{2}$ and $\mathrm{z}_{3}, \mathrm{z}_{4}$ are two pairs of conjugate complex numbers, then find $\arg \left(\frac{z_{1}}{z_{4}}\right)+$ $\arg \left(\frac{z_{2}}{z_{3}}\right)$.
12. If $\arg (z-1)=\arg (z+3 i)$, then find $x-1: y$.
13. Find the square root of $3-4 \sqrt{7} i$
14. Find the real numbers x and y if ($x-i y$) (3+5i) is the conjugate of $-6-24 i$.
15. Express the complex number $3\left(\cos 300^{\circ}-\mathrm{i} \sin 30^{\circ}\right)$ in polar form.

CBSE Test Paper 02

CH-05 Complex \& Quadratic

Solution

1. (a) $\operatorname{Re}(z)>4$

Explanation: Given
Putting $\mathrm{z}=\mathrm{x}+\mathrm{iy}$, we get
$|x+i y-6|<|x+i y-2|$
$\Rightarrow|(\mathrm{x}-6)+\mathrm{iy}|<|(\mathrm{x}-2)+\mathrm{iy}|$
$\Rightarrow \sqrt{(x-6)^{2}+y^{2}}<\sqrt{(x-2)^{2}+y^{2}} \quad\left[\because|x+i y|=\sqrt{x^{2}+y^{2}}\right]$

Squaring on both sides we get
$(x-6)^{2}+y^{2}<(x-2)^{2}+y^{2}$
$\Rightarrow x^{2}+36-12 x+y^{2}<x^{2}+4-4 x+y^{2}$
$\Rightarrow 36-4<12 x-4 x$
$\Rightarrow 32<8 x$
$\Rightarrow x>4$
2. (c) none of these

Explanation:

Let $Z=0+0 i=r(\cos \theta+i \sin \theta)$
Then comparing the real and imaginary parts, we get
$r \cos \theta=0 \quad$ and $\quad r \sin \theta=0$
$\therefore r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=0$
$\Rightarrow r^{2}=0 \Rightarrow r=0$
$\Rightarrow \cos \theta=0 \quad$ and $\quad \sin \theta=0$
Which is not possible for any value of θ.
3. (d) 4

Explanation:

$\frac{1+i}{1-i}=\frac{1+i}{1-i} \cdot \frac{1+i}{1+i}=\frac{(1+i)^{2}}{1+1}=\frac{1-1+2 i}{1+1}=\frac{2 i}{2}=$
$\therefore\left(\frac{1+i}{1-i}\right)^{n}=i^{n}$
We have $i^{4}=1$ which is positive Hence the least of is 4
4. (c) purely real

Explanation:

Let $Z=x+i y$
Then $\bar{Z}=x-i y$
$\therefore Z-\bar{Z}=(x+i y)-(x-i y)=2 i y$
Now $\quad \frac{Z-\bar{Z}}{2 i}=y$
Hence $\frac{z-\bar{z}}{2 i}$ is purely real
5. (d) the circle whose centre is origin and radius $=1$

Explanation:

$z=x+i y$
Now $\quad|z|=1 \Rightarrow|x+i y|=1$
$\Rightarrow \sqrt{x^{2}+y^{2}}=1 \Rightarrow x^{2}+y^{2}=1$
which is the equation of a circle whose centre is origin and radius $=1$
6. 2 i and -2 i
7. $0-\mathrm{i} 5$
8. Given, $\frac{1}{i^{7}}=\frac{1}{(i)^{4+3}}=\frac{1}{i^{4} \cdot i^{3}}=\frac{1}{(1) i^{2} \cdot i}\left[\because \cdot i^{4}=1, \mathrm{i}^{2}=-1\right]$
$=\frac{1}{(-1) i}$
multiplying numerator and denominator by i
$\Rightarrow \frac{1}{-i} \times \frac{i}{i}=\frac{i}{-i^{2}}$
$=\frac{i}{-(-1)}=i$
9. Given, $(5+4 i)+(5-4 i)$
$=(5+5)+\mathrm{i}(4-4)=10+0 \mathrm{i}$
10. We have $2 \leqslant 3 x-4 \leqslant 5$
$\Rightarrow 2+4 \leqslant 3 x \leqslant 5+4 \Rightarrow 6 \leqslant 3 x \leqslant 9$
$\Rightarrow 2 \leqslant x \leqslant 3$
11. We have, $\mathrm{z}_{2}=\bar{z}_{1}$ and $\mathrm{z}_{4}=\bar{z}_{3}$

Therefore, $\mathrm{z}_{1} \mathrm{z}_{2}=\left|\mathrm{z}_{1}\right|^{2}$ and $\mathrm{z}_{3} \mathrm{z}_{4}=\left|\mathrm{z}_{3}\right|^{2}$
Now, $\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)=\arg \left(\frac{z_{1} z_{2}}{z_{4} z_{3}}\right)\left[\because\right.$ Using formula, $\arg \left(\mathrm{z}_{1}\right)+\arg \left(\mathrm{z}_{2}\right)=\arg$ $\left.\left(\mathrm{z}_{1}, \mathrm{z}_{2}\right)\right]$
$=\arg \left(\frac{z_{1} \bar{z}_{1}}{z_{3} \bar{z}_{3}}\right)=\arg \left(\frac{\left|z_{1}\right|^{2}}{\left|z_{3}\right|^{2}}\right)=\arg \left(\left|\frac{z_{1}}{z_{3}}\right|^{2}\right)=0[\because$ argument of positive real number is zero]
12. We have, $\arg (z-1)=\arg (z+3 i)$

