CBSE Test Paper 02

CH-03 Trigonometric Functions

1. If in a triangle $\mathrm{ABC}, a \cos ^{2}\left(\frac{C}{2}\right)+c \cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$ then its sides a, b, c are in
a. G.P.
b. none of these
c. A. P.
d. H.P.
2. Angles of triangle are in A.P. If the number of degrees in the smallest to the number of radians in the largest is as $60: \pi$, then the smallest angle is
a. none of these.
b. 40°
c. 20°
d. 30°
3. If the sides of a triangle are $13,7,8$ the greatest angle of the triangle is
a. $\frac{2 \pi}{3}$
b. $\frac{\pi}{2}$
c. $\frac{3 \pi}{2}$
d. $\frac{\pi}{3}$
4. The largest value of $\sin \theta \cos \theta$ is
a. $\frac{1}{\sqrt{2}}$
b. $\frac{\sqrt{3}}{2}$
c. $\frac{1}{2}$
d. 1
5. ABC is an equilateral triangle of each side a (>0). The inradius of the triangle is
a. $\frac{a}{3}$
b. $\frac{\sqrt{3} a}{3}$
c. $\frac{a}{2}$
d. $\frac{a}{2 \sqrt{3}}$
6. Fill in the blanks:

The solution of a trigonometric equation for which the value of unknown angle say x
lies between 0 and 2π is called its \qquad solution.
7. Fill in the blanks:

The minute hand rotates through an angle of 6° in \qquad minute.
8. Express as a product: $\sin 6 \mathrm{x}-\sin 2 \mathrm{x}$
9. Find the values of the trigonometric function: $\cot \left(\frac{-15 \pi}{4}\right)$
10. Find the value of $2 \sin 15^{\circ} . \cos 75^{\circ}$
11. Find the general solutions of the following equations:
i. $\cos 3 x=0$
ii. $\cos \frac{3 x}{2}=0$
iii. $\cos ^{2} 3 \mathrm{x}=0$
12. Find the principal solution of the equation $\tan x=\frac{-1}{\sqrt{3}}$
13. Prove $\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=2 \sin x$
14. Prove that: $\sin x+\sin 3 x+\sin 5 x+\sin 7 x=4 \cos x \cos 2 x \sin 4 x$
15. Prove that: $\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}=\frac{\sqrt{3}}{8}$

CBSE Test Paper 02

CH-03 Trigonometric Functions

Solution

1. (c) A. P.

Explanation:

$a \cos ^{2}\left(\frac{C}{2}\right)+\cos ^{2}\left(\frac{A}{2}\right)=\frac{3 b}{2}$
$\Rightarrow a\left(\frac{1+\cos C}{2}\right)+c\left(\frac{1+\cos A}{2}\right)=\frac{3 b}{2}$
$\Rightarrow \frac{1}{2}(a \cos C+\cos A+a+c)=\frac{3 b}{2}$
$\Rightarrow \frac{1}{2}(b+a+c)=\frac{3 b}{2}$
$[\because \quad a \cdot \cos C+c \cdot \cos A=b$ using Projection rule
$\Rightarrow \bar{a}+c=2 b$
Which means they are in A.P
2. (d) 30°

Explanation:

Let the measures of the angles of the triangle be $a-d, a, a+d$ degrees respectively
Then we have $a-d+a+a+d=180^{\circ}$
$\Rightarrow 3 a=180^{\circ}$
$\Rightarrow a=\frac{180^{\circ}}{3}=60^{\circ}$
But it is clear that $a-d=60^{\circ}-d$ is the least and $a+d=60^{\circ}+d$ is the greatest angle.
Given greatest angle $=\pi$ radian $=180^{\circ}$
$\frac{\text { least angle }}{\text { greatest angle }}=\frac{60^{\circ}}{\pi \text { radian }}$
$\Rightarrow \frac{60^{\circ}-d}{60^{\circ}+d}=\frac{60^{\circ}}{180^{\circ}}=\frac{1}{3}$
$\Rightarrow 180^{\circ}-3 d=60^{\circ}+d$
$\Rightarrow 4 d=120^{\circ} \Rightarrow d=30^{\circ}$
3. (a) $\frac{2 \pi}{3}$

Explanation: Let the sides of the triangle be $a=13, b=7$, and $c=8$.
Since a is the longest side the greatest angle is A.
Using Cosine rule, we have
$\operatorname{Cos} A=\frac{b^{2}+c^{2}-a^{2}}{2 b c}=\frac{49+64-169}{112}=\frac{-1}{2}$
But we have $\cos \cos \left(\frac{2 \pi}{3}\right)=\cos \left(\pi-\frac{\pi}{3}\right)=-\cos \left(\frac{\pi}{3}\right)=\frac{-1}{2} \therefore \quad A=\frac{2 \pi}{3}$
4. (c) $\frac{1}{2}$

