CBSE Test Paper 01

CH-05 Complex \& Quadratic

1. The complex numbers $\mathrm{z}=\mathrm{x}+\mathrm{iy} ; \mathrm{x}, \mathrm{y} \in \mathrm{R}$ which satisfy the equation $\left|\frac{z-3 i}{z+3}\right|=1$ lies on
a. the y axis
b. the x axis
c. the line $x+y=0$
d. the line parallel to y axis
2. If $(\sqrt{3}+i)^{10}=a+i b ; a, b \in R$, then a and b are respectively :
a. 64 and $-64 \sqrt{3}$
b. 512 and $-512 \sqrt{3}$
c. 128 and $128 \sqrt{3}$
d. none of these
3. $\mathrm{z}+\bar{z} \neq 0$ if and only if
a. $\mathrm{z} \neq 0$
b. $\operatorname{Re}(z) \neq 0$
c. $\operatorname{Im}(\mathrm{z}) \neq 0$
d. $|\mathrm{z}| \neq 0$
4. If $\alpha=\frac{z}{\bar{z}}$, then $|\alpha|$ is equal to :
a. -1
b. 0
c. 1
d. none of these
5. $1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots \ldots$ up to 1001 terms is equal to
a. none of these
b. 0
c. 1
d. -1
6. Fill in the blanks:

The modulus and argument of $\mathrm{z}=1+\mathrm{i} \tan \alpha$ is \qquad and \qquad respectively.
7. Fill in the blanks:

The value of $\frac{1}{i^{7}}$ is \qquad .
8. Solve $x^{2}+3=0$
9. Express the complex numbers $(1+i)-(-1+i 6)$ in standard form
10. Find the difference of the complex numbers $(6+5 i),(3+2 i)$.
11. Express the complex numbers $\left(\frac{1}{5}+\frac{2}{5} i\right)-\left(4+\frac{5}{2} i\right)$ in standard form
12. Solve: $\mathrm{ix}^{2}+4 \mathrm{x}-5 \mathrm{i}=0$.
13. Find the square root of $1-\mathrm{i}$.
14. If $\operatorname{Re}\left(\mathrm{z}^{2}\right)=0,|\mathrm{z}|=2$, then prove that $\mathrm{z}= \pm \sqrt{2} \pm i \sqrt{2}$.
15. Find all non-zero complex numbers of z satisfying $\bar{z}=\mathrm{iz}^{2}$.

CBSE Test Paper 01

CH-05 Complex \& Quadratic

Solution

1. (c) the line $x+y=0$

Explanation: Let $\mathrm{z}=\mathrm{x}+\mathrm{i} \mathrm{y}$
Now $\left|\frac{z-3 i}{z+3}\right|=1$
$\Rightarrow|z-3 i|=|z+3|$
$\Rightarrow|(x+i y)-3 i|=|x+i y+3|$
$\Rightarrow|x+i(y-3)|=|(x+3)+i y|$
$\Rightarrow \sqrt{(y-3)^{2}+x^{2}}=\sqrt{(x+3)^{2}+(y)^{2}}$
$\Rightarrow(y-3)^{2}+x^{2}=(x+3)^{2}+(y)^{2}$
$\Rightarrow y^{2}-6 y+9+x^{2}=x^{2}+6 x+9+y^{2}$
$\Rightarrow 6 x+6 y=0$
$\Rightarrow x+y=0$
2. (b) 512 and $-512 \sqrt{3}$

Explanation:

