CBSE Test Paper 01

CH-02 Relations and Functions

1. Two finite sets have m and n elements. The number o elements in the power set of the first is 48 more than the total number of elements in the power set of the second.
Then the values of m and n are
a. 6,4
b. 6,3
c. 3,7
d. 7,6
2. Let $f\left(x+\frac{1}{x}\right)=x^{2}+\frac{1}{x^{2}}, x \neq 0$, then $\mathrm{f}(\mathrm{x})=$
a. $x^{2}-2$
b. $x^{2}-1$
c. x^{2}
d. $x^{2}+1$
3. The function $\mathrm{f}(\mathrm{x})=\log \left(x+\sqrt{x^{2}+1}\right)$ is
a. a periodic function
b. neither an even nor an odd function
c. an odd function
d. an even function
4. If A is the set of even natural numbers less than 8 and B is the set of prime numbers less than 7, then the number of relations from A to B is
a. 3^{2}
b. 9^{2}
c. $2^{9}-1$
d. 2^{9}
5. The relation $R=\{1,1),(2,2),(3,3)\}$ on the set $\{1,2,3)$ is
a. an equivalence relation
b. reflexive only
c. symmetric only
d. transitive only
6. If $f(1+x)=x^{2}+1$, then $f(2-h)$ is \qquad .
7. Fill in the blanks: Let A and B be any two non-empty finite sets containing m and n elements respectively, then, the total number of subsets of $(A \times B)$ is \qquad .
8. If $A \times B=\{(a, 1),(a, 5),(a, 2),(b, 2),(b, 5),(b, 1)\}$, then find A, B and $B \times A$.
9. Find the domain of the function $f(x)=\frac{x^{2}+3 x+5}{x^{2}+x-6}$.
10. Let $\mathrm{f}, \mathrm{g}: R \rightarrow R$ be defined, respectively by $\mathrm{f}(\mathrm{x})=\mathrm{x}+1$, $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-3$. Find $\mathrm{f}+\mathrm{g}, \mathrm{f}-\mathrm{g}$ and $\frac{f}{g}$.
11. If $\mathrm{A}=(1,2,3), \mathrm{B}=\{4\}, \mathrm{C}=\{5\}$, then verify that $A \times(B \cup C)=(A \times B) \cup(A \times C)$.
12. Let $\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{C} \rightarrow \mathrm{C}$ be two functions defined as $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}$. Are they equal functions?
13. If $\mathrm{A}=\{2,3\}, \mathrm{B}=\{4,5\}, \mathrm{C}=\{5,6\}$, find $A \times(B \cup C), A \times(B \cap C)$, $(A \times B) \cup(A \times C)$
14. If $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$ find the values of x and y .
15. If $A=\{a, d\}, B=\{b, c, e\}$ and $C=\{b, c, f\}$, then verify that
i. $A \times(B \cup C)=(A \times B) \cup(A \times C)$
ii. $A \times(B \cap C)=(A \times B) \cap(A \times C)$

CBSE Test Paper 01

CH-02 Relations and Functions

Solution

1. (a) 6,4

Explanation:

Let A has m elements and B gas n elements. Then, no. of elements in
$\mathrm{P}(\mathrm{A})=2^{\mathrm{m}}$ and no. of elements in $\mathrm{P}(\mathrm{B})=2^{\mathrm{n}}$.]

By the question,

$$
\begin{aligned}
& 2^{\mathrm{m}}=2^{\mathrm{n}}+48 \\
& \Rightarrow 2^{\mathrm{m}}-2^{\mathrm{n}}=48
\end{aligned}
$$

This is possible, if $2^{\mathrm{m}}=64,2^{\mathrm{n}}=16$. (As $64-16=48$)
$\therefore 2^{m}=64 \Rightarrow 2^{m}=2^{6}$
$\Rightarrow m=6$.
Also, $2^{4}=16 \Rightarrow 2^{4}=2^{4}$
$\Rightarrow n=4$
2. (a) $x^{2}-2$

Explanation:

$\mathrm{f}\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)=\mathrm{x}^{2}+\frac{1}{\mathrm{x}^{2}}=\left(\mathrm{x}+\frac{1}{\mathrm{x}}\right)^{2}-2$
$\therefore \mathrm{f}(\mathrm{x})=\mathrm{x}^{2}-2$
3. (c) an odd function

