CBSE Test Paper 02

CH-15 Statistics

1. The H.M. of $4,8,16$ is
a. 6.7
b. 6.85
c. 7.8
d. 6.4
2. If in moderately asymmetrical distribution mode and mean of the data are 6μ and 9 μ respectively, then median is
a. 8μ
b. 7μ
c. 6μ
d. 5μ
3. If the two lines of regression are at right angles, then $\rho(X, Y)$ is equal to
a. 1
b. 0
c. -1
d. 1 or -1
4. The mean weight of a group of 10 items is 28 and that of another group of n items is 35.The mean of combined group of $10+\mathrm{n}$ items is found to be 30 . The value of n is
a. 12
b. 4
c. 2
d. 10
5. Product of n positive numbers is unity. The sum of these numbers cannot be less than
a. n^{3}
b. n
c. 1
d. n^{2}
6. Fill in the blanks:

For a sample of size 60 , if $\sum x_{i}^{2}=18000$ and $\sum x_{i}=960$, then the variance is \qquad .
7. Fill in the blanks:

The mean of 100 observations is 50 and their standard deviation is 5 . The sum of all squares of all the observations is \qquad .
8. The scores of a batsman in 10 matches were as follows: $38,70,48,34,42,55,63,46,54$, 44. Compute the variance and standard deviation.
9. Compute the mean deviation from the median of the following distribution:

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	5	10	20	5	10

10. Calculate the mean deviation about the median of the observations: $38,70,48,34,63$, 42, 55, 44, 53, 47.
11. The mean and variance of 7 observations are 8 and 16 respectively. If five of the observations are $2,4,10,12$, 14 find the remaining two observations.
12. Find the mean deviation about the mean for the data

	$0-$	$100-$	$200-$	$300-$	$400-$	$500-$	$600-$	$700-$

Income per day	100	200	300	400	500	600	700	800
Number of persons	4	8	9	10	7	5	4	3

13. Find the mean deviation about the mean for the following data.

x_{i}	2	5	6	8	10	12
f_{i}	2	8	10	7	8	5

14. Find the mean deviation about the median for the data in: $13,17,16,14,11,13,10,16$, $11,18,12,17$
15. The Arithmetic Mean, AM and Standard Deviation, SD of 100 items was recorded as 40 and 5.1, respectively. Later on, it was discovered that one observation 40 was wrongly copied down as 50. Find the correct SD.

CBSE Test Paper 02

CH-15 Statistics

Solution

1. (b) 6.85

Explanation:

$H . M=\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}=\frac{3}{\frac{1}{4}+\frac{1}{8}+\frac{1}{16}}=48 / 7=6.85$
2. (a) 8μ

Explanation:

median $=\frac{\bmod e+2 \text { mean }}{3}=\frac{6 \mu+2(9 \mu)}{3}=\frac{24 \mu}{3}=8 \mu$
3. (b) 0

Explanation: $\tan \theta=\frac{1-\rho^{2}}{\rho} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$

$$
\begin{aligned}
& \Rightarrow \tan \frac{\pi}{2}=\frac{1-\rho^{2}}{\rho} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}} \\
& \Rightarrow \infty=\frac{1-\rho^{2}}{\rho} \cdot \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}} \\
& \Rightarrow \rho=0
\end{aligned}
$$

4. (b) 4

Explanation: sum of weights of 10 items $=280$
sum of weights of n items $=35 n$
so, sum of weights of $(10+n)$ items $=280+35 n$
so, mean $=(280+35 n) /(10+n)$
$30(10+n)=280+35 n$
solving we get, $\mathrm{n}=4$
5. (b) n

Explanation:

we know that, for a set of observations $A . M .>G . M$.
if $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$ are the observations then
$\left(X_{1}+X_{2}+X_{3}+\ldots \ldots \ldots+X_{n}\right) / n \succ \sqrt{X_{1} \cdot X_{2} \cdot X_{3} \ldots X_{n}}$
as $\left(X_{1}, X_{2}, X_{3} \ldots X_{n}\right)=1$
therefore, $\left(X_{1}+X_{2}+X_{3}+\ldots+X_{n}\right) / n \succ 1$
$\Rightarrow\left(X_{1}+X_{2}+X_{3}+\ldots+X_{n}\right) \succ n$
6. 44
7. 252500
8. Let the assumed mean be $\mathrm{A}=48$.