First we will find the polar representation of the complex number $\sqrt{3}+i$
Let $\sqrt{3}+i=r(\cos \theta+i \sin \theta) \Rightarrow r \cos \theta=\sqrt{3} a n d \quad r \sin \theta=1$
$\therefore r^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=3+1=4 \Rightarrow r^{2}=4 \Rightarrow r=2$
Now $\cos \theta=\frac{\sqrt{3}}{2}, \quad \sin \theta=\frac{1}{2}$, both are positive.
So Amplitude $=\theta=\frac{\Pi}{6}$
Hence $\sqrt{3}+i=2\left(\cos \frac{\Pi}{6}+i \sin \frac{\Pi}{6}\right)=2 e^{\frac{i \Pi}{6}}$
Now,
$(\sqrt{3}+i)^{10}=\left(2 e^{\frac{i \pi}{6}}\right)^{10}=2^{10} e^{\frac{i 5 \pi}{3}}=2^{10}\left(\cos \left(\frac{5 \Pi}{3}\right)+i \sin \left(\frac{5 \Pi}{3}\right)\right)$
$=2^{10}\left(\cos \left(2 \Pi-\frac{\Pi}{3}\right)+i \sin \left(2 \Pi-\frac{\Pi}{3}\right)\right)=2^{10}\left(\cos \left(\frac{-\pi}{3}\right)+i \sin \left(\frac{-\pi}{3}\right)\right)$
$=2^{10}\left(\cos \left(\frac{\Pi}{3}\right)-i \sin \left(\frac{\Pi}{3}\right)\right)=2^{10}\left(\frac{1}{2}-i \frac{\sqrt{3}}{2}\right)=2^{10}\left(\frac{1-\sqrt{3} i}{2}\right)=2^{9}(1-\sqrt{3} i)$
Hence $(\sqrt{3}+i)^{10}=a+i b \Rightarrow 2^{9}(1-\sqrt{3} i)=a+i b$
$\Rightarrow a=2^{9}=512 \quad$ and $\quad b=-2^{9} \sqrt{3}=-512 \sqrt{3}$
3. (b) $\operatorname{Re}(z) \neq 0$

Explanation: Let $\mathrm{Z}=\mathrm{x}+\mathrm{iy}$ then we have
So $Z+\bar{Z}=2 x$
Now $\mathrm{z}+\bar{z} \neq 0$
$\Leftrightarrow 2 x \neq 0$
$\Leftrightarrow x \neq 0$
$\Leftrightarrow \operatorname{Re}(z) \neq 0$
4. (c) 1

Explanation:
Given $\alpha=\frac{z}{\bar{z}}$
Then $|\alpha|=\left|\frac{z}{\bar{z}}\right|=\frac{|z|}{|\bar{z}|}=1$

$$
\left[\because\left|\frac{z_{1}}{z_{2}}\right|=\frac{\left|z_{1}\right|}{\left|z_{2}\right|},|z|=|\bar{z}|\right]
$$

5. (c) 1

Explanation:

$1+i^{2}+i^{4}+i^{6}+i^{8}+\ldots \ldots \ldots$. upto 1001 terms
$=\left(i^{2}\right)^{0}+\left(i^{2}\right)^{1}+\left(i^{2}\right)^{2}+\left(i^{2}\right)^{3}+\ldots .$. upto 1001 terms
$=\left(i^{2}\right)^{0}+\left(i^{2}\right)^{1}+\left(i^{2}\right)^{2}+\left(i^{2}\right)^{3}+\ldots \ldots . .+\left(i^{2}\right)^{1000}$
$=\left[\left(i^{2}\right)^{0}+\left(i^{2}\right)^{1}\right]+\left[\left(i^{2}\right)^{2}+\left(i^{2}\right)^{3}\right]+\ldots \ldots \ldots \ldots+\left[\left(i^{2}\right)^{998}+\left(i^{2}\right)^{999}\right]+\left[\left(i^{2}\right)\right.$
$=[1-1]+[1-1]+\ldots \ldots \ldots+[1-1]+1$
$=1$
6. $\sec \alpha, \alpha$
7. i
8. Here $\mathrm{x}^{2}+3=0 \Rightarrow x^{2}=-3 \Rightarrow x= \pm \sqrt{-3}= \pm \sqrt{3} i$
9. $(1+i)-(-1+i 6)$
$1+i+1-6 i=2-5 i$
10. $(6+5 \mathrm{i})-(3+2 \mathrm{i})=(6+5 \mathrm{i})+(-3-2 \mathrm{i})$ $=(6-3)+(5-2) i=3+3 i$
11. $\left(\frac{1}{5}+\frac{2}{5} i\right)-\left(4+\frac{5}{2} i\right)$
$=\frac{1}{5}+\frac{2}{5} i-4-\frac{5}{2} i$
$=\left(\frac{1}{5}-4\right)+\left(\frac{2}{5}-\frac{5}{2}\right) i$
$=\frac{-19}{5}-\frac{21}{10} i$
12. We have, $\mathrm{ix}^{2}+4 \mathrm{x}-5 \mathrm{i}=0 \ldots$ (i)