Explanation: $\sin \theta \cos \theta=\frac{1}{2} \cdot 2 \sin \theta \cos \theta=\frac{1}{2} \cdot \sin 2 \theta$
But the maximum value of $\sin 2 \theta$ is 1 .
So the maximum value of $\sin \theta \cos \theta=\frac{1}{2}$
5. (d) $\frac{a}{2 \sqrt{3}}$

Explanation: If r is the inradius of the circle then we have, $r=\frac{\Delta}{s}$
Given A B C is an equilateral triangle, so $\Delta=\sqrt{s(s-a)(s-b)(s-c)} \Rightarrow$
$\Delta=\sqrt{s(s-a)(s-a)(s-a)}$
$\because r=\frac{\Delta}{s}=\frac{s-a}{s} \sqrt{s(s-a)}$
Also, $s=\frac{3 a}{2}[\because 2 s=a+b+c \quad]$
$\Rightarrow r=\frac{\frac{3 a}{2}-a}{\frac{3 a}{2}} \sqrt{\frac{3 a}{2}\left(\frac{3 a}{2}-a\right)}$
$\Rightarrow r=\frac{a}{2} \cdot \frac{2}{3 a} \sqrt{\frac{3 a^{2}}{4}}=\frac{a}{2 \sqrt{3}}$
6. principal
7. one
8. $\sin 6 \mathrm{x}-\sin 2 \mathrm{x}$
$=2 \sin \left(\frac{6 x-2 x}{2}\right) \cos \left(\frac{6 x+2 x}{2}\right)\left[\because \sin C-\sin D=2 \sin \frac{C-D}{2} \cos \frac{C+D}{2}\right]$
$=2 \sin 2 \mathrm{x} \cos 4 \mathrm{x}$
9. $\cot \left(\frac{-15 \pi}{4}\right)=\cot \left(\frac{-15 \times 180^{\circ}}{4}\right)=\cot \left(-675^{\circ}\right)$
$\cot \left(-675^{\circ}\right)=\cot \left(-2 \times 360^{\circ}+45^{\circ}\right)=\cot 45^{\circ}=1$
10. Given,
$2 \sin 15^{\circ} \cos 75^{\circ}=\sin \left(15^{\circ}+75^{\circ}\right)+\sin \left(15^{\circ}-75^{\circ}\right)$
$[\because 2 \sin x \cdot \cos y=\sin (\mathrm{x}+\mathrm{y})+\sin (\mathrm{x}-\mathrm{y})]$
$=\sin 90^{\circ}+\sin \left(-60^{\circ}\right)$
$=\sin 90^{\circ}-\sin 60^{\circ}[\because \sin (-\theta)=-\sin \theta]$
$=1-\frac{\sqrt{3}}{2}=\frac{2-\sqrt{3}}{2}$
11. As we know that the general solution of the equation $\cos x=0$ is $x=(2 n+1)$ $\frac{\pi}{2}, n \in \mathrm{Z}$.
\therefore
i. $\cos 3 x=0 \Rightarrow 3 x=(2 n+1) \frac{\pi}{2}, n \in Z \Rightarrow x=(2 n+1) \frac{\pi}{6}, n \in Z$
ii. $\cos \frac{3 x}{2}=0 \Rightarrow \frac{3 x}{2}=(2 n+1) \frac{\pi}{2}, n \in Z \Rightarrow x=(2 n+1) \frac{\pi}{3}, n \in Z$
iii. $\cos ^{2} 3 x=0 \Rightarrow \cos 3 x=0 \Rightarrow 3 x=(2 n+1) \frac{\pi}{2}$,

$$
n \in Z \Rightarrow x=(2 n+1) \frac{\pi}{6}, n \in Z
$$

12. Given, $\tan x=\frac{-1}{\sqrt{3}}$

Here, value of $\tan x$ is negative. So, x lies in II and IV quadrants.
As we know, $\tan \frac{\pi}{6}=\frac{-1}{\sqrt{3}}$
$\therefore \tan \left(\pi-\frac{\pi}{6}\right)=-\frac{1}{\sqrt{3}} \Rightarrow \tan \frac{5 \pi}{6}=\frac{-1}{\sqrt{3}}$
$\therefore x=\frac{5 \pi}{6}$, which lies in I quadrant.
$\tan \left(2 \pi-\frac{\pi}{6}\right)=-\tan \frac{\pi}{6}$
$\Rightarrow \tan \frac{11 \pi}{6}=-\frac{1}{\sqrt{3}}$
$\therefore x=\frac{11 \pi}{6}$, which lies in IV quadrant.
\therefore principal solutions are $x=\frac{5 \pi}{6}$ and $x=\frac{11 \pi}{6}$.
13. We have,
L.H.S $=\frac{\sin x-\sin 3 x}{\sin ^{2} x-\cos ^{2} x}=\frac{-(\sin 3 x-\sin x)}{-\left(\cos ^{2} x-\sin ^{2} x\right)}=\frac{(\sin 3 x-\sin x)}{\left(\cos ^{2} x-\sin ^{2} x\right)}$
$=\frac{2 \cos \left(\frac{3 x+x}{2}\right) \sin \left(\frac{3 x-x}{2}\right)}{\cos 2 x}$
$=\frac{2 \cos 2 x \sin x}{\cos 2 x}=2 \sin x$
14. We have L.H.S. $=\sin x+\sin 3 x+\sin 5 x+\sin 7 x$