Calculation of Variance:

x_{i}	$d_{i}=x_{i}-A=x_{i}-48$	d_{i}^{2}
38	-10	100
70	22	484
48	0	0
34	-14	196
42	-6	36
55	7	49
63	15	225
46	-2	4
54	6	36
44	-4	16
	$\Sigma d_{i}=14$	$\Sigma d_{i}^{2}=1146$

Here, $\mathrm{n}=10, \Sigma d_{i}=14$ and $\Sigma d_{i}^{2}=1146$
$\therefore \quad \operatorname{Var}(x)=\frac{1}{n}\left(\Sigma d_{i}^{2}\right)-\left(\frac{1}{n} \Sigma d_{i}\right)^{2}=\frac{1146}{10}-\left(\frac{14}{10}\right)^{2}=112.64$
Hence, $S . D .=\sqrt{\operatorname{Var}(x)}=\sqrt{112.64}=10.61$
9. We have to calculate mean deviation from the median. So, first we calculate the median with the help of following table,

Class	x_{i}	f_{i}	CF	$\left\|\mathrm{d}_{\mathrm{i}}\right\|=\left\|\mathrm{x}_{\mathrm{i}}-25\right\|$	$\mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}}$
$0-10$	5	5	5	20	100
$10-20$	15	10	15	10	100
$20-30$	25	20	35	0	0
$30-40$	35	5	40	10	50
$40-50$	45	10	50	20	200
		$\sum \mathrm{f}_{\mathrm{i}} 50$			$\sum \mathrm{f}_{\mathrm{i}} \mathrm{d}_{\mathrm{i}} 450$

$\mathrm{N} / 2=50 / 2=25$, so median class is 20-30.
Now, we will use following formula to calculate median for the given data,
Median $=l+\frac{C . F-N / 2}{f} \times h=20+\frac{35-25}{20} \times 10$
Thus, median $=25$

$$
M . D .=\frac{1}{n} \sum f_{i}\left|d_{i}\right|=\frac{1}{50}[450]=9
$$

10. To find the median arrange the observations in ascending order of magnitude, we will get
$34,38,42,44,47,48,53,55,63,70$
Clearly, the middle observations are $5^{\text {th }}$ and $6^{\text {th }}$ observations, which are 47 and 48 . So, median $=47.5$ (middle value of 47 and 48)
To calculate mean deviation, we have to find d_{i} as follows:

x_{i}	$d_{i}=\mid x_{i}-$ median \mid
38	9.5
70	22.5

48	0.5
34	13.5
63	15.5
42	5.5
55	7.5
44	3.5
53	5.5
47	0.5
Total	84

We have,
$\sum\left|x_{i}-47.5\right|=\sum d_{i}=84$
$\therefore \quad M . D .=\frac{1}{n} \Sigma\left|d_{i}\right|=\frac{1}{10}[84]=8.4$
11. Let two remaining observations be x and y. Then
$\frac{2+4+10+12+14+x+y}{7}=8$
$\therefore 42+\mathrm{x}+\mathrm{y}=56 \Rightarrow \mathrm{x}+\mathrm{y}=14$
Also $\frac{1}{7}\left(2^{2}+4^{2}+10^{2}+12^{2}+14^{2}+x^{2}+y^{2}\right)-(8)^{2}=16$
$\Rightarrow \frac{1}{7}\left(4+16+100+144+196+x^{2}+y^{2}\right)-64=16$
$\Rightarrow 460+\mathrm{x}^{2}+\mathrm{y}^{2}=560 \Rightarrow \mathrm{x}^{2}+\mathrm{y}^{2}=100 \ldots$.
Now $(x+y)^{2}+(x-y)^{2}=2\left(x^{2}+y^{2}\right)$
$\Rightarrow(14)^{2}+(\mathrm{x}-\mathrm{y})^{2}=2 \times 100$
$\Rightarrow(\mathrm{x}-\mathrm{y})^{2}=200-196 \Rightarrow(\mathrm{x}-\mathrm{y})^{2}=4 \Rightarrow \mathrm{x}-\mathrm{y}= \pm 2$
When $x-y=2$
Solving $\mathrm{x}+\mathrm{y}=14$ and $\mathrm{x}-\mathrm{y}=2$ we get $\mathrm{x}=8$ and $\mathrm{y}=6$
When $x-y=-2$
Solving $x+y=14$ and $x-y=-2$ we get $x=6$ and $y=8$
12.

