CBSE Test Paper 01 CH-16 Probability

- In a certain town, 40% persons have brown hair, 25% have brown eyes, and 15% have both. If a person selected at random has brown hair, the chance that a person selected at random with brown hair is with brown eyes
 - a. 1/3
 - b. 3/20
 - c. 3/8
 - d. 2/3
- 2. 8 coins are tossed at a time. The probability of getting at least 6 heads up is
 - a. 57/64
 - b. 229/256c. 37/256
 - d. 1/64
- 3. Let A be set of 4 elements. From the set of all functions from A to A, a function is chosen at random. The chance that the selected function is an onto function is
 - a. 29/32
 - b. none of these
 - c. 1/64
 - d. 3/32
- 4. The probability of having at least one tail in five throws with a coin is
 - a. $\frac{1}{5}$

b.
$$\frac{1}{32}$$

- c. $\frac{31}{32}$
- d. 1
- 5. In a single throw of two dice, the probability of getting a total of 7 or 9 is
 - a. $\frac{1}{3}$
 - b. $\frac{5}{18}$
 - c. none of these
 - d. $\frac{4}{18}$
- 6. Fill in the blanks:
 - A _____ is the set of all possible outcomes of an experiment.
- 7. Fill in the blanks:

If A and B are any two events in a sample space S, the probability that at least one of the events A or B will occur is given by $P(A \cup B) =$ _____.

- 8. If a coin is tossed two times, describe the sample space associated to this experiment.
- 9. A coin is tossed and then a die is thrown. Describe the sample space for this experiment.
- 10. An experiment consists of rolling a die and then tossing a coin once if the number on the die is even. If the numbers on the die is odd, then coin is tossed twice. Write the sample space for this experiment.
- 11. In a simultaneous throw of a pair of dice, find the probability of getting a doublet.
- 12. A card is picked up from a deck of 52 playing cards.
 - i. What is the sample space of the experiment?
 - ii. What is the event that the chosen card is a black-faced card?

- 13. A committee of two persons is selected from two men and two women. What is the probability that the committee will have:
 - i. no man?
 - ii. one man?
 - iii. two men?
- 14. Two dice are thrown. Find the odds in favour of getting the sum

- i. 4
- ii. 5
- iii. What are the odds against getting the sum 6?
- 15. Calculate the mean and standard deviation of the following cumulative data.

Wages (in Rs.)	0-15	15-30	30-45	45-60	60-75	75-90	90-105	105-120
Number of workers	12	30	65	107	157	202	222	230

CBSE Test Paper 01 CH-16 Probability

Solution

1. (c) 3/8

Explanation: Let A be the event that a person has brown hair, B be the event that a person has brown eyes. Then,

$$P(A) = rac{40}{100}, P(B) = rac{25}{100}, P(A \cap B) = rac{15}{100}$$

Required probability = $P\left(\frac{B}{A}\right) = \frac{P(A \cap B)}{P(A)} = \frac{\frac{15}{100}}{\frac{40}{100}} = \frac{3}{8}$

2. (c) 37/256

Explanation: Let A be the event getting at least 6 heads up, then,

 $n(A) = rac{8!}{6! imes 2!} + rac{8!}{7! imes 1!} + 1$ [Using permutation of like letters]

Also, Total no. of outcomes = $2^8 = 256$

- \therefore Required probability = $\frac{37}{256}$
- 3. (d) 3/32

= 37

Explanation: No. of function from A to $A = 4^4$

No. of onto function from A to A = 4!

- \therefore Required probability $= \frac{4!}{4^4} = \frac{3}{32}$
- 4. (c) $\frac{31}{32}$

Explanation: Required probability = 1 - P [not getting any tail in five throws with a coin]

$$=1-rac{1}{2} imesrac{1}{2} imesrac{1}{2} imesrac{1}{2} imesrac{1}{2} imesrac{1}{2}$$

$$=1-rac{1}{2^6}=1-rac{1}{32}=rac{32}{3}$$

- 5. (b) $\frac{5}{18}$ Explanation: A = getting a total of 7
 - B = getting a total of 9
 - Then, A = {(6,1), (1, 6), (4, 3), (3, 4)}
 - $B = \{(6, 3), (3, 6), (5, 4), (4, 5)\}$
 - \therefore Required probability = $P(A \cup B)$
 - = P(A) + P(B)