Explanation:

$$
\begin{aligned}
& f(-x)=\log \left(-x+\sqrt{(-x)^{2}+1}\right)=\log \left(-x+\sqrt{x^{2}+1}\right. \\
& =\log \left(\sqrt{x^{2}+1}-x\right)=\log \left(\frac{\left(\sqrt{x^{2}+1}-x\right)\left(\sqrt{x^{2}+1}+x\right)}{\left(\sqrt{x^{2}+1}+x\right)}\right) \\
& =\log \left(\frac{1}{\left(\sqrt{x^{2}+1}+x\right)}\right)=\log (1)-\log \left(x+\sqrt{x^{2}+1}\right) \\
& =0-\log \left(x+\sqrt{x^{2}+1}\right) \\
& \Rightarrow f(-x)=-f(x)
\end{aligned}
$$

$\Rightarrow \mathrm{f}$ is an odd fucntion
4. (d) 2^{9}

Explanation:

Here, $\mathrm{A}=\{2,3,4\} ; \mathrm{B}=\{2,3,5\}$
$\mathrm{n}(\mathrm{A})=3, \mathrm{n}) \mathrm{B})=3$
\therefore no. of relations from A to $B=2^{n(A) \times n(B)}=2^{3 \times 3}=2^{9}$
5. (a) an equivalence relation
6. $h^{2}-2 h+2$
7. 2^{mn}
8. $\mathrm{A} \times \mathrm{B}=\{(a, 1),(a, 5),(a, 2),(b, 2),(b, 5),(b, 1)\}$. Clearly,
A is the set of first elements of all ordered pairs in $A \times B$ and B is set of second elements of all ordered pairs in $\mathrm{A} \times \mathrm{B}$.
$\therefore A=\{\mathrm{a}, \mathrm{b}\}, \mathrm{B}=\{1,5,2\}$
and $B \times A=\{1,5,2\} \times\{a, b\}$
$=\{(1, a),(1, b),(5, a),(5, b),(2, a),(2, b)\}$
9. Here $f(x)=\frac{x^{2}+3 x+5}{x^{2}+x-6}=\frac{x^{2}+3 x+5}{(x+3)(x-2)}$

The function $f(x)$ is defined for all values of x except $x+3=0, x-2=0$ i.e. $x=-3$ and $x=2$
Thus domain of $f(x)=R-\{-3,2\}$
10. $\operatorname{Here} \mathrm{f}(\mathrm{x})=\mathrm{x}+1$ and $\mathrm{g}(\mathrm{x})=2 \mathrm{x}-3$

Now $(f+g)(x)=f(x)+g(x)=x+1+2 x-3=3 x-2$
$(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})=\mathrm{x}+1-(2 \mathrm{x}-3)=\mathrm{x}+1-2 \mathrm{x}+3=-\mathrm{x}+4$
$\frac{(f)}{(g)}(x)=\frac{f(x)}{g(x)}=\frac{x+1}{2 x-3}, x \neq \frac{3}{2}$
11. As given in the question,
$A=\{1,2,3\}, B=\{4\}$ and $C=\{5\}$
$\therefore B \cup C=\{4\} \cup\{5\}=\{4,5\}$
$\therefore A \times(B \cup C)=\{1,2,3\} \times\{4,5\}$
$\Rightarrow \quad A \times(B \cup C)=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$
Now,
$(A \times B)=\{1,2,3\} \times\{4\}=\{(1,4),(2,4),(3,4)\}$
and, $(A \times C)=\{1,2,3\} \times\{5\}=\{(1,5),(2,5),(3,5)\}$
$\therefore \quad(A \times B) \cup(A \times C)=\{(1,4),(2,4),(3,4)\} \cup\{(1,5),(2,5),(3,5)\}$
$\Rightarrow \quad(A \times B) \cup(A \times C)=\{(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)\}$.
From equations (a) and (b), we get
$A \times(B \cup C)=(A \times B) \cup(A \times C)$

Hence verified.
12. We have,
$\mathrm{f}: \mathrm{R} \rightarrow \mathrm{R}$ and $\mathrm{g}: \mathrm{C} \rightarrow \mathrm{C}$
where R is set of Real numbers and C is set of Complex numbers.
From definitions as given,

Domain of $f=R$ and

Domain of $\mathrm{g}=\mathrm{C}$

Now, Two functions are said to be equal when domain and co-domain of both the functions are equal.

