CBSE Test Paper 01

CH-04 Principle of Mathematical Induction

1. $\frac{3}{4}+\frac{15}{16}+\frac{63}{64}+\ldots \ldots \ldots$. to n terms is equal to
a. $n+\frac{4^{n}}{3}-\frac{1}{3}$
b. $n+\frac{4^{-n}}{3}-\frac{1}{3}$
c. $n-\frac{4^{n}}{3}-\frac{1}{3}$
d. $n+\frac{4^{-n}}{3}+\frac{1}{3}$
2. The greatest positive integer, which divides $n(n+1)(n+2)(n+3)$ for all $n \in N$, is
a. 120
b. 6
c. 24
d. 2
3. For all positive integers n, the number $4^{n}+15 n-1$ is divisible by :
a. 16
b. 24
c. 9
d. 36
4. If $49^{n}+16 n+\lambda$ is divisible by 64 for all $\mathrm{n} \in \mathrm{N}$, then the least negative integral value of λ is
a. -1
b. -3
c. -4
d. -2
5. For $n \in N, x^{n+1}+(x+1)^{2 n-1}$ is divisible by :
a. $x^{2}+x+1$
b. $x^{2}+x-1$
c. $x+1$
d. x
6. Fill in the blanks:

If $a_{1}=2$ and $a_{n}=5 a_{n-1}$, then the value of a_{3} in the sequence is \qquad .
7. Fill in the blanks:

If $\mathrm{x}^{\mathrm{n}}-1$ is divisible by $\mathrm{x}-\mathrm{k}$, then the least positive integral value of k is \qquad .
8. Prove by the principle of mathematical induction that for all $n \in N, 3^{2 n}$ when divided by 8 , the remainder is always 1 .
9. Prove by Mathematical Induction that the sum of first n odd natural numbers is n^{2}.
10. Let $\mathrm{U}_{1}=1, \mathrm{U}_{2}=1$ and $\mathrm{U}_{\mathrm{n}+2}=\mathrm{U}_{\mathrm{n}+1}+\mathrm{U}_{\mathrm{n}}$ for $\mathrm{n} \geq 1$. Use mathematical induction to show that:
$\mathrm{U}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}$ for all $\mathrm{n} \geq 1$.

CBSE Test Paper 01

CH-04 Principle of Mathematical Induction

Solution

1. (b) $n+\frac{4^{-n}}{3}-\frac{1}{3}$

Explanation: When $\mathrm{n}=1$ we get $3 / 4$, and the subsequent terms when n is replaced by $2,3,4 \ldots$
2. (c) 24

Explanation: If $\mathrm{n}=1$ then the statement becomes $1 \times 2 \times 3 \times 4=24$: the consecutive natural numbers when substituted will be multiples of 24 .
3. (c) 9

Explanation: Replace $\mathrm{n}=1$ we get $18 \mathrm{n}=2$ we get $45 \ldots$. By the principle of mathematical induction it is divisible by 9 .
4. (a) -1

Explanation: When $\mathrm{n}=1$ we have the value of the expression as 65 . Given that the expression is divisible be 64 . Hence the value is -1 .
5. (a) $x^{2}+x+1$

Explanation: When $\mathrm{n}=1$ we get $\mathrm{x}^{2}+\mathrm{x}+1$
6. 50
7. 1
8. Let $P(n)$ be the statement given by $\mathrm{P}(\mathrm{n}): 3^{2 \mathrm{n}}$ when divided by 8 , the remainder is 1
or, $\mathrm{P}(\mathrm{n}): 3^{2}=8 \lambda+1$ for some $\lambda \in \mathrm{N}$
$\mathrm{P}(1): 3^{2}=8 \lambda+1$ for some $\lambda \in \mathrm{N}$.
$\therefore 3^{2}=8 \times 1+1=8 \lambda+1$, where $\lambda=1$
$P(1)$ is true
Let $\mathrm{P}(\mathrm{m})$ be true. Then, $3^{2 \mathrm{~m}}=8 \lambda+1$ for some $\lambda \in \mathrm{N} \ldots$ (i)
We shall now show that $\mathrm{P}(\mathrm{m}+1)$ is true for which we have to show that $3^{2(\mathrm{~m}+1)}$ when
divided by 8 , the remainder is 1 i.e. $3^{2(\mathrm{~m}+1)}=8 \mu+1$ for some $\mu \in \mathrm{N}$.
Now, $3^{2(m+1)}=3^{2 m} \times 3^{2}=(8 \lambda+1) \times 9$ [Using (i)]
$=72 \lambda+9=72 \lambda+8+1=8(9 \lambda+1)+1=8 \mu+1$, where $\mu=9 \lambda+1 \in \mathrm{~N}$
$\Rightarrow \mathrm{P}(\mathrm{m}+1)$ is true
Thus, $P(m)$ is true $\Rightarrow P(m+1)$ is true.
Hence, by the principle of mathematical induction $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \in \mathrm{N}$ i.e.
$3^{2 n}$ when divided by 8 the remainder is always 1 .
9. Step I Let $P(n)$ denotes the given statement, i.e.,
$P(n): 1+3+5+\ldots n($ terms $)=n^{2}$
i.e., $P(n): 1+3+5+\ldots+(2 n-1)=n^{2}$