Income per day	Mid values x_{i}	f_{i}	$f_{i} x_{i}$	$\left\|x_{i}-358\right\|$	$f_{i}\left\|x_{i}-358\right\|$

$0-100$	50	4	200	308	1232
$100-200$	150	8	1200	208	1664
$200-300$	250	9	2250	108	972
$300-400$	350	10	3500	8	80
$400-500$	450	7	3150	92	644
$500-600$	550	5	2750	192	960
$600-700$	650	4	2600	292	1168
$700-800$	750	3	2250	392	1176
		50	17900		7896

Mean $\bar{x}=\frac{1}{N} \sum f_{i} x_{i}=\frac{1}{50} \times 17900=358$
Mean deviation about mean $=\frac{1}{N} \sum_{i=1}^{n} f_{i}\left|x_{i}-\bar{x}\right|$
$=\frac{1}{50} \times 7896=157.92$
13. We make the table from the given data.

x_{i}	f_{i}	$\mathrm{f}_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}$	$\left\|\mathrm{x}_{\mathrm{i}}-\bar{x}\right\|$	$\mathrm{f}_{\mathrm{i}}\left\|\mathrm{x}_{\mathrm{i}}-\bar{x}\right\|$
2	2	4	5.5	11
5	8	40	2.5	20
6	10	60	1.5	15
8	7	56	0.5	3.5
10	8	80	2.5	20
12	5	60	4.5	22.5
	$\sum f_{i}=40$	$\sum f_{i} x_{i}=300$		$\sum f_{i}\left\|x_{i}-\bar{x}\right\|=92$

Here, $\mathrm{N}=\sum f_{i}=40, \sum f_{i} x_{i}=300$ and $\sum f_{i}\left|x_{i}-\bar{x}\right|=92$
Now, mean $(\bar{x})=\frac{1}{N} \sum f_{i} x_{i}=\frac{1}{40} \times 300=7.5$
\therefore Mean deviation about the mean,
$\operatorname{MD}(\bar{x})=\frac{1}{N} \sum f_{i}\left|x_{i}-\bar{x}\right|=\frac{1}{40} \times 92=2.3$
Hence, the mean deviation about mean is 2.3
14. Arrange the data in ascending order, we have
$10,11,11,12,13,13,14,16,16,17,17,18$
Here $\mathrm{n}=12$ (which is even)
So median is average of $6^{\text {th }}$ and $7^{\text {th }}$ observations
\therefore Median $=\frac{13+14}{2}=\frac{27}{2}=13.5$

x_{i}	$\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{M}\right\|$
10	3.5
11	2.5
11	2.5
12	1.5
13	0.5
13	0.5
14	0.5
16	2.5
16	2.5
17	3.5
17	3.5
18	4.5
Total	28

M.D. about median $=\frac{1}{n} \sum_{i=1}^{n}\left|x_{i}-M\right|$
$=\frac{1}{12} \times 28=2.33$
15. Number of items $=100$

Incorrect mean $(\bar{x})=40$

Incorrect SD $=5.1$
Incorrect item $=50$
Correct item $=40$
Now, $\bar{x}=\frac{\sum x}{n} \Rightarrow 40=\frac{\sum x}{100}$
\Rightarrow Incorrect $\sum x=4000$
\Rightarrow Correct $\sum x=4000-50+40=3990$
\therefore Correct mean $=\frac{3990}{100}=39.9$
Now, Incorrect SD $=\sqrt{\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n}}=\sqrt{\frac{\sum x^{2}}{n}-(\bar{x})^{2}}$
$\Rightarrow 5.1=\sqrt{\frac{\text { Incorrect } \sum x^{2}}{100}-(40)^{2}}$
$\Rightarrow 26.01=\frac{\text { Incorrect } \sum x^{2}}{100}-1600$
\therefore Incorrect $\sum x^{2}=162601$
Now, correct $\sum x^{2}=162601-(50)^{2}+(40)^{2}=161701$
and Correct SD $=\sqrt{\frac{161701}{100}-(39.9)^{2}}=\sqrt{1617.01-1592.01}=5$

