CBSE Test Paper 02

CH-04 Principle of Mathematical Induction

1. The greatest positive integer, which divides
$(n+1)(n+2)(n+3) \ldots \ldots \ldots \ldots \ldots(n+r) \forall n \in W$, is
a. $\mathrm{n}+\mathrm{r}$
b. r
c. $(\mathrm{r}+1)$!
d. r !
2. If $P(n)=2+4+6+$ $+2 n, n \in N$, then $P(k)=k(k+1)+2 \Rightarrow P(k+1)=(k$ $+1)(k+2)+2$ for all $k \in N$. So we can conclude that $P(n)=n(n+1)+2$ for
a. $\mathrm{n}>2$
b. all $\mathrm{n} \in \mathrm{N}$
c. nothing can be said
d. $\mathrm{n}>1$
3. If n is a +ve integer, then $3.5^{2 n+1}+2^{3 n+1}$ is divisible by
a. 64
b. 24
c. none of these
d. 17
4. The nth terms of the series $4+14+30+52+80+114+\ldots .$. is $=$
a. $2 n^{2}+2 n$
b. $3 n^{2}+n$
c. $5 \mathrm{n}-1$
d. $2 n^{2}+2$
5. The statement $\mathrm{P}(\mathrm{n}):$: $(n+3)^{2}>2^{n+3}$ " is true for :
a. all $n \geq 2$
b. no $\mathrm{n} \in \mathrm{N}$,
c. all $n \geq 3$
d. all n .
6. Fill in the blanks:
$n^{3}-7 n+3$ is divisible by \qquad for all natural numbers n .
7. Fill in the blanks:

The two basic process of reasoning are \qquad and \qquad .
8. Prove by the principle of mathematical induction that for all $n \in N: 1^{2}+2^{2}+3^{2}+\ldots+$ $\mathrm{n}^{2}=\frac{1}{6} \mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)$
9. Prove the following by using the principle of mathematical induction for all $n \in N$: $1^{1}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
10. Prove that $(1+x)^{n} \geq(1+n x)$, for all natural number n, where $x>-1$.

CBSE Test Paper 02

$\mathbf{C H}-04$ Principle of Mathematical Induction

Solution

1. (d) r !

Explanation: If $\mathrm{n}=0$ the given expression becomes 1.2.3.4........ $\mathrm{r}=\mathrm{r}$! Also when $\mathrm{n}=$ 1 one more extra term will be there in the product 2.3.4........ $(\mathrm{r}+1)$ which is also divisible by r!.
2. (c) nothing can be said

Explanation: Because the statement is incomplete without the conclusion/ RHS
3. (d) 17

Explanation: When $\mathrm{n}=1$ the value is 391 which is divisible by 17 .
4. (b) $3 n^{2}+n$

Explanation: When $\mathrm{n}=1$ we get 3 . When $\mathrm{n}=2$ we get $12+2=14 \ldots$
5. (b) no $n \in N$,