As, Domain of $f \neq$ Domain of g,
$\therefore \mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ are not equal functions.
13. We have,
$A=\{2,3\}, B=\{4,5\}, C=\{5,6\}$
$\therefore B \cup C=\{4,5\} \cup\{5,6\}$
$=\{4,5,6\}$
$\therefore A \times(B \cup C)=\{2,3\} \times\{4,5,6\}$
$=\{(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$
Now,
$B \cap C=\{4,5\} \cap\{5,6\}=\{5\}$
$\therefore \quad A \times(B \cap C)=\{2,3\} \times\{5\}$
$=\{(2,5),(3,5)\}$
Now,
$A \times B=\{2,3\} \times\{4,5\}$
$=\{(2,4),(2,5),(3,4),(3,5)\}$
and, $A \times C=\{2,3\} \times\{5,6\}$
$=\{(2,5),(2,6),(3,5),(3,6)\}$
$\therefore \quad(A \times B) \cup(A \times C)=\{(2,4),(2,5),(2,6),(3,4),(3,5),(3,6)\}$
14. Here $\left(\frac{x}{3}+1, y-\frac{2}{3}\right)=\left(\frac{5}{3}, \frac{1}{3}\right)$
$\therefore \frac{x}{3}+1=\frac{5}{3}$ and $y-\frac{2}{3}=\frac{1}{3}$
$\Rightarrow \frac{x}{3}=\frac{5}{3}-1$ and $y=\frac{1}{3}+\frac{2}{3}$
$\Rightarrow \frac{x}{3}=\frac{2}{3}$ and $y=\frac{3}{3}$
$\Rightarrow \mathrm{x}=2$ and $\mathrm{y}=1$
15. i. To determine $A \times(B \cup C)$
$B \cup C=\{b, c, e\} \cup\{b, c, f\}=\{b, c, e, f\}$
$\therefore A \times(B \cup C)=\{a, d\} \times\{b, c, e, f\}$
$=\{(a, b),(a, c),(a, e),(a, f),(d, b),(d, c),(d, e),(d, f)\} \ldots(i)$
To determine $(A \times B) \cup(A \times C)$
$A \times B=\{a, d\} \times\{b, c, e\}$
$=\{(a, b),(a, c),(a, e),(d, b),(d, c),(d, e)\}$
$A \times C=\{a, d\} \times\{b, c, f\}$
$=\{(a, b),(a, c),(a, f),(d, b),(d, c),(d, f)\}$
$\therefore(A \times B) \cup(A \times C)$
$=\{(a, b),(a, c),(a, e),(a, f),(d, b),(d, c),(d, e),(d, f)\}$
From Eqs. (i) and (ii), we get
$A \times(B \cup C)=(A \times B) \cup(A \times C)$

Hence verified.

ii. To determine $A \times(B \cap C)$
$(B \cap C)=\{b, c, e\} \cap\{b, c, f\}=\{b, c\}$
$\therefore A \times(B \cap C)=\{a, d\} \times\{b, c\}$
$=\{(a, b),(a, c),(d, b),(d, c)\} \ldots(i i i)$
To determine $(A \times B) \cap(A \times C)$
$A \times B=\{(a, b),(a, c),(a, e),(d, b),(d, c),(d, e)\}$
$A \times C=\{(a, b),(a, c),(a, f),(d, b),(d, c),(d, f)\}$
$\therefore(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})=\{(\mathrm{a}, \mathrm{b}),(\mathrm{a}, \mathrm{c}),(\mathrm{d}, \mathrm{b}),(\mathrm{d}, \mathrm{c})\} \ldots(\mathrm{iv})$
From Eqs. (iii) and (iv), we get
$\mathrm{A} \times(\mathrm{B} \cap \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cap(\mathrm{A} \times \mathrm{C})$
Hence verified.