 4		4		8		8		4
 $\overline{6^2}$	Т	$\overline{6^2}$	_	$\overline{6^2}$	_	36	_	18

- 6. sample space
- 7. $P(A) + P(B) P(A \cap B)$
- 8. Two coins are tossed, the possibilities are either both coin shows head or tail, or one shows head and other shows tailor vice-versa.
 ... the sample space is given by,
 S = { HT,TH,HH,TT}
- 9. ∵ When a coin is tossed, either tail or head will turn up, whereas when a dice is thrown, we have one face with either of 1,2,3,4,5 or 6.
 So, the total number of elementary events associated with this experiment is 2 × 6 = 12 and the sample space will be
 S = {(H,1), (H,2), (H,3), (H,4), (H,5), (H,6), (T,1), (T,2), (T,3), (T,4), (T,5), (T,6) }
- 10. When a die is rolled then outcomes are 1, 2, 3, 4, 5, 6.
 On getting even numbers 2, 4, 6 on die, a coin is tossed once, then outcomes are H, T.
 On getting odd numbers 1, 3, 5 on die, then a coin is tossed twice,
 then the outcomes are HH, HT, TH, TT.
 ∴ The required sample space(S) is given by
 S = {2H, 2T, 4H, 4T, 6H, 6T, 1HH, 1HT, 1TH, 1TT, 3HH, 3HT, 3TH, 3TT, 5HH, 5HT, 5TH,

5TT}.

11. Suppose E be the event that a doublet appears on the faces of dice,

:. $E = \{(1,1), (2,2), (3,3), (4,4), (5,5), (6,6)\}$ $\Rightarrow n(E) = 6$... $P(E) = \frac{6}{36} = \frac{1}{6}$

12. i. Set of 52 cards itself is the Sample space for picking up a card from a set of 52 cards.

S: {52 cards}

ii. For an event of the chosen card to be a black-faced card, the event is a set of jack, king, queen of spades and clubs.

A: {JS, QS, KS, JC, KC, QC}

13. Given, there are two men and two women.

Now, a committee of two persons is selected.

$$\therefore n(S) = \ ^4C_2 = rac{4 imes 3}{2} = 6$$

i. Let E be the event that no man is to be in the committee

 $\therefore n(E) = \ ^2C_2 = 1$ [Only women will be in the committee]

$$\therefore P(E) = \frac{1}{6}$$

ii. Let E be the event that one man is in the committee

$$\therefore n(E) = {}^2C_1 \times {}^2C_1$$

$$=2 imes2=4$$

$$\therefore P(E) = \frac{4}{6} = \frac{2}{3}$$

iii. Let E be the event that two men in the committee

$$\therefore n(E) = {}^{2}C_{2} = 1$$
$$\therefore P(E) = \frac{1}{6}$$

14. Two dice are thrown,

$$\therefore n(s) = 6^2 = 36$$

i. Let E be the event that total sum is 4 on two dice.

E = {(1,3), (2,2), (3,1)}
⇒
$$n(E) = 3$$

∴ $P(E) = \frac{3}{36} = \frac{1}{12}$

Also, $P(\overline{E}) = 1 - P(E)$ = $1 - \frac{1}{12}$ = $\frac{11}{12}$ Odds in favour of getting sum as 4 is $P(E) : P(\overline{E}) = 1 : 11$

ii. Let E be the event of getting the sum as 5 on two dice.

E = {(1,4), (2,3), (3,2), (4,1)} ⇒ n(E) = 4 ∴ P (E) = $\frac{4}{36} = \frac{1}{9}$ P(\overline{E}) = 1 - P(E) = $\frac{8}{9}$ ∴ Odds in favour of getting the sum as 5 is, P(E) : P(\overline{E}) = 1 : 8 iii. Let E be the event of getting sum 6. E = {(1,5), (2,4), (3,3), (4,2), (5,1)} ⇒ n(E) = 5 ∴ P (E) = $\frac{5}{36}$ P (\overline{E}) = 1 - P (E) = $\frac{31}{36}$

... Odds against getting the sum as 6 is,

$$P(E) : P(E) = 31 : 5$$

1	5	
1	J	•

Class interval	cf	Mid value (x _i)	fi	$u_{i} = rac{x_{i} - 67.5}{15}$	f _i u _i	${ m f_i}u_i^2$
0-15	12	7.5	12	-4	-48	192
15-30	30	22.5	18	-3	-54	162
30-45	65	37.5	35	-2	-70	140
45-60	107	52.5	42	-1	-42	42
60-75	157	67.5	50	0	0	0
75-90	202	82.5	45	1	45	45
90-105	222	97.5	20	2	40	80
105-120	230	112.5	8	3	24	72

			L	
Total		230	-105	733

Here, a = 67.5, b = 15, N = $\sum f_i = 230$, $\sum f_i u_i = -105$ and $\sum f_i u_i^2 = 733$ \therefore Mean = $a + b \left(\frac{1}{N} \sum f_i u_i\right) = 67.5 + 15 \left(\frac{-105}{230}\right) = 67.5 - 6.85 = 60.65$ and Variance $(\sigma^2) = b^2 \left[\frac{1}{N} \sum f_i u_i^2 - \left(\frac{1}{N} \sum f_i u_i\right)^2\right]$ = $225 \left[\frac{733}{230} - \left(-\frac{105}{230}\right)^2\right]$ = $225 \left[3.187 - (0.45)^2\right]$ = 225(3.187 - 0.2025) = 671.51 \therefore Standard deviation = $\sqrt{Variance} = \sqrt{671.51} = 25.91$