On putting $z=x+i y$, we get
$\arg (x+i y-1)=\arg (x+i y+3 i)$
$\Rightarrow \arg [(x-1)+i y]=\arg [x+i(y+3)]$
$\Rightarrow \tan ^{-1}\left(\frac{y}{x-1}\right)=\tan ^{-1}\left(\frac{y+3}{x}\right)$
$\Rightarrow \frac{y}{x-1}=\frac{y+3}{x} \Rightarrow x y=(x-1)(y+3)$
$\Rightarrow \mathrm{xy}=\mathrm{xy}+3 \mathrm{x}-\mathrm{y}-3$
$\Rightarrow 0=3(\mathrm{x}-1)-\mathrm{y}$
$\Rightarrow \mathrm{y}=3(\mathrm{x}-1) \Rightarrow \frac{x-1}{y}=\frac{1}{3}$
$\Rightarrow(\mathrm{x}-1): \mathrm{y}=1: 3$
13. Let $x+y i=\sqrt{3-4 \sqrt{7} i}$

Squaring both sides, we get
$\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{xyi}=3-4 \sqrt{7} i$
Equating the real and imaginary parts
$x^{2}-y^{2}=3 \ldots$ (i)
$2 x y=-4 \sqrt{7} \Rightarrow x y=-2 \sqrt{7}$
Now from the identity, we know
$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}$
$=(3)^{2}+4(-2 \sqrt{7})^{2}$
$=9+112$
$=121$
$\therefore \mathrm{x}^{2}+\mathrm{y}^{2}=11 \ldots$ (ii) [Neglecting (-) sign as $\mathrm{x}^{2}+\mathrm{y}^{2}>0$]
Solving (i) and (ii) we get
$\mathrm{x}^{2}=7$ and $\mathrm{y}^{2}=4$
$\therefore x= \pm \sqrt{7}, y= \pm 2$
Since the sign of $x y$ is $(-)$
\therefore if $x=\sqrt{7} y=-2$
and if $x=\sqrt{7} \mathrm{y}=2$
$\therefore \sqrt{3-4 \sqrt{7} i}= \pm(\sqrt{7}-2 i)$
14. Here $\overline{-6-24 i}=-6+24 i$

Now $(\mathrm{x}-\mathrm{iy})(3+5 \mathrm{i})=-6+24 \mathrm{i}$
$\Rightarrow 3 x+5 x i-3 y i-5 y i^{2}=6+24 i$
$\Rightarrow(3 x+5 y)+(5 x-3 y) i=-6+24 i$
Comparing both sides, we have
$3 x+5 y=-6 \ldots$. (i)
and $5 \mathrm{x}-3 \mathrm{y}=24$.
Multiplying (i) by 3 and (ii) by 5 and then adding
$9 x+15 y=-18$
$25 x-15 y=120 \Rightarrow x=3$

$$
34 x=102
$$

Putting $\mathrm{x}=3$ in (i)
$3(3)+5 y=-6$
Thus $y=-3$
15. Let $\mathrm{z}=3\left(\cos 300^{\circ}-\mathrm{i} \sin 30^{\circ}\right)$
$=3\left[\cos \left(360^{\circ}-60^{\circ}\right)-\mathrm{i} \sin 30^{\circ}\right]$
$=3\left[\cos 60^{\circ}-\mathrm{i} \sin 30^{\circ}\right]$
$=3\left[\frac{1}{2}-\frac{i}{2}\right]$
$=\frac{3}{2}(1-\mathrm{i})$
Let $\mathrm{z}=\frac{3}{2}(1-\mathrm{i})=\mathrm{r}(\cos \theta+\mathrm{i} \sin \theta)$
On equating real and imaginary parts, we get
$r \cos \theta=\frac{3}{2} \ldots$ (i)
and $r \sin \theta=-\frac{3}{2}$
On squaring and addng Eqs. (i) and (ii), we get
$\mathrm{r}^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\left(\frac{3}{2}\right)^{2}+\left(-\frac{3}{2}\right)^{2}$
$\Rightarrow \mathrm{r}^{2}=\frac{9}{4}$
$\therefore r=\frac{3}{\sqrt{2}}$
On putting the value of r in Eqs. (i) and (ii), we get $\cos \theta=\frac{1}{\sqrt{2}}$ and $\sin \theta=-\frac{1}{\sqrt{2}}$
Since, $\cos \theta$ is positive and $\sin \theta$ is negative.
So, θ lies in IV quadrant.
$\therefore \theta=\frac{-\pi}{4}$
Polar form of $\mathrm{z}=\frac{3}{\sqrt{2}}\left[\cos \left(-\frac{\pi}{4}\right)+\mathrm{i} \sin \left(-\frac{\pi}{4}\right)\right]$
$=\frac{3}{\sqrt{2}}\left[\cos \frac{\pi}{4}-\mathrm{i} \sin \frac{\pi}{4}\right]$
$\therefore 3\left(\cos 300^{\circ}-\mathrm{i} \sin 30^{\circ}\right)=\frac{3}{\sqrt{2}}\left(\cos \frac{\pi}{4}-\mathrm{i} \sin \frac{\pi}{4}\right)$