$$
=(\sin 7 x+\sin x)+(\sin 5 x+\sin 3 x)
$$

$=\left[2 \sin \left(\frac{7 x+x}{2}\right) \cos \left(\frac{7 x-x}{2}\right)\right]+\left[2 \sin \left(\frac{5 x+3 x}{2}\right) \cos \left(\frac{5 x-3 x}{2}\right)\right]$
$=2 \sin 4 \mathrm{x} \cos 3 \mathrm{x}+2 \sin 4 \mathrm{x} \cos \mathrm{x}$
$\left[\therefore \sin C+\sin D=2 \sin \frac{C+D}{2} \cdot \cos \frac{C-D}{2}\right]$
$=2 \sin 4 \mathrm{x}[\cos 3 \mathrm{x}+\cos \mathrm{x}]$
$=2 \sin 4 x\left[2 \cos \left(\frac{3 x+x}{2}\right) \cos \left(\frac{3 x-x}{2}\right)\right]$
$\left[\because \cos C+\cos D=2 \cos \frac{C+D}{2} \cdot \cos \frac{C-D}{2}\right]$
$=2 \sin 4 \mathrm{x}[2 \cos 2 \mathrm{x} \cos \mathrm{x}]$
$=4 \cos x \cos 2 x \sin 4 x=$ R.H.S.
15. Given, LHS $=\sin 20^{\circ} \sin 40^{\circ} \sin 80^{\circ}$
$=\frac{1}{2}\left[2 \sin 20^{\circ} \cdot \sin 40^{\circ}\right] \sin 80^{\circ}$ [multiplying and dividing by 2]
$=\frac{1}{2}\left[\cos \left(20^{\circ}-40^{\circ}\right)-\cos \left(20^{\circ}+40^{\circ}\right)\right] \cdot \sin 80^{\circ}[\because 2 \sin x \cdot \sin y=\cos (\mathrm{x}-\mathrm{y})-\cos (\mathrm{x}$
$+\mathrm{y})$]
$=\frac{1}{2}\left[\cos \left(-20^{\circ}\right)-\cos 60^{\circ}\right] \sin 80^{\circ}$
$=\frac{1}{2}\left[\cos 20^{\circ}-\frac{1}{2}\right] \cdot \sin 80^{\circ} \quad\left[\because \cos (-\theta)=\cos \theta\right.$ and $\left.\cos 60^{\circ}=\frac{1}{2}\right]$
$=\frac{1}{2} \times \frac{1}{2}\left[2\left(\cos 20^{\circ}-\frac{1}{2}\right) \cdot \sin 80^{\circ}\right]$ [again multiplying and dividing by 2]
$=\frac{1}{4}\left[2 \cos 20^{\circ} \cdot \sin 80^{\circ}-\sin 80^{\circ}\right]$
$=\frac{1}{4}\left[\sin \left(20^{\circ}+80^{\circ}\right)-\sin \left(20^{\circ}-80^{\circ}\right)-\sin 80^{\circ}\right][\because 2 \cos x \cdot \sin y$
$=\sin (x+y)-\sin (x-y)]$
$=\frac{1}{4}\left[\sin 100^{\circ}-\sin \left(-60^{\circ}\right)-\sin 80^{\circ}\right]$
$=\frac{1}{4}\left[\sin 100^{\circ}+\sin 60^{\circ}-\sin 80^{\circ}\right][\because \sin (-\theta)=-\sin \theta]$
$=\frac{1}{4}\left[\sin \left(180^{\circ}-80^{\circ}\right)+\sin 60^{\circ}-\sin 80^{\circ}\right]\left[\because \sin 100^{\circ}=\sin \left(180^{\circ}-80^{\circ}\right)\right]$
$=\frac{1}{4}\left[\sin 80^{\circ}+\sin 60^{\circ}-\sin 80^{\circ}\right][\because \sin (\pi-\theta)=\sin \theta]$
$=\frac{1}{4} \times \sin 60^{\circ}=\frac{1}{4} \times \frac{\sqrt{3}}{2}\left[\because \sin 60^{\circ}=\frac{\sqrt{3}}{2}\right]$
$=\frac{\sqrt{3}}{8}=$ RHS
Hence proved.