On comparing Eq. (i) with $a x^{2}+b x+c=0$, we get
$\mathrm{a}=\mathrm{i}, \mathrm{b}=4$ and $\mathrm{c}=-5 \mathrm{i}$
$\because x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$\therefore x=\frac{-4 \pm \sqrt{(4)^{2}-4 \times i(-5 i)}}{2 \times i}$
$=\frac{-4 \pm \sqrt{16+20 i^{2}}}{2 i}$
$=\frac{-4 \pm \sqrt{16-20}}{2 i}\left[\because i^{2}=-1\right]$
$=\frac{-4 \pm \sqrt{-4}}{2 i}=\frac{-4 \pm 2 i}{2 i}$
$=\frac{4 i^{2} \pm 2 i}{2 i}=2 \mathrm{i} \pm 1\left[\because-1=\mathrm{i}^{2}\right]$
$\therefore \mathrm{x}=2 \mathrm{i}+1$ and $\mathrm{x}=2 \mathrm{i}-1$
Hence, the roots of the given equation are $2 \mathrm{i}+1$ and $2 \mathrm{i}-1$.
13. Let $x+y i=\sqrt{1-i}$

Squaring both sides, we get
$x^{2}-y^{2}+2 x y i=1-i$
Equating the real and imaginary parts
$x^{2}-y^{2}=1$ and $2 x y=-1 \ldots$. (i)
$\therefore x y=\frac{-1}{2}$
Using the identity
$\left(x^{2}+y^{2}\right)^{2}=\left(x^{2}-y^{2}\right)^{2}+4 x^{2} y^{2}$
$=(1)^{2}+44\left(-\frac{1}{2}\right)^{2}$
$=1+1$
$=2$
$\therefore x^{2}+y^{2}=\sqrt{2} \ldots$ (ii) [Neglecting (-) sign as $\mathrm{x}^{2}+\mathrm{y}^{2}>0$]
Solving (i) and (ii) we get
$x^{2}=\frac{\sqrt{2}+1}{2}$ and $y=\frac{\sqrt{2}-1}{2}$
$\therefore x= \pm \sqrt{\frac{\sqrt{2}+1}{2}}$ and $y= \pm \sqrt{\frac{\sqrt{2}-1}{2}}$
Since the sign of $x y$ is negative.
\therefore if $x=\sqrt{\frac{\sqrt{2}+1}{2}}$ then $y=-\sqrt{\frac{\sqrt{2}-1}{2}}$
and if $x=-\sqrt{\frac{\sqrt{2}+1}{2}}$ then $y=\sqrt{\frac{\sqrt{2}-1}{2}}$
$\therefore \sqrt{1-i}= \pm\left(\sqrt{\frac{\sqrt{2}+1}{2}}-\sqrt{\frac{\sqrt{2}-1}{2}} i\right)$
14. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$
$\Rightarrow \mathrm{z}^{2}=(\mathrm{x}+\mathrm{iy})^{2}$ [squaring both sides]
$\Rightarrow \mathrm{z}^{2}=\mathrm{x}^{2}+\mathrm{i}^{2} \mathrm{y}^{2}+2 \mathrm{ixy}$
$\Rightarrow z^{2}=\left(x^{2}-y^{2}\right)+i(2 x y)$
$\therefore \operatorname{Re}\left(\mathrm{z}^{2}\right)=0$
$\Rightarrow \mathrm{x}^{2}-\mathrm{y}^{2}=0 \Rightarrow \mathrm{x}= \pm \mathrm{y}$
$\Rightarrow \mathrm{x}=\mathrm{y}$
and $x=-y$...(ii)
Again, $|z|=2$ [given]
$\Rightarrow|\mathrm{z}|^{2}=4$
$\Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=4$...(iii)
From Eqs. (i) and (iii), we get
$\mathrm{y}^{2}+\mathrm{y}^{2}=4 \Rightarrow 2 \mathrm{y}^{2}=4$
$\Rightarrow \mathrm{y}^{2}=2 \Rightarrow \mathrm{y}= \pm \sqrt{2}$
Therefore, from Eq. (i), we get
$\mathrm{x}= \pm \sqrt{2}$
$\therefore \mathrm{z}= \pm \sqrt{2} \pm \mathrm{i} \sqrt{2}$