Explanation: When $\mathrm{n}=1$ we get $16>16$, which is false. when $\mathrm{n}=2$ we get $25>32$,which is false as well. As $n=3,4,5 \ldots$.the inequalty does not hold correct.
6. 3
7. deduction, induction
8. Let $P(n)$ be the statement given by
$P(n): 1^{2}+2^{2}+3^{2}+\ldots+n^{2}=\frac{1}{6} n(n+1)(2 n+1)$
We have,
$\mathrm{P}(1): 1^{2}=\frac{1}{6}(1)(1+1)(2 \times 1+1)$
$\Rightarrow 1=1$
So, $\mathrm{P}(1)$ is true
Let $P(m)$ be true. Then,
$1^{2}+2^{2}+3^{2}+\ldots+m^{2}=\frac{1}{6} m(m+1)(2 m+1)$
We wish to show that $\mathrm{P}(\mathrm{m}+1)$ is true. For this we have to show that,
$1^{2}+2^{2}+3^{2}+\ldots+m^{2}+(m+1)^{2}=\frac{1}{6}(m+1)\{(m+1)+1\}\{2(m+1)+1\}$
Now, $1^{2}+2^{2}+3^{2}+\ldots+m^{2}+(m+1)^{2}$
$=\left\{1^{2}+2^{2}+3^{2}+\ldots+m^{2}\right\}+(m+1)^{2}=\frac{1}{6} m(m+1)(2 m+1)+(m+1)^{2} \ldots$ [using (i)]
$=\frac{1}{6}(m+1)[m(2 m+1)+6(m+1)\}$
$=\frac{1}{6}(m+1)\left\{2 \mathrm{~m}^{2}+7 \mathrm{~m}+6\right\}$
$=\frac{1}{6}(m+1)(m+2)(2 m+3)=\frac{1}{6}(m+1)\{(m+1)+1\}\{2(m+1)+1\}$
So, $P(m+1)$ is true
Thus, $P(m)$ is true $\Rightarrow P(m+1)$ is true
Hence, by the principle of mathematical induction, the given result is true for all n $\in \mathrm{N}$.
9. Let $\mathrm{P}(\mathrm{n})$
$1^{1}+3^{2}+5^{2}+\ldots+(2 n-1)^{2}=\frac{n(2 n-1)(2 n+1)}{3}$
For $\mathrm{n}=1$
$P(1)=(2 \times 1-1)=\frac{1(2 \times 1-1)(2 \times 1+1)}{3} \Rightarrow 1=\frac{1 \times 1 \times 3}{3}$
$\therefore \mathrm{P}(1)$ is true
Let $\mathrm{P}(\mathrm{n})$ be true for $\mathrm{n}=\mathrm{k}$.
$\therefore P(k)=1^{2}+3^{2}+5^{2}+\ldots .+(2 k-1)^{2}=\frac{k(2 k-1)(2 k+1)}{3} \ldots$ (i)
For $P(k+1)$
R.H.S. $=\frac{(k+1)(2 k+1)(2 k+3)}{3}$
L.H.S. $=\frac{k(2 k-1)(2 k+1)}{3}+(2 k+1)^{2}$ [Using (i)]
$=(2 k+1)\left[\frac{k(2 k-1)}{3}+(2 k+1)\right]=(2 k+1)\left[\frac{2 k^{2}-k+6 k+3}{3}\right]$
$=\frac{(2 k+1)\left(2 k^{2}+5 k+3\right)}{3}=\frac{(2 k+1)(k+1)(2 k+3)}{3}$
$=\frac{(k+1)(2 k+1)(2 k+3)}{3}$
$\therefore \mathrm{P}(\mathrm{k}+1)$ is true
Thus $P(k)$ is true $\Rightarrow P(k+1)$ is true
Hence by principle of mathematical induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.
10. Step I Let $P(n)$ be the given statement. Then,
$P(n):(1+x)^{n} \geq(1+n x)$, for $\mathrm{x}>-1$
Step II For $\mathrm{n}=1$, we have $(1+x)=(1+x)$
Thus, $P(n)$ is true when $\mathrm{n}=1$

Step III For $\mathrm{n}=\mathrm{k}$, assume that $\mathrm{P}(\mathrm{k})$ is true, i.e.,
$P(k):(1+x)^{k} \geq(1+k x)$ for $x>-1 \ldots$ (i)
Step IV For $n=k+1$, we have to show that $P(k+1)$ is true for $x>-1$, whenever $P(k)$ is true
Consider the identity
$(1+x)^{k+1}=(1+x)^{k}(1+x) \ldots$ (ii)
Given that, $x>-1$, so $(1+x)>0$
Therefore, by using $(1+\mathrm{x})^{\mathrm{k}} \geq(1+\mathrm{kx})$, we get
$(1+x)^{k+1} \geq(1+k x)(1+x)$
i.e., $(1+x)^{k+1} \geq\left(1+x+k x+k x^{2}\right)$...(iii)

Here, k is a natural number and $\mathrm{x}^{2} \geq 0$, which implies $\mathrm{kx}^{2} \geq 0$
Therefore, $\left(1+x+k x+k x^{2}\right) \geq(1+x+k x)$ and so we obtain
$(1+x)^{k+1} \geq(1+x+k x)$ [using Eq. (iii)]
or $(1+x)^{k+1} \geq[1+(1+k) x]$
Thus, $\mathrm{P}(\mathrm{k}+1)$ is true whenever $\mathrm{P}(\mathrm{k})$ is true.
Hence, by the Principle of Mathematical Induction, $\mathrm{P}(\mathrm{n})$ is true for all natural numbers.

