CBSE Test Paper 01 CH-04 Principle of Mathematical Induction

- 1. $\frac{3}{4} + \frac{15}{16} + \frac{63}{64} + \dots$ to n terms is equal to a. $n + \frac{4^n}{3} - \frac{1}{3}$ b. $n + \frac{4^{-n}}{3} - \frac{1}{3}$ c. $n - \frac{4^n}{3} - \frac{1}{3}$ d. $n + \frac{4^{-n}}{3} + \frac{1}{3}$ 2. The greatest positive integer , which divides n (n + 1) (n + 2) (n + 3) for all n \in N, is a. 120 b. 6 c. 24
- 3. For all positive integers n, the number $4^n + 15n 1$ is divisible by :
 - a. 16

d. 2

- b. 24
- c. 9
- d. 36
- 4. If $49^n+16n+\lambda$ is divisible by 64 for all ${\sf n}\in{\sf N}$, then the least negative integral value of λ is

a. -1

b. -3

- **c.** -4
- d. -2

5. For $n\in N, x^{n+1}+\left(x+1
ight)^{2n-1}$ is divisible by :

- a. $x^2 + x + 1$
- b. $x^2 + x 1$
- c. x + 1
- d. x
- 6. Fill in the blanks:

If $a_1 = 2$ and $a_n = 5 a_{n-1}$, then the value of a_3 in the sequence is _____.

7. Fill in the blanks:

If xⁿ -1 is divisible by x - k, then the least positive integral value of k is _____

- 8. Prove by the principle of mathematical induction that for all $n \in N$, 3^{2n} when divided by 8, the remainder is always 1.
- 9. Prove by Mathematical Induction that the sum of first n odd natural numbers is n^2 .
- 10. Let $U_1 = 1$, $U_2 = 1$ and $U_{n+2} = U_{n+1} + U_n$ for $n \ge 1$. Use mathematical induction to show that:

$$U_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\} \text{ for all } n \ge 1.$$

CBSE Test Paper 01 CH-04 Principle of Mathematical Induction

Solution

1. (b) $n + rac{4^{-n}}{3} - rac{1}{3}$

Explanation: When n = 1 we get 3/4, and the subsequent terms when n is replaced by 2,3,4...

2. (c) 24

Explanation: If n = 1 then the statement becomes 1x2x3x4= 24 : the consecutive natural numbers when substituted will be multiples of 24.

3. (c) 9

Explanation: Replace n = 1 we get 18 n = 2 we get 45.... By the principle of mathematical induction it is divisible by 9.

4. (a) -1

Explanation: When n = 1 we have the value of the expression as 65 . Given that the expression is divisible be 64. Hence the value is -1.

5. (a) $x^2 + x + 1$

Explanation: When n = 1 we get $x^2 + x + 1$

6. 50

7. 1

8. Let P(n) be the statement given by

 $P(n): 3^{2n}$ when divided by 8, the remainder is 1

or, P(n) : 3 2 = 8 λ + 1 for some $\lambda \in$ N

P(1): 3^2 = 8 λ + 1 for some $\lambda \in$ N.

 \therefore 3² = 8 imes 1 + 1 = 8 λ +1, where λ = 1

P(1) is true

Let P(m) be true. Then, 3 2m = 8 λ + 1 for some λ \in N ...(i)

We shall now show that P(m + 1) is true for which we have to show that $3^{2(m + 1)}$ when

divided by 8, the remainder is 1 i.e. $3^{2(m+1)} = 8\mu + 1$ for some $\mu \in N$. Now, $3^{2(m+1)} = 3^{2m} \times 3^2 = (8\lambda + 1) \times 9$ [Using (i)] = $72\lambda + 9 = 72\lambda + 8 + 1 = 8 (9\lambda + 1) + 1 = 8\mu + 1$, where $\mu = 9\lambda + 1 \in N$ $\Rightarrow P(m + 1)$ is true Thus, P (m) is true $\Rightarrow P (m + 1)$ is true. Hence, by the principle of mathematical induction P(n) is true for all $n \in N$ i.e. 3^{2n} when divided by 8 the remainder is always 1.