On putting the value of x from Eq. (ii) in Eq. (iii), we get
$(-y)^{2}+y^{2}=4 \Rightarrow 2 y^{2}=4$
$\Rightarrow \mathrm{y}^{2}=2 \Rightarrow \mathrm{y}= \pm \sqrt{2}$
From Eq. (ii), $\mathrm{x}= \pm \sqrt{2}$
$\therefore \mathrm{z}=\mathrm{x}+\mathrm{iy} \Rightarrow \mathrm{z}= \pm \sqrt{2} \pm \mathrm{i} \sqrt{2}$
Hence proved.
15. Let $\mathrm{z}=\mathrm{x}+\mathrm{iy}$

Given: $\bar{z}=\mathrm{iz}^{2}$
$\Rightarrow \mathrm{x}-\mathrm{iy}=\mathrm{i}\left(\mathrm{x}^{2}-\mathrm{y}^{2}+2 \mathrm{i} \mathrm{xy}\right)$
$\Rightarrow \mathrm{x}-\mathrm{iy}=\mathrm{i}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right)-2 \mathrm{xy}$
$\Rightarrow(x+2 x y)-i\left(x^{2}-y^{2}+y\right)=0$
$\Rightarrow x+2 x y=0 \ldots$ (i) and $x^{2}-y^{2}+y=0 \ldots$ (ii)
Now,
$x+2 \mathrm{xy}=0 \Rightarrow \mathrm{x}(1+2 \mathrm{y})=0 \Rightarrow \mathrm{x}=0$ or $1+2 \mathrm{y}=0 \Rightarrow \mathrm{x}=0$ or $\mathrm{y}=-\frac{1}{2}$
CASE I: When $\mathrm{x}=0$
Putting $x=0$ in (ii), we have
$\Rightarrow-\mathrm{y}^{2}+\mathrm{y}=0 \Rightarrow \mathrm{y}(\mathrm{y}-1)=0 \Rightarrow \mathrm{y}=0, \mathrm{y}=1$
Thus, we have the following pairs of values of x and y :
$x=0, y=0 ; x=0, y=1$
$\therefore \mathrm{z}=0+\mathrm{i} 0=0$ and $\mathrm{z}=0+1 \mathrm{i}=\mathrm{i}$
CASE II: When $y=-\frac{1}{2}$
Putting $y=\frac{-1}{2}$ in (ii), we get
$\mathrm{x}^{2}-\mathrm{y}^{2}+\mathrm{y}=0 \Rightarrow \mathrm{x}^{2}-\frac{1}{4}-\frac{1}{2}=0 \Rightarrow \mathrm{x}^{2}-\frac{3}{4}=0 \Rightarrow \mathrm{x}= \pm \frac{\sqrt{3}}{2}$
Thus, we have the following pairs of values of x and y :
$\mathrm{x}=\frac{\sqrt{3}}{2}, \mathrm{y}=\frac{-1}{2}$ and $\mathrm{x}=\frac{-\sqrt{3}}{2}, \mathrm{y}=\frac{-1}{2}$
$\therefore \mathrm{z}=\frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}$ and $\mathrm{z}=\frac{-\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}$
Hence, all non-zero complex numbers of z are $\mathrm{i}, \frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i},-\frac{\sqrt{3}}{2}-\frac{1}{2} \mathrm{i}$