Since,
First term $=2 \times 1-1=1$
Second term $=2 \times 2-1=3$
Third term $=2 \times 3-1=5 \ldots \ldots$
$\therefore \mathrm{n}^{\text {th }}$ term $=2 n-1$
Step II For $\mathrm{n}=1$, we have
LHS $=2.1-1=1$
RHS $=1^{2}=1=$ LHS
Thus, $\mathrm{P}(1)$ is true.
Step III For $\mathrm{n}=\mathrm{k}$, let us assume that $\mathrm{P}(\mathrm{k})$ is true,
i.e., $P(k): 1+3+5+\ldots+(2 k-1)=k^{2}$

Step IV For $\mathrm{n}=\mathrm{k}+1$, we have to show that $\mathrm{P}(\mathrm{k}+1)$ is true, whenever $\mathrm{P}(\mathrm{k})$ is true i.e.,
$\mathrm{P}(\mathrm{k}+1): 1+3+5+\ldots+(2 k-1)+[2(k+1)-1]=(k+1)^{2}$
LHS $=1+3+5+\ldots+(2 k-1)+[2(k+1)-1]$
$=k^{2}+2(k+1)-1$ [from Eq. (i)]
$=k^{2}+2 k+1=(k+1)^{2}=$ RHS
So, $P(k+1)$ is true, whenever, $P(k)$ is true.
Hence, by Principle of Mathematical Induction, $\mathrm{P}(\mathrm{n})$ is true for all $n \in N$.
10. Let $\mathrm{P}(\mathrm{n})$ be the statement given by
$\mathrm{P}(\mathrm{n}): \mathrm{U}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}$
We have,
$\mathrm{U}_{1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{1}-\left(\frac{1-\sqrt{5}}{2}\right)^{1}\right\}=1$
and,
$\mathrm{U}_{2}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right\}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+5+2 \sqrt{5}}{4}\right)-\left(\frac{1+5-2 \sqrt{5}}{4}\right)\right\}=1$
$\therefore P(1)$ and $P(2)$ are true.
Let $\mathrm{P}(\mathrm{n})$ be true for all $\mathrm{n} \leq \mathrm{m}$
i.e. $\mathrm{U}_{\mathrm{n}}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right\}$ for all $\mathrm{n} \leq \mathrm{m}$...(i)

We shall now show that $P(n)$ is true for $n=m+1$.
i.e. $\mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{m+1}\right\}$

We have,
$\mathrm{U}_{\mathrm{n}+2}=\mathrm{U}_{\mathrm{n}+1}+\mathrm{U}_{\mathrm{n}}$ for $\mathrm{n} \geq 1$
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\mathrm{U}_{\mathrm{m}}+\mathrm{U}_{\mathrm{m}-1}$ for $\mathrm{m} \geq 2$ [On replacing n by (m-1)]
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m}-\left(\frac{1-\sqrt{5}}{2}\right)^{m}\right\}+$
$\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m-1}-\left(\frac{1-\sqrt{5}}{2}\right)^{m-1}\right\}[\operatorname{Using}$ (i)]
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left[\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m}+\left(\frac{1+\sqrt{5}}{2}\right)^{m-1}\right\}-\left\{\left(\frac{1-\sqrt{5}}{2}\right)^{m}+\left(\frac{1-\sqrt{5}}{2}\right)^{m-1}\right\}\right.$
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m-1}\left(\frac{1+\sqrt{5}}{2}+1\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{m-1}\left(\frac{1-\sqrt{5}}{2}+1\right)\right\}$
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m-1}\left(\frac{3+\sqrt{5}}{2}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{m-1}\left(\frac{3-\sqrt{5}}{2}\right)\right\}$
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m-1}\left(\frac{6+2 \sqrt{5}}{4}\right)-\left(\frac{1-\sqrt{5}}{2}\right)^{m-1}\left(\frac{6-2 \sqrt{5}}{4}\right)\right\}$
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m-1}\left(\frac{1+\sqrt{5}}{2}\right)^{2}-\left(\frac{1-\sqrt{5}}{2}\right)^{m-1}\left(\frac{1-\sqrt{5}}{2}\right)^{2}\right\}$
$\Rightarrow \mathrm{U}_{\mathrm{m}+1}=\frac{1}{\sqrt{5}}\left\{\left(\frac{1+\sqrt{5}}{2}\right)^{m+1}-\left(\frac{1-\sqrt{5}}{2}\right)^{m+1}\right\}$
$\therefore \mathrm{P}(\mathrm{m}+1)$ is true.
Thus, $\mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \leq \mathrm{m} \Rightarrow \mathrm{P}(\mathrm{n})$ is true for all $\mathrm{n} \leq \mathrm{m}+1$.
Hence, $P(n)$ is true for all $n \in N$.