- 9. **Step I** Let P(n) denotes the given statement, i.e., $P(n): 1 + 3 + 5 + \dots n(terms) = n^2$ i.e., $P(n): 1 + 3 + 5 + \ldots + (2n - 1) = n^2$ Since, First term = $2 \times 1 - 1 = 1$ Second term = $2 \times 2 - 1 = 3$ Third term = $2 \times 3 - 1 = 5$ \therefore nth term = 2n - 1**Step II** For n = 1, we have LHS = 2.1 - 1 = 1 $RHS = 1^2 = 1 = LHS$ Thus, P(1) is true. **Step III** For n = k, let us assume that P(k) is true, i.e., $P(k) : 1 + 3 + 5 + \ldots + (2k - 1) = k^2 \ldots$ (i) **Step IV** For n = k + 1, we have to show that P(k + 1) is true, whenever P(k) is true i.e., $P(k + 1): 1 + 3 + 5 + ... + (2k - 1) + [2(k + 1) - 1] = (k + 1)^2$ LHS = $1 + 3 + 5 + \ldots + (2k - 1) + [2(k + 1) - 1]$ $k^{2} = k^{2} + 2(k+1) - 1$ [from Eq. (i)] $=k^2+2k+1=(k+1)^2=$ RHS So, P(k + 1) is true, whenever, P(k) is true. Hence, by Principle of Mathematical Induction, P(n) is true for all $n \in N$.
- 10. Let P(n) be the statement given by P(n): U_n = $\frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\}$ We have,

$$U_{1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1 + \sqrt{5}}{2} \right)^{1} - \left(\frac{1 - \sqrt{5}}{2} \right)^{1} \right\} = 1$$

and,

$$U_{2} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2}\right)^{2} - \left(\frac{1-\sqrt{5}}{2}\right)^{2} \right\} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+5+2\sqrt{5}}{4}\right) - \left(\frac{1+5-2\sqrt{5}}{4}\right) \right\} = 1$$

 \therefore P(1) and P(2) are true.

Let P(n) be true for all
$$n \le m$$

i.e. $U_n = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^n - \left(\frac{1-\sqrt{5}}{2} \right)^n \right\}$ for all $n \le m$...(i)
We shall now show that P(n) is true for $n = m + 1$

We shall now show that P(n) is true for n = m + 1.

i.e.
$$U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{m+1} \right\}$$

We have,

$$\begin{split} & U_{n+2} = U_{n+1} + U_n \text{ for } n \geq 1 \\ \Rightarrow & U_{m+1} = U_m + U_{m-1} \text{ for } m \geq 2 \text{ [On replacing n by (m-1)]} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^m - \left(\frac{1-\sqrt{5}}{2} \right)^m \right\} + \\ & \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \right\} \text{ [Using (i)]} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left[\left\{ \left(\frac{1+\sqrt{5}}{2} \right)^m + \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \right\} - \left\{ \left(\frac{1-\sqrt{5}}{2} \right)^m + \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \right\} \right] \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{1+\sqrt{5}}{2} + 1 \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{1-\sqrt{5}}{2} + 1 \right) \right\} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{3+\sqrt{5}}{2} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{3-\sqrt{5}}{2} \right) \right\} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{6+2\sqrt{5}}{4} \right) - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{6-2\sqrt{5}}{4} \right) \right\} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right\} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m-1} \left(\frac{1+\sqrt{5}}{2} \right)^2 - \left(\frac{1-\sqrt{5}}{2} \right)^{m-1} \left(\frac{1-\sqrt{5}}{2} \right)^2 \right\} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{m+1} \right\} \\ \Rightarrow & U_{m+1} = \frac{1}{\sqrt{5}} \left\{ \left(\frac{1+\sqrt{5}}{2} \right)^{m+1} - \left(\frac{1-\sqrt{5}}{2} \right)^{m+1} \right\} \end{split}$$

 \therefore P(m + 1) is true.

Thus, P(n) is true for all $n\leq m \Rightarrow$ P(n) is true for all $n\leq$ m + 1. Hence, P(n) is true for all $n\in$ N.